

Geometric . . Tenegrities and . . Stress d-framework Home Page Page 1 of 20 Go Back

Full Screen

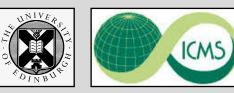
Close

Quit

Equilibrium stressability of multidimensional frameworks

Herman Servatius, Worcester Polytechnic Institute

with Oleg Karpenkov, Christian Müller, Gaiane Panina, Brigitte Servatius, and Dirk Siersma



Geometric . . . Tenegrities and . . . Stress d-framework

Home Page

Title Page

Page 2 of 20

Go Back

Full Screen

44

Abstract

Goal: An equilibrium stressability criterium for trivalent multidimensional tensegrities. The criterium appears in different languages:

(1) stress monodromies,

(2) surgeries

(3) exact discrete 1-forms

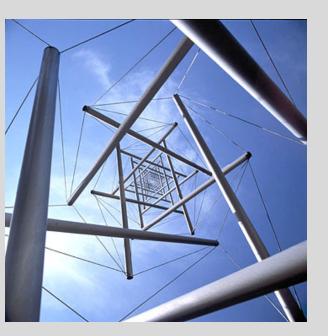
(4) in Cayley algebra.

Close

1. Geometric Constraint Systems

Kenneth Snelson's NeedleTower

Quit



●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Geometric . . . Tenegrities and .

Home Page

Title Page

Page 4 of 2

Go Back

Full Screen

Close

Quit

.

Stress d-framework

	Ingredients: A geometric space					
	A collection of objects in that space					
	A structure that associates geometric constrains to particular objects					
1						
	Example: \mathbb{R}^3 $\mathbf{p}: V \to \mathbb{R}^3$. $G(V, E)$					
	$(i,j) \in E$ $(\mathbf{p}_i - \mathbf{p}_j)^2 = \lambda_{ij}^2$					
	Solution Set					
	Rigidity: \mathbf{p} is an 'isolated point'.					

Stress d-framework

Tenegrities and . .

Home Page

Title Page

Page 5 of 20

Go Back

Full Screen

Infinitesimal Rigidity

Example: \mathbb{R}^3 $\mathbf{p}: V \to \mathbb{R}^3$. G(V, E) $(i, j) \in E$ $(\mathbf{p}_i - \mathbf{p}_j) \cdot (\mathbf{p}'_i - \mathbf{p}'_j) = 0$

$$W = \mathbf{f} \cdot \Delta \mathbf{p} = (\omega R) \,\Delta \mathbf{p} = \omega \left(R \Delta \mathbf{p} \right) = \omega \cdot \Delta \mathbf{e} \tag{1}$$

Close

Quit

Element of the Kernel: Infinitesimal Motion

Element of the Cokernel: Equilibrium Stress

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

Tenegrities ar Stress d-framework

Home Pa

Title Pag

Page <mark>6</mark> of

Go Bac

Full Scre

4

	rigid	globally rigid	infinitesimally rigid	generically rigid
	No	No	No	No
nd	No	No	No	Yes
age	Yes	No	No	No
▶▶	Yes	No	No	Yes
•	Yes	No	Yes	Yes
f 20 ck	Yes	Yes	No	No
een	Yes	Yes	No	Yes
	Yes	Yes	Yes	Yes

Quit

Close

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qu

Geometric . . Tenegrities and ... Stress d-framework Home Page Title Page Page **7** of **20** Go Back Full Screen Close

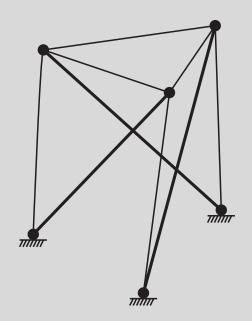
Quit

2. Tenegrities and Graphs

$BUCKMINSTER \ FULLER \ {\rm coined} \ {\rm the \ term} \ {\it tensegrity}$

- \bullet a combination of 'tension' and 'integrity'
- rigid networks of rods and cables

Kenneth Snelson's T3



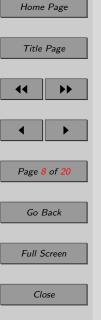
d-framework

Stress

Tenegrities and . .

(V, E) $E = C \cup S$ $C \cap S = B$ $\mathbf{p} : V \to \mathbb{R}^D$

- $\bullet~{\bf p}$ gives the initial position for vertices
- Edges in C cannot expand.
- Edges in S cannot contract.



