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Abstract

We give necessary and sufficient conditions for a matrix to be the quotient of the adjacency matrix A(G) of a
graph G with respect to an equitable vertex partition of G. We define equitable edge partitions for multi-digraphs and
establish connections to Kirchhoff graphs.
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1. Equitable Partitions

Let G be a simple undirected graph with vertices V (G) = {vi}. A partition of V (G) is a set
whose elements are disjoint, nonempty subsets of V (G) whose union is V (G).

The elements of a partition π will be called cells.
A partition π = (V1, . . . , Vk) of V (G) is equitable if
∀ i, j ∈ {1, . . . , k}, vp ∈ Vi :

ci,j =
∑
q

vq ∈ Vj

A(G)p,q

— depends only on i and j,

— not on the choice of vertex vp ∈ Vi.
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Easy Examples

� The discrete partition is always equitable

ci,j = (A(G))i,j

� A single-cell partition is equitable if G is regular.
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A Non-trivial Example
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A Less Symmetric Example
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Easy Facts

Given equitable partition π = (V1, . . . , Vk)

� Two vertices in Vi have equal # of neighbors in cell Vi.

� ∀ i ∈ {1, . . . , k}, the induced subgraph G[Vi] is regular
(degree ci,i)

� All vertices in cell Vi have the same degree:
k∑

j=1

ci,j.

� Equitable partition of G is an equitable partition of its complement, G.
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G/π

A(G/π) adjacency matrix:

� k × k matrix with (i, j)-entry ci,j .

� A(G/π) is the quotient matrix of G with respect to π.
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Equitable Partition, Labeled Quotient

[Q v1 v2
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v2 3 0
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The characteristic matrix P of partition π = (V1, . . . , Vk) is a |V (G)| × k matrix whose
jth column is the characteristic vector of set Vj. That is, Pi,j = 1 if ei ∈ Vj and is zero otherwise.
Characteristic matrix P provides the relationship between A(G) and A(G/π).

Theorem 1 [?] Let π be a partition of V (G) with characteristic matrix P . Then π is
equitable if and only if there exists a k × k matrix Q such that

A(G)P = PQ

in which case Q = A(G/π).
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Equitable partition – Symmetric Quotient Matrix


◦ ◦ ◦ ◦

◦ 0 2 1 1
◦ 2 0 1 1
◦ 1 1 1 2
◦ 1 1 2 1


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2. How to recognize a quotient matrix?

Theorem 2 Let A be a k×k matrix with non-negative integer entries. Then there exists a
graph G with equitable partition π such that A = A(G/π) if and only if there exist positive
integers xi such that xiai,j = xjaj,i for 1 ≤ i, j ≤ k.
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Proof: (⇒). Let G be a graph with equitable partition π = (V1, . . . , Vk). Then clearly
A(G/π) is a k × k matrix with non-negative integer entries ci,j, and symmetric zeros. By
definition of equitability, for each i the induced subgraph G[Vi] must be a ci,i regular graph.
Moreover, for any i 6= j, the graph formed by taking the vertices of Vi and Vj and all (Vi, Vj)
edges must be a (ci,j, cj,i)-biregular graph. Therefore for all i 6= j,

ci,j|Vi| = cj,i|Vj|.

That is, for all i 6= j,
ci,j|Vi| − cj,i|Vj| = 0.

�
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Proof:
(⇐). Conversely, let A be any k × k matrix with non-negative integer entries ai,j. Suppose
x = x1, . . . xk is a vector with positive integer entries so that for all 1 ≤ i, j ≤ k such that i 6= j,

xi(ai,j) = xj(aj,i). (1)

. Scale x by a positive integer so that for each j,{
xj > ai,j for all i ∈ {1, . . . , k}
xjaj,j is even

(2)

Now for each i, let Vi be a set of xi vertices, and let G be a graph with vertex set V (G) =
V1 ∪ · · · ∪ Vk. Add edges to V so that for each i, the induced subgraph G[Vi] is ai,i-regular,
which is possible since |Vi|ai,i is even and |Vi| > ai,i by 2. For each i 6= j, add edges so that
the edges between Vi and Vj form an (ai,j, aj,i)-biregular graph. By construction, the resulting
graph G has an equitable partition π = (V1, . . . , Vk) with quotient matrix A(G/π) = A. �
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2.1. A graphical algorithm

Let A be a k× k matrix with non-negative integer entries. Associate with A a di-graph H with
k vertices, v1, . . . , vk, and label arc (vi, vj) ∈ E(H) with matrix entry ai,j.
For any path P0 = vi, vj · · · vk, vl, let ω(P0) be the product

ω(P0) = ai,j · aj,k · · · · ak,l.

Now let C = vi, vj, vk · · · vl, vi be any (oriented) cycle of H . We say that C is A-invariant if

ai,j
aj,i
· aj,k
ak,j
· · · al,i

ai,l
= 1.
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Theorem 3 There exist positive integers x1, . . . , xk with xiai,j = xjai,j
∨
i, j ∈ {1, . . . k} if

and only if every oriented cycle of H is A-invariant.

Proof: First, suppose that there exists a positive x =
[
x1 x2 · · · xk

]t
such thatR(A)x = z.

In particular, in light of (1), for any i 6= j,

xi(ai,j) = xj(aj,i).

That is, for any i 6= j,
ai,j
aj,i

=
xj

xi

.

Now let C = vi, vi1, vi2 · · · vil−1
, vil, vi be any cycle of H . Then

ai,i1
ai1,i
· ai1,i2
ai2,i1
· · · ail−1,il

ail,il−1

· ail,i
ai,il

=
xi1

xi

· xi2

xi1

· ·
xi2

· · · xil−1

·
· xil

xil−1

· xi

xil

= 1.

