

Matroids vs. Δ -... Matroids in Δ -... Realization Problem

Close

Quit

Δ -matroids and Matroids

Remi Cocou Avohou, **Brigitte Servatius** and Herman Servatius

Worcester Polytechnic Institute

1. Matroids vs. Δ -matroids

Matroids vs. Δ -...

Matroids in Δ -...

Realization Problem

Home Page

Title Page

Page 2 of 21

Go Back

Full Screen

Close

Quit

M is a Matroid

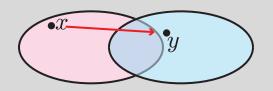
E a finite set – the ground set of M

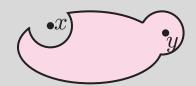
 $\mathcal{B} \subseteq \mathcal{P}(E)$ – the bases of M

The basis exchange axiom:

$$B_1, B_2 \in \mathcal{B}, x \in B_1 \setminus B_2 \Longrightarrow \exists y \in B_2 \setminus B_1$$

$$(B_1 \cup \{y\}) \setminus \{x\} = B_1 \triangle \{x, y\} \in \mathcal{B}$$





Matroids vs. Δ-...

Matroids in Δ -... Realization Problem

Home Page

Title Page

Page 3 of 21

Go Back

Full Screen

Close

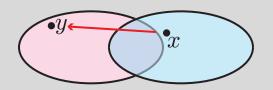
Quit

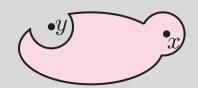
M is a Matroid

E a finite set – the ground set of M $\mathcal{B} \subseteq \mathcal{P}(E)$ – the bases of M of subsets of EThe alternate basis exchange axiom:

$$B_1, B_2 \in \mathcal{B}, x \in B_2 \setminus B_1 \Longrightarrow \exists y \in B_1 \setminus B_2$$

$$(B_1 \cup \{x\}) \setminus \{y\} = B_1 \triangle \{x, y\} \in \mathcal{B}$$





Matroids vs. Δ-...

Matroids in Δ -...

Realization Problem

Home Page

Title Page

Page 4 of 21

Go Back

Full Screen

Close

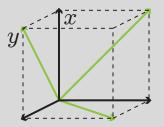
Quit

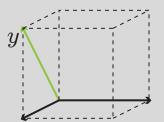
M is a Matroid

E a finite set – the ground set of M $\mathcal{B} \subseteq \mathcal{P}(E)$ – the bases of M of subsets of EThe basis exchange axiom:

$$B_1, B_2 \in \mathcal{B}, x \in B_1 \setminus B_2 \Longrightarrow \exists y \in B_2 \setminus B_1$$

$$(B_1 \cup \{y\}) \setminus \{x\} = B_1 \triangle \{x, y\} \in \mathcal{B}$$





Matroids in Δ -...

Realization Problem

Home Page

Title Page

Page **5** of **21**

Go Back

Full Screen

Close

Quit

M is a Matroid

E a finite set – the ground set of M $\mathcal{B} \subseteq \mathcal{P}(E)$ – the bases of M of subsets of EThe basis exchange axiom:

$$B_1, B_2 \in \mathcal{B}, x \in B_1 \setminus B_2 \Longrightarrow \exists y \in B_2 \setminus B_1$$

$$(B_1 \cup \{y\}) \setminus \{x\} = B_1 \triangle \{x, y\} \in \mathcal{B}$$

Bases $-B \in \mathcal{B}.$

Independent sets $\mathcal{I} - I \subseteq B \in \mathcal{B}$.

Dependent sets $\mathcal{D} - \mathcal{D} \notin \mathcal{I}$

Cycles (circuits) $\mathcal{C} - C \in \mathcal{D}, C \not\subset D \in \mathcal{D}$

Spanning sets $S - S \supset B \in \mathcal{B}$.

Matroids in Δ -...

Realization Problem

Home Page

Title Page

44 >>

→

Page 6 of 21

Go Back

Full Screen

Close

Quit

M is a Matroid

E a finite set – the ground set of M $\mathcal{B} \subseteq \mathcal{P}(E)$ – the bases of M of subsets of EThe basis exchange axiom: $B_1, B_2 \in \mathcal{B}, x \in B_1 \setminus B_2 \Longrightarrow \exists y \in B_2 \setminus B_1$ $(B_1 \cup \{y\}) \setminus \{x\} = B_1 \triangle \{x,y\} \in \mathcal{B}$

Whitney	1935	[13]	
W. T. Tutte	1971	[11]	(standard text)
D. J. A. Welsh	1976	[12]	(graph theory)
James Oxley	2011	[8]	(geometric/algebraic)
András Recski	1989	[10]	(applied approach)
Leonidas Pitsoulis	2014	[9]	,

Matroids vs. Δ-...

