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1. Pseudo-triangles
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1.1. Pseudo-Triangulating

Start with a point set. . . form the convex hull
10 vertices: 2 · 10− 3 degrees of freedom

Add edges. . .
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Start with a point set. . . form the convex hull
10 vertices: 2 · 10− 3 degrees of freedom

Add one edge
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Start with a point set. . . form the convex hull
10 vertices: 2 · 10− 3 degrees of freedom

Add two edges
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Start with a point set. . . form the convex hull
10 vertices: 2 · 10− 3 degrees of freedom

Add three edges



Pseudo-triangles

Some Examples:

Does planarity . . .

Matroids on Graphs

Matroid connectivity

Configuration Index

Global rigidity

Example

Random graphs

Assur Decomposition

Molecular . . .

Home Page

Title Page

JJ II

J I

Page 7 of 108

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Start with a point set. . . form the convex hull
10 vertices: 2 · 10− 3 degrees of freedom

Add four edges
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Start with a point set. . . form the convex hull
10 vertices: 2 · 10− 3 degrees of freedom

Add five edges
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Start with a point set. . . form the convex hull
10 vertices: 2 · 10− 3 degrees of freedom

Add six edges
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Start with a point set. . . form the convex hull
10 vertices: 2 · 10− 3 degrees of freedom

Add seven edges
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Start with a point set. . . form the convex hull
10 vertices: 2 · 10− 3 degrees of freedom

Add eight edges
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Start with a point set. . . form the convex hull
10 vertices: 2 · 10− 3 degrees of freedom

Add nine edges
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Start with a point set. . . form the convex hull
10 vertices: 2 · 10− 3 degrees of freedom

Add ten edges



Pseudo-triangles

Some Examples:

Does planarity . . .

Matroids on Graphs

Matroid connectivity

Configuration Index

Global rigidity

Example

Random graphs

Assur Decomposition

Molecular . . .

Home Page

Title Page

JJ II

J I

Page 14 of 108

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Start with a point set. . . form the convex hull
10 vertices: 2 · 10− 3 degrees of freedom

Add eleven edges
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Start with a point set. . . form the convex hull
10 vertices: 2 · 10− 3 degrees of freedom

Add twelve edges - Pseudo-Triangulation
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1.2. Properties

Theorem 1 (Streinu - 2000 [15]) The following are
equivalent

� G is a pseudo-triangulation with the minimum number
of edges.

� G is a pointed pseudo-triangulation

� G is a pseudo-triangulation with exactly 2n− 3 edges

� G is non-crossing, pointed, and has 2n− 3 edges

� G is non-crossing, pointed, and maximal with this prop-
erty
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Corollary 1 If any of the above conditions are satisfied,
then G is generically minimally rigid in the plane and any
realization of G as a pseudo-triangulation is 1’st order rigid.

Theorem 2 ([7]) Every planar graph which is generically
minimally rigid has a realization as a pointed pseudo-
triangulation.

Proof 1 uses an inductive construction together with topological
information.

Proof 2 uses linear algebra - Tutte’s approach to drawing a
graph.
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1.3. Definition of CPPT

A combinatorial pointed pseudo-triangulation (cppt) is an
assignment of labels, big and small, to the angles of a plane
graph such that

� every vertex has exactly one big angle,

� every interior face as exactly three small angles

� the outside face has only big angles.

G has
−n vertices,
−e edges and
−f faces.

Necessary condition for the existence of a cppt:

e = 2n− 3

(Since n− e + f = 2 and 3f − 3 + n = 2e.)
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1.4. Combinatorial CPPT

A graph in the plane
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A combinatorial pseudo-triangulation
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A topological realization
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1.5. Generalizations.

A combinatorial pseudo-triangulation has the generalized
Laman property if every subset of x non- pointed plus y pointed
vertices, with x + y = 2, induces a subgraph with at most
3x + 2y − 3 edges.

Theorem 3 ([12]) Given a plane graph G, the following
conditions are equivalent:

� G is generically rigid

� G contains a spanning isostatic subgraph,

� G can be labelled as a CPT with the generalized Laman
property.

� G can be stretched as a pseudo-triangulation (with the
given embedding and outer face).
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1.6. Reciprocal Figures

We want to draw the geometric dual using the same edge direc-
tions.

Construction

Use a framework with a resolvable stress, non-zero on every
edge, for example a cycle in the rigidity matroid.

Such a cycle corresponds to a pseudo-triangulation with one
non-pointed vertex.
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A Wheel and Its Reciprocal
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Theorem 4 If a generic 2-cycle is realized as a pseudo-
triangulation, then the reciprocal diagram is also a pseudo-
triangulation.
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2. Some Examples:
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Seven Wheel 1:
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Seven Wheel 2:
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Center segment revolves:

Graph not in a plane embedding.
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Center segment revolves and rotates:

Graph not in a plane embedding.



Pseudo-triangles

Some Examples:

Does planarity . . .

Matroids on Graphs

Matroid connectivity

Configuration Index

Global rigidity

Example

Random graphs

Assur Decomposition

Molecular . . .