Therefore C is A-invariant. As C was an arbitrary cycle in H , all cycles of H are A-invariant.

�
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Proof: Conversely, suppose that all cycles of C are A-invariant.
Iteratively assign a positive weight W to each vertex of H .
Initialize by assigning vertex v1 and any vertex vj adjacent to v1 by an arc with nonzero label
ai,j the weight a1,j

aj,1
.

If not all vertices are assigned a weight, choose a vertex with assigned weight with a nonzero
arc to an un-weighted vertex. If there is no such vertex, Choose an un-weighted vertex, assign
it weight 1 and proceed in this fashion until all vertices are assigned a weight. Then scale
the weights, if necessary by a common denominator of the fractional weights assigned. By
construction, W (v) is a positive integer for every vertex V . Finally, for all i 6= j

ai,jW (vi) = aj,iW (vj). (3)

because of A-invariance. �

It is clear that for a symmetric quotient matrix there always is a solution with all partitions of
the same size (uniform).
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Example

Let A be the 6× 6 matrix

A =


0 2 1 0 0 1
3 0 0 2 0 0
1 0 0 4 2 0
0 1 3 0 1 3
0 0 3 2 0 3
1 0 0 4 2 0


.
To find such a solution to 1, we assign positive integer weights to the vertices of a digraph of
order 6, using the iterative process outlined in the proof of Theorem 3. Vertex 1 is initially
assigned weight 1, vertex 2 weight 2

3
, vertex 3 and vertex 6 are assigned weight 1. Vertex 1 is

not incident to any other vertex by a non-zero arc, but vertex 2 is incident to vertex 4, which
receives weight 2.2

3
= 4

3
Now vertex 3 is incident to vertex 5, which receives weight 2

3
and is in

turn incident to vertex 6, receiving weight 2
3
3
2

= 1. Scaling the rational weights (1, 2
3
, 1, 4

3
, 2
3
, 1)

yields the integer vector (3, 2, 3, 4, 2, 3).
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To find such a solution to 1, we assign positive integer weights to the vertices of a digraph of
order 6, using the iterative process outlined in the proof of Theorem 3. Vertex 1 is initially
assigned weight 1, vertex 2 weight 2

3
, vertex 3 and vertex 6 are assigned weight 1. Vertex 1 is

not incident to any other vertex by a non-zero arc, but vertex 2 is incident to vertex 4, which
receives weight 2.2

3
= 4

3
Now vertex 3 is incident to vertex 5, which receives weight 2

3
and is in

turn incident to vertex 6, receiving weight 2
3
3
2

= 1. Scaling the rational weights (1, 2
3
, 1, 4

3
, 2
3
, 1)

yields the integer vector (3, 2, 3, 4, 2, 3).
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3. What is a Kirchhoff graph?

Let A be a matrix with integer entries, with columns s1, s2, . . . sn. A digraph D, whose arcs are
labeled with columns of A is a Kirchhoff graph for A if

� λ(v) is in the row space of D for all v ∈ D, where λ(v) is a vector in Rn whose i’th entry is
the net number of arcs labeled si exiting vertex v.

� The vectors {χ(C), C ∈ D} span the nullspace of A, where C is a cycle in D and χ(C) is
a vector in Rn whose i’th entry is the net number of arcs labeled si traversed by C.

λ(v) · χ(C) = 0

for each vertex of v and cycle C of D.



Equitable Partitions

How to recognize . . .

What is a . . .

Home Page

Title Page

JJ II

J I

Page 21 of 32

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3.1. Edge partitions

If we want to partition the edges of a given graph equitably, we can first construct the linegraph
L(G) from G, whose vertices are the edges of G and two vertices of L(G) are adjacent if the
corresponding edges of G are incident. An edge partition of G is equitable if the corresponding
vertex partition of L(G) is equitable.
Harary and Norman [?] defined line-digraphs from di-graphs. If D is a directed graph, its
directed line graph, or line-digraph has one vertex for each line of D and vertices (u, v) and
(w, x) are adjacent if v = w.
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The adjacency matrix of a line di-graph is not, in general, symmetric. If all the orientations
are reversed, one simply gets the negative matrix. There are fewer nonzero entries than in the
adjaceny matrix of the unoriented line graph.
Tyler Reese [?] defined a signed adjacency matrix from a digraph. Its connection to the Harary
Norman matrix is the following: All entries in the Harary-Norman adjacency matrix are -1 in
Tyler’s matrix. Nonzero entries of the linegraph adjacency matrix that are 0 in the HararyNor-
man matrix are the +1’s in Tyler’s matrix.
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Question

If we start out with a matrix M , the algorithm finds a graph whose partition matrix is M (or
shows that no such graph exists). When is this graph a line graph? Is there always a line graph
in the infinite family? A forbidden subgraph characterization of line graphs (derived graphs)
was obtained by L. Beineke [?].
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Line graphs of Simple Graphs

Characterized by L. Beineke, 1978, [?].

Forbidden subgraphs of a simple line graph:
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D

E

A

C
B

Is a Kirchhoff Graph for[ S1 S2 S3 S4

1 0 −1 1
1 1 1 0

]
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Equitable arc partitions from line digraphs

D
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Harrary Norman Line Digraph
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What about line graphs of non-simple graphs
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
Q ◦ ◦ ◦ ◦
◦ 0 2 2 2
◦ 0 1 0 2
◦ 2 0 1 2
◦ 2 2 2 0


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Theorem 4 Let D be a connected digraph with edge partition π. The AE(D/π) is sym-
metric if and only if π is uniform.

Corollary 1 Every uniform equitable edge partition of D is Kirchhoff.

Corollary 2 If equitable edge partition π is Kirchhoff and uniform, then AE(D/π) is sym-
metric.
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