Matroids in Δ -...

Realization Problem

Home Page

Title Page

Page **7** of **21**

Go Back

Full Screen

Close

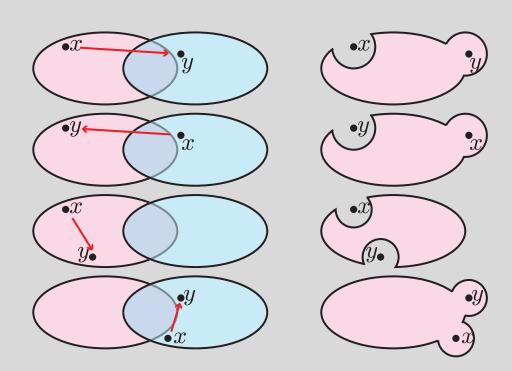
Quit

D is a Δ -matroid

The symmetric exchange axiom:

$$F_1, F_2 \in \mathcal{F}, x \in F_1 \triangle F_2 \Longrightarrow \exists y \in F_1 \triangle F_2$$

$$F_1 \triangle \{x,y\} \in \mathcal{F}$$



Matroids in Δ -...

Realization Problem

Home Page

Title Page

Page 8 of 21

Go Back

Full Screen

Close

Quit

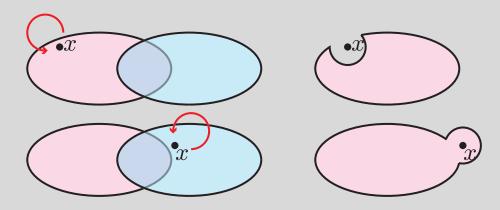
D is a Δ -matroid

The symmetric exchange axiom:

$$F_1, F_2 \in \mathcal{F}, x \in F_1 \triangle F_2 \Longrightarrow \exists y \in F_1 \triangle F_2$$

$$F_1 \triangle \{x,y\} \in \mathcal{F}$$

x = y:



$$|F_1| - 2 \le |F_2| \le |F_1| + 2$$

Feasible sets \mathcal{F} $F \in \mathcal{F}$.

Realization Problem

Home Page

Title Page

Page 9 of 21

Go Back

Full Screen

Close

Quit

D is a Δ -matroid

The symmetric exchange axiom:

$$F_1, F_2 \in \mathcal{F}, x \in F_1 \triangle F_2 \Longrightarrow \exists y \in F_1 \triangle F_2$$

$$F_1 \triangle \{x,y\} \in \mathcal{F}$$

Bouchet 1987 [1] (Δ-matroids)
Bouchet 1998 [2, 3, 5, 4] (multimatroids)
Dress & Havel 1986 [7] (metroids)
Chandrasekaran 1988 [6] (pseudometroids)

Close

Quit

2. Matroids in Δ -matroids

Every matroid M is a Δ -matroid $(\mathcal{F} = \mathcal{B})$

Every Δ -matroid D with $\mathcal{F} \subseteq \mathcal{P}_n(E)$ is a matroid M, $(\mathcal{B} = \mathcal{F})$

Given a Δ -matroid D,

 M_u , the *upper matroid*, whose bases are the feasible sets with largest cardinality

 M_l , the *lower matroid*, whose bases are the feasible sets with least cardinality

Realization Problem

Home Page

Title Page

Page 11 of 21

Go Back

Full Screen

Close

Quit

Theorem 1 Let $M = (E, \mathcal{B})$ be a matroid with independent sets \mathcal{I} . Then $D = (E, \mathcal{I})$ is a Δ -matroid.

The upper matroid is (E, \mathcal{B}) and the lower matroid (E, \emptyset) .

Theorem 2 Let $M = (E, \mathcal{B})$ be a matroid with spanning sets \mathcal{S} . Then $D = (E, \mathcal{S})$ is a Δ -matroid.