Quit



Home Page

Title Page

Page 9 of 20

Go Back

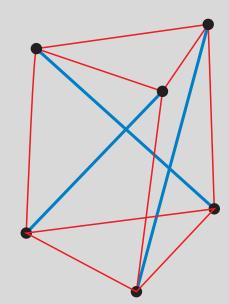
Full Screen

Close

Geometric . . . Tenegrities and . . .

Stress d-framework •

The Three Mysteries of Snelsen's Tensegrities



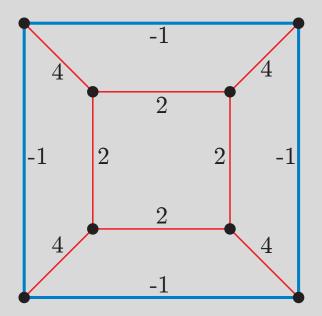
d-framework

Stress

Tenegrities and . .

(V, E) $E = C \cup S$ $C \cap S = B$ $\mathbf{p} : V \to \mathbb{R}^D$

- $\bullet~{\bf p}$ gives the initial position for vertices
- Edges in C cannot expand.
- Edges in S cannot contract.



d-framework

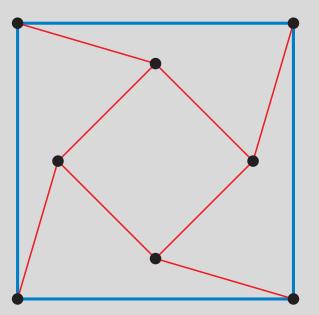
Stress

Tenegrities and . . .

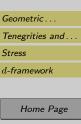
(V, E) $E = C \cup S$ $C \cap S = B$ $\mathbf{p} : V \to \mathbb{R}^D$

- $\bullet~{\bf p}$ gives the initial position for vertices
- Edges in C cannot expand.
- Edges in S cannot contract.

Quit



3. Stress



Title Page

Page 12 of 20

Go Back

Full Screen

Close

Quit

Stress $\omega: S \cup C \to \mathbb{R}$ $\omega(s) \ge 0 \text{ and } \omega(c) \le 0 \qquad c \in C, s \in S.$ Equilibrium Stress (Presstress, Self-stress)

$$\forall v \in V: \quad \sum_{(v,w) \in C \cup S} \omega((v,w))(\mathbf{p}(v) - \mathbf{p}(w)) = \mathbf{0}.$$

A non-trivial proper equilibrium stress is necessary for the structural integrity of a strut, cable system.

Theorem

[Roth and Whitely] A framework which is statically rigid as a bar and joint framework and has a proper nowhere zero equilibrium stress, is statically rigid as a cable strut framework.

Theorem

[Connelley and Whiteley] A framework with with a stress passing the *second-order stress test* is second order rigid, hence rigid.

Home Page

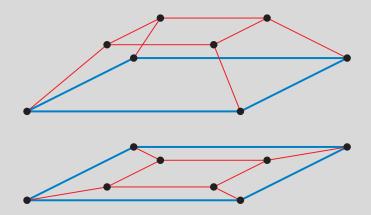
Title Page

Geometric . . . Tenegrities and . .

Stress d-framework

3.1. Liftings of Maxwell-Cremona

A framwork which is plane embedded and stressed, *lifts*:



♦
Page 13 of 20
Go Back
Full Screen
Close

Quit

With all lifted cells planar in 3-D.

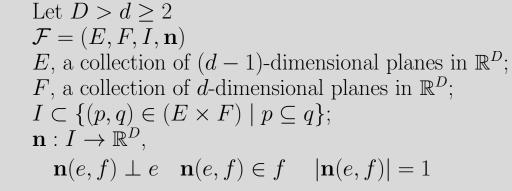
Lee, Whiteley), Lee, Ryshkov, Rybnikov

Connection has an analogue:

- \bullet CW-complexes
- dimension D (not necessarily embedded)

4. *d*-framework

Title Page



(incidences) (normal selection)

Page **14** of **20** Go Back

Full Screen

Close

Quit

A *d*-framework is *generic* for every $e \in E$, the planes f with $(e, f) \in I$ are distinct.

T3: 1-framework in \mathbb{R}^3 . The cube graph example: a 1-framework in \mathbb{R}^2 lifted into \mathbb{R}^3 .

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

Home Page

Geometric . . . Tenegrities and . .

Stress d-framework

A stress s on $\mathcal{F} = (E, F, I, \mathbf{n})$

 $s:F\to\mathbb{R}$

An *equilibrium* stress (prestree, self=stress)

$$\forall e \in E \qquad \sum_{(e,f) \in I} s(f) \mathbf{n}(e,f) = 0.$$

Quit

 \mathcal{F} is *self-stressable* (a *tensegrity*): — there exists a non-zero self-stress on it.

 \mathcal{F} is *Trivalent*: Each $e \in E$ has 3 incidences.

Geometric... Tenegrities and... Stress d-framework Home Page

Title Page

Page **16** of **20**

Go Back

Full Screen

Close

2-tensegrities (surfaced based) similar to: minimal (harmonic) surfaces meeting at edges

Think of:

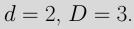
- soap bubbles
- tents
- flat expansive/contractive plates meeting at edges

Geometric ... Tenegrities and ... Stress d-framework

Title Page

Home Page

4.1. Example 1



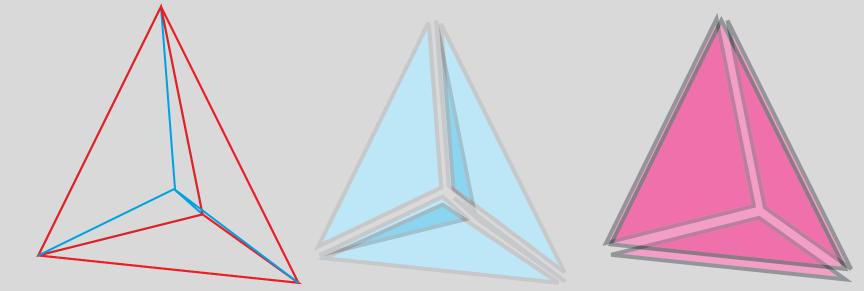
E: — edges of a K_5 embedded as regular tetrahedron plus centroid in \mathbb{R}^3

- F: plane of triangles of K_5 .
- I: incidences in K_5 .
- \mathbf{n} : all point "in".
- Note: The 2-framework is generic.

Interior/exterier triangles stressed in ratio $-\sqrt{6}/4$ gives equilibrium stress.

Interior expanding triangles cooling and contracting,

Exterior "skin" triangles expanding



Stress

Tenegrities and . .

4.2. Example 2

 $F: - K_4$ subgraphs of K_5 .

I: — incidences in K_5 .

d = 2, D = 3.

n: — various.

Since any two K_4 's intersect in 3 edges, all planes must coincide.

E: — edges of a K_5 embedded as regular tetrahedron plus centroid in \mathbb{R}^3

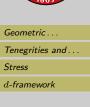
Quit

All choices of \mathbf{n} yield only 0 self-stress. Not a tense grity.

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

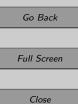
4.3. Example 3

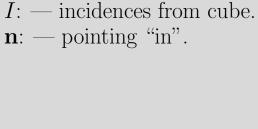
d = 2, D = 3.



Home Page

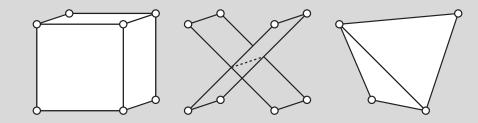
Title Page





E: — edges of a cube in \mathbb{R}^3 , and all face diagonals

F: — cube faces and triangles of inscribed tetrahedra



A 3-framework based on the cube with three types of faces. $1: -\sqrt{2}: \sqrt{3}/4$.

Geometric . . . Tenegrities and . . . Stress d-framework Home Page Title Page Title Page Page 20 of 20

Full Screen

Go Back

Close

Quit

Theorem 1 Consider a generic face-connected trivalent d-framework. Then the following three statements are equivalent.

- 1. \mathcal{F} has a non-zero self-stress (which is in fact non-zero at any d-plane).
- 2. For every two d-planes f_a, f_z in \mathcal{F} the stress-transition does not depend on the choice of an induced face-path d-framework on \mathcal{F} .
- 3. Every induced face-loop d-framework on \mathcal{F} is self-stressable.

Theorem 2 A generic trivalent d-framework is self-stressable if and only if the discrete multiplicative 1-form defined by (??) is exact.

Theorem 3 Let M be the d-skeleton of some (d+1)-dimensional manifold \overline{M} .

1. If the first homology group of \overline{M} vanishes, that is,

 $H_1(M,\mathbb{Z}_2)=0,$

then the linear spaces $\text{Lift}(\overline{M}, p)$ and the space of self-stresses Stress(M, p) are canonically isomorphic.

2. Liftability of (\overline{M}, p) implies self-stressability of (M, p). \Box