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Equilibrium stressability of multidimensional frameworks

Herman Servatius, Worcester Polytechnic Institute

with Oleg Karpenkov, Christian Müller, Gaiane Panina, Brigitte Servatius, and Dirk Siersma
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Abstract

Goal: An equilibrium stressability criterium for trivalent multidimensional tensegrities.
The criterium appears in different languages:
(1) stress monodromies,
(2) surgeries
(3) exact discrete 1-forms
(4) in Cayley algebra.
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1. Geometric Constraint Systems

Kenneth Snelson’s NeedleTower
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Rigidity

Ingredients: A geometric space
A collection of objects in that space
A structure that associates geometric constrains to particular objects

Example: R3 p : V → R3. G(V,E)

(i, j) ∈ E (pi − pj)
2 = λ2

ij

Solution Set
Rigidity: p is an ‘isolated point’.
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Infinitesimal Rigidity

Example: R3 p : V → R3. G(V,E)

(i, j) ∈ E (pi − pj) · (p′i − p′j) = 0

W = f ·∆p = (ωR) ∆p = ω (R∆p) = ω ·∆e (1)

Element of the Kernel: Infinitesimal Motion

Element of the Cokernel: Equilibrium Stress
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rigid globally infinitesimally generically
rigid rigid rigid

No No No No

No No No Yes

Yes No No No

Yes No No Yes

Yes No Yes Yes

Yes Yes No No

Yes Yes No Yes

Yes Yes Yes Yes
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2. Tenegrities and Graphs

Buckminster Fuller coined the term tensegrity

� a combination of ‘tension’ and ‘integrity’

� rigid networks of rods and cables

Kenneth Snelson’s T3
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(V,E) E = C ∪ S C ∩ S = B p : V → RD

� p gives the initial position for vertices

� Edges in C cannot expand.

� Edges in S cannot contract.
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The Three Mysteries of Snelsen’s Tensegrities

�

�
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(V,E) E = C ∪ S C ∩ S = B p : V → RD

� p gives the initial position for vertices

� Edges in C cannot expand.

� Edges in S cannot contract.
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(V,E) E = C ∪ S C ∩ S = B p : V → RD

� p gives the initial position for vertices

� Edges in C cannot expand.

� Edges in S cannot contract.
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3. Stress

Stress ω : S ∪ C → R
ω(s) ≥ 0 and ω(c) ≤ 0 c ∈ C, s ∈ S.

Equilibrium Stress (Presstress, Self-stress)

∀v ∈ V :
∑

(v,w)∈C∪S

ω((v, w))(p(v)− p(w)) = 0.

A non-trivial proper equilibrium stress is necessary for the structural integrity of a strut, cable
system.

Theorem

[Roth and Whitely] A framework which is statically rigid as a bar and joint framework and has
a proper nowhere zero equilibrium stress, is statically rigid as a cable strut framework.

Theorem

[Connelley and Whiteley] A framework with with a stress passing the second-order stress test
is second order rigid, hence rigid.
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3.1. Liftings of Maxwell-Cremona

A framwork which is plane embebedded and stressed, lifts:

With all lifted cells planar in 3-D.

Lee, Whiteley), Lee, Ryshkov, Rybnikov

Connection has an analogue:

� CW-complexes

� dimension D (not necessarily embedded)
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4. d-framework

Let D > d ≥ 2
F = (E,F, I,n)
E, a collection of (d− 1)-dimensional planes in RD;
F , a collection of d-dimensional planes in RD;
I ⊂ {(p, q) ∈ (E × F ) | p ⊆ q}; (incidences)
n : I → RD, (normal selection)

n(e, f ) ⊥ e n(e, f ) ∈ f |n(e, f )| = 1

A d-framework is generic
for every e ∈ E, the planes f with (e, f ) ∈ I are distinct.

T3: 1-framework in R3.
The cube graph example: a 1-framework in R2 lifted into R3.
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A stress s on F = (E,F, I,n)
s : F → R

An equilibrium stress (prestree, self=stress)

∀e ∈ E
∑

(e,f)∈I

s(f )n(e, f ) = 0.

F is self-stressable (a tensegrity):
— there exists a non-zero self-stress on it.

F is Trivalent: Each e ∈ E has 3 incidences.
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2-tensegrities (surfaced based) similar to:

minimal (harmonic) surfaces meeting at edges

Think of:

— soap bubbles
— tents
— flat expansive/contractive plates meeting at edges
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4.1. Example 1

d = 2, D = 3.
E: — edges of a K5 embedded as regular tetrahedron plus centroid in R3

F : — plane of triangles of K5.
I : — incidences in K5.
n: — all point “in”.
Note: The 2-framework is generic.
Interior/exterier triangles stressed in ratio −

√
6/4 gives equilibrium stress.

Interior expanding triangles cooling and contracting,
Exterior “skin” triangles expanding
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4.2. Example 2

d = 2, D = 3.
E: — edges of a K5 embedded as regular tetrahedron plus centroid in R3

F : — K4 subgraphs of K5.
I : — incidences in K5.
n: — various.

Since any two K4’s intersect in 3 edges, all planes must coincide.

All choices of n yield only 0 self-stress. Not a tensegrity.
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4.3. Example 3

d = 2, D = 3.
E: — edges of a cube in R3 , and all face diagonals
F : — cube faces and triangles of inscribed tetrahedra
I : — incidences from cube.
n: — pointing “in”.

A 3-framework based on the cube with three types of faces. 1 : −
√

2 :
√

3/4.



Geometric . . .

Tenegrities and . . .

Stress

d-framework

Home Page

Title Page

JJ II

J I

Page 20 of 20

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Theorem 1 Consider a generic face-connected trivalent d-framework. Then the following
three statements are equivalent.

1. F has a non-zero self-stress (which is in fact non-zero at any d-plane).

2. For every two d-planes fa, fz in F the stress-transition does not depend on the choice
of an induced face-path d-framework on F .

3. Every induced face-loop d-framework on F is self-stressable.

Theorem 2 A generic trivalent d-framework is self-stressable if and only if the discrete
multiplicative 1-form defined by (??) is exact.

Theorem 3 Let M be the d-skeleton of some (d+1)-dimensional manifold M .

1. If the first homology group of M vanishes, that is,

H1(M,Z2) = 0,

then the linear spaces Lift(M, p) and the space of self-stresses Stress(M, p) are canoni-
cally isomorphic.

2. Liftability of (M, p) implies self-stressability of (M, p). �
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