The upper matroid is $(E, \mathcal{P}(E))$ and the lower matroid (E, \mathcal{B}) .

Theorem 3 If $D = (E, \mathcal{F})$ is a Δ -matroid, $F \in \mathcal{F}$, then F is spanning in M_l and F is independent in M_u .

Corollary 1 If $M_u = (E, \mathcal{B}_u)$ and $M_l = (E, \mathcal{B}_l)$ are matroids, then for M_u and M_l to be upper and lower matroids of a Δ -matroid $D = (E, \mathcal{F})$ it is necessary that

- every basis of M_u be spanning in M_l and
- every basis of M_l be independent in M_u .

Home Page

Title Page

Page 12 of 21

Go Back

Full Screen

Close

Quit

Upper and Lower matroids do not determine the D-matroid:

$$\{\{a,b\},\{a\},\{b\},\emptyset\}$$
 $\{\{a,b\},\emptyset\}$

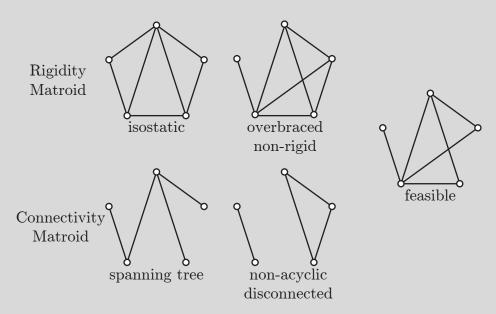
3. Realization Problem

Given $M_l = (E, \mathcal{B}_l)$ and $M_u = (E, \mathcal{B}_u)$, construct $D = (E, \mathcal{F})$ realizing them.

Close

Quit

An example with as many intermediate feasible sets as possible:



Theorem 4 G = (V, E) a connected simple graph.

 M_c the connectivity matroid (cycle matroid)

 M_r the 2-dimensional generic rigidity matroid

 \mathcal{F} : F connected (spanning in M_c) not-overbraced (independent in M_r)

Then \mathcal{F} satisfies the symmetric exchange property.

Tool: A minimally overbraced graph is 2-connected.

Matroids vs. Δ -...

Matroids in Δ -...

Realization Problem

Home Page

Title Page

Page 14 of 21

Go Back

Full Screen

Close

Quit

For this construction it is not necessary that a cycle M_u be connected in M_l :

Example

 $E = \{1, 2, 3, a, b, c\},\$

 $M_u = U_{5,6}(E), M_l = U_{2,3}(\{1,2,3\}) \oplus U_{2,3}(\{a,b,c\}).$

 $D = (E, \mathcal{B}_u \cup \mathcal{B}_l)$ is a Δ -matroid.

 M_u is a cycle.

 M_l is disconnected.

 $Matroids\ vs.\ \Delta-\dots$ $Matroids\ in\ \Delta-\dots$

Realization Problem

Home Page

Title Page

Page 15 of 21

Go Back

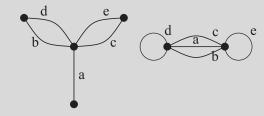
Full Screen

Close

Quit

A weaker condition: Every cycle in M_u is a union of cycles in M_l .

The weaker condition is necessary:



Two connectivity matroids on the same edge set.

 M_u and M_l are matroids.

- Every basis of M_l is independent in M_u
- Every basis of M_u is spanning in M_l

But

Every cycle of M_u is not a union of cycles of M_l .

 M_u and M_l are not the upper and lower matroids of any Δ -matroid.

Home Page

Title Page

Page 16 of 21

Go Back

Full Screen

Close

Quit

The weaker condition is necessary:

Theorem 5 Let $D = (E, \mathcal{F})$, with upper matroid M_u and lower matroid M_l .

Then every cycle in M_u is a union of cycles in M_l .

Theorem 6 Given $M_u = (E, \mathcal{B}_u)$, $M_l = (E, \mathcal{B}_u)$, with

Every cycle in M_u is a union of cycles in M_l .

Then every $B \in B_u$ is spanning M_l .

Then every $B \in B_l$ is independent in M_l .

Home Page

Title Page

Page 17 of 21

Go Back

Full Screen

Close

Quit

Necessary and Sufficient for Realization

Theorem 7 Given $M_u = (E, \mathcal{B}_u), M_l = (E, \mathcal{B}_u).$

 M_u and M_l realize the Δ -matroid $D = (E, \mathcal{F})$ if and only if

Every cycle in M_u is a union of cycles in M_l .