Home Page

Title Page

JJ II

J I

Page 30 of 108

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

A non-planar reciprocal:
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3. Does planarity influence rigid-
ity?

In 1982 Lovasz and Yemini showed that 6-connectivity implies
planar rigidity, [10]. Can the connectivity requirement be low-
ered for planar graphs?
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A planar 5-connected non-rigid graph.
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However,Lovász and Yemini [10] note that their proof technique
will show that G−{e1, e2, e3} is rigid for all e1, e2, e3 ∈ E, and
hence that G is edge 2-rigid. This result was combined with
Theorem 9 in [8] to deduce

Theorem 5 Every 6-connected graph is globally rigid.
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There are easy inductive constructions to generate all 2-
connected graphs, namely G is 2-connected if and only if it
can be built up from a cycle by sequentially adjoining edges
(loops are not allowed) and subdividing edges. A graph is edge-
2connected if and only if it can be built up from a vertex by
adding edges (loops are allowed) and subdividing edges, see [6].

A graph is 2-rigid if and only if it can be obtained from tetrahe-
dra by a sequence of 1-extension, edge addition and 2-sum [1].
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4. Matroids on Graphs

We are studying two matroids on the edge set E of a graph
G(V,E), namely the cycle matroid, C(G), defined by its cycles
of G as circuits (or, equivalently, by c-independent sets as the
collection I) and the (2-dimensional generic) rigidity matroid,
R(G), defined by r-independent edge sets.
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5. Matroid connectivity

Tutte [17] calls a matroid on the ground set E n-connected, if
for any positive integer k < n there is no partition of E into
two sets E1 and E2 such that |Ei| ≥ k and ρ(E1) + ρ(E2) ≤
ρ(E)+k−1. With this definition every matroid is 1-connected.
A matroid is 2-connected if there is no partition of E into two
sets E1 and E2 such that |Ei| ≥ 1 and ρ(E1) + ρ(E2) ≤ ρ(E),
i.e. if it is not the direct sum of its restrictions to the Ei’s.
Every matroid can be uniquely decomposed into a direct sum
such that each of the summands is 2-connected. With Tutte’s
2-connectivity of the graph G is equivalent to 2-connectivity of
its cycle matroid C(G).
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It is well known, see for example [13] or [14], that a matroid is
2-connected if and only if for any partition of the ground set
into two sets, there is a circuit C intersecting both of them.
In fact an even stronger conclusion holds, namely a matroid is
2-connected if and only if any pair of its edges is contained in a
circuit.
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5.1. The 2-sum

The 2-sum, M1

⊕
2M2, of two matroids M1 and M2, both con-

taining at least 3 elements and having exactly one element e
in common, where e is neither dependent (a loop) or a bridge
in either of the Mi, is a matroid on the union of the ground
sets of M1 and M2 excluding e and the circuits of M1

⊕
2M2

consist of circuits of Mi not containing e and of sets of the form
C1

⋃
C2 \ e where Ci is a circuit of Mi containing e.

A matroid is 3-connected if and only if it cannot be written as
a 2-sum.
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The 2-sum is also defined for graphs, but here one cannot iden-
tify two edges without specifying which pairs of endpoints are to
be identified, in other words, without specifying an orientation
on the edges to be amalgamated, see Figure 1.

+

Figure 1 The 2-sum of two circuits.

Note that the 2-sum of two cycles is a cycle.
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5.2. The 2-sum and 2-connectivity

Clearly the 2-sum of graphs is associative provided that the
edges to be amalgamated are distinct, and so it is convenient to
represent the result of a succession of 2-sums as a tree in which
the nodes encode the graphs to be joined, and the edges encode
the (oriented) edges to be amalgamated, see Figure 2.

+ +

+

+

+

+

+

Figure 2 A 2-sum tree.
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Figure 3 The three block tree in Figure 2 encodes this
graph.
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Tutte proved the following deep theorem characterizing finite
2-connected graphs, see [16, 5].

Theorem 6 A 2-connected graph G is uniquely encoded by
its 3-block tree.

This result has been generalized for matroids. Every 2-
connected matroid has a unique encoding as a 3-block tree in
which the 3-blocks are 3-connected matroids, bonds (matroids
in which every 2-element subset is a circuit) and polygons (ma-
troids consisting of a single circuit) [4] Theorem 18.
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The rigidity matroid is not closed under 2-sum decomposition.
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Theorem 7 Let G be a rigid graph with connected rigidity
matroid R(G). Then the 3-blocks of G are multilinks or
globally rigid graphs on at least four vertices.

Proof: If G is 3-connected it is globally rigid. If G is not 3-
connected, we compute its 3-block tree T . Consider a leaf node
GL of T . GL cannot be a multilink because G is simple, and
it cannot be a cycle, because G is redundantly rigid. Therefore
GL is a 3-connected graph, which is redundantly rigid, hence
globally rigid. Now the theorem follows by induction on the
number of nodes of T . �
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6. Configuration Index

6.1. Definition and Examples

The configuration index ι(G,p) of a graph G(V,E) whose
vertices are embedded in the plane by p : V → R2 is the
cardinality of the set of congruence classes of embeddings of G
with the same edge lengths as in (G,p). We call p generic
if the coordinates of p(V ) as point in R2|V | are algebraically
independent over Q. If p is generic, ι(G,p) = 1 exactly when
G is globally rigid.
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Figure 4
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Figure 5
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6.2. The configuration index of a graph with 2-

connected rigidity matroid

Let G be rigid and let R(G) be 2-connected. From Theorem 7
we know that its 3-blocks are globally rigid or multilinks, which
makes it easy to compute their configuration index.

Theorem 8 Let G(V,E) be rigid, |V | ≥ 4, and let R(G) be
2-connected. If k is the number of globally rigid 3-blocks of
R(G) (which are not multi-links), then ι(G,p) = 2k−1 for
any generic embedding p.
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Proof: Given an embedding of G, we can reflect its 3-blocks
about axes determined by the endpoints of edges along which
the 2-sum is taken, so 2k−1 is a lower bound for the configuration
index of G. However, the 3-blocks are not necessarily subgraphs
of G and the subgraphs of G induced by the vertex sets of the
3-blocks need not even be rigid or connected, they might in
fact consist of isolated vertices. Let p be a generic embedding
of the vertices. All edge-lengths are in the algebraic closure
of Q(p(V )) and the edge lengths of a base of R(G) are also
algebraically independent. Now if we prune a leaf F of the 3-
block tree along e, then, since both 2-summands F andG\F are
rigid after deletion of e, the length of e can be computed from
the edge length information in either summand alone. F − e
might not be globally rigid, but since F is generically embedded,
e will have different length in non-congruent embeddings. Any
equality of the length of e in a re-embedding of F with the length
of e in a re-embedding of G\F can be described as a non-trivial
polynomial equation in the vertex coordinates, contradicting
genericity. The theorem now follows by induction on k. �
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7. Global rigidity

G(V,E) is called redundantly rigid if G(V,E − e) is rigid for
all e ∈ E, i.e. the removal of a single edge e from the rigid
graph G does not destroy rigidity. Redundant rigidity is a key
to characterize global rigidity.

Theorem 9 [8] Let G be a graph. Then G is globally rigid if
and only if G is a complete graph on at most three vertices,
or G is both 3-connected and edge 2-rigid (redundantly)
rigid.
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7.1. Vertex transitive graphs

Theorem 10 A four-regular vertex transitive graph is
generically rigid in the plane if and only if it contains no
subgraph isomorphic to K4, or is K5 or one of the graphs
in the following figure.

K4£K2
a) b)

Vertex transitive rigid graphs containing K4.
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Theorem 11 Let G be a vertex transitive non-rigid graph.
Then G is k-regular with k ≤ 6, and contracting the non-
trivial rigid components of G produces a vertex transitive
graph of regularity at most 5.

Proof: By the lemma, there is only one kind of non-trivial
rigid component, say on s vertices. Such a component is at-
tached to its complement in G by s independent edges. Con-
tracting the non-trivial rigid components will, by our transitiv-
ity assumptions, produce an s-regular graph on v vertices, where
v is the number of non-trivial rigid components in G. The con-
tracted graph has sv/2 edges. The rank ofG is v(2s−3)+sv/2,
which must be smaller than 2sv− 3. This yields the inequality
6 < v(6− s), thus each rigid component has at most 5 vertices
and the regularity of G is at most 6. �
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Theorem 12 Let G be a connected k-regular vertex transi-
tive graph on n vertices. Then G is not rigid if and only if
either:
(a) k = 2 and n ≥ 4.
(b) k = 3 and n ≥ 8.
(c) k = 4 and G has a factor consisting of s disjoint copies
of K4 where s ≥ 4
(d) k = 5 and G has a factor consisting of t disjoint copies
of K5 where t ≥ 8.
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e

E

f

F

Two embeddings which are rigid, but neither infinitesimally
rigid nor globally rigid.

a
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b
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c
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e
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d
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E
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F

Two embeddings which are rigid and infinitesimally rigid but
not globally rigid.
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Two non-congruent embeddings with same edge lengths.
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We observe that for a rigid G which is not redundantly rigid,
M(G) is not connected. It is in fact the direct sum over the
maximal redundantly rigid subgraphs (or singleton edges). The
arguments in the preceding proofs are unaltered if we replace
rigid components by redundantly rigid subgraphs and we obtain
A vertex transitive rigid graph is also globally rigid unless it has
a factor consisting of 3 copies of K4 or 6 copies of K5.
Proof: For rigid but not globally rigid graphs, equality holds
in the last inequality of the proof of Theorem 11, and the two
solutions yield the two exceptions stated. �
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8. Example
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9. Random graphs

Let Gn,d denote the probability space of all d-regular graphs on
n vertices with the uniform probability distribution. A sequence
of graph properties An holds asymptotically almost surely, or
a.a.s. for short, in Gn,d if limn→∞ PrGn,d

(An) = 1. Graphs in
Gn,d are known to be a.a.s. highly connected. It was shown by
Bollobás [2] and Wormald [19