$Matroids\ vs.\ \Delta-\dots$ $Matroids\ in\ \Delta-\dots$ $Realization\ Problem$

Page 18 of 21

Go Back

Full Screen

Close

Quit

4. Quotients of Matroids

(Oxley [8]) $Q = (E, \mathcal{B}_Q)$ is a *quotient* of $M = (E, \mathcal{B}_M)$ if there is a matroid $N = (E \cup X, \mathcal{B}_N)$, $E \cap X = \emptyset$, with $M = N \setminus X$ and Q = N/X.

Theorem 8 (Oxley) Q is a quotient of M if and only if every circuit of M is a union of circuits of Q.

Corollary 2 Given $M_u = (E, \mathcal{B}_u), M_l = (E, \mathcal{B}_u).$

 M_u and M_l realize the Δ -matroid $D = (E, \mathcal{F})$ if and only if M_l is a quotient of M_u .

Matroids vs. Δ -...

Matroids in Δ -...

Realization Problem

Home Page

Title Page

Page 19 of 21

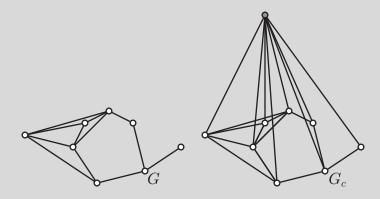
Go Back

Full Screen

Close

Quit

Corollary 3 The connectivity matroid of a graph is a quotient of the rigidity matroid.



A graph G and its cone G_c .

Theorem 9
$$M_r(G) = M_r(G_c) \setminus X$$
 $M_c(G) = M_r(G_c)/X$.

 $Matroids\ vs.\ \Delta-\dots$ $Matroids\ in\ \Delta-\dots$ $Realization\ Problem$

Home Page

Title Page

↔

→

Page 20 of 21

Go Back

Full Screen

Close

Quit

References

- [1] André Bouchet. Greedy algorithm and symmetric matroids. *Math. Programming*, 38(2):147–159, 1987.
- [2] André Bouchet. Multimatroids. I. Coverings by independent sets. SIAM J. Discrete Math., 10(4):626–646, 1997.
- [3] André Bouchet. Multimatroids. II. Orthogonality, minors and connectivity. *Electron. J. Combin.*, 5:Research Paper 8, 25, 1998.
- [4] André Bouchet. Multimatroids. IV. Chain-group representations. *Linear Algebra Appl.*, 277(1-3):271–289, 1998.
- [5] André Bouchet. Multimatroids. III. Tightness and fundamental graphs. *European J. Combin.*, 22(5):657–677, 2001. Combinatorial geometries (Luminy, 1999).
- [6] R. Chandrasekaran and Santosh N. Kabadi. Pseudomatroids. Discrete Math., 71(3):205-217, 1988.
- [7] Andreas Dress and Timothy F. Havel. Some combinatorial properties of discriminants in metric vector spaces. Adv. in Math., 62(3):285–312, 1986.
- [8] James Oxley. *Matroid theory*, volume 21 of *Oxford Graduate Texts in Mathematics*. Oxford University Press, Oxford, second edition, 2011.
- [9] Leonidas S. Pitsoulis. Topics in matroid theory. SpringerBriefs in Optimization. Springer, New York, 2014.
- [10] András Recski. Matroid theory and its applications in electric network theory and in statics, volume 6 of Algorithms and Combinatorics. Springer-Verlag, Berlin; Akadémiai Kiadó (Publishing House of the Hungarian Academy of Sciences), Budapest, 1989.
- [11] W. T. Tutte. *Introduction to the theory of matroids*. Modern Analytic and Computational Methods in Science and Mathematics, No. 37. American Elsevier Publishing Co., Inc., New York, 1971.

Matroids in Δ - . . .

Realization Problem

Home Page

Title Page

44 >>>

→

Page 21 of 21

Go Back

Full Screen

Close

Quit

- [12] D. J. A. Welsh. *Matroid theory*. Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. L. M. S. Monographs, No. 8.
- [13] Hassler Whitney. On the Abstract Properties of Linear Dependence. Amer. J. Math., 57(3):509–533, 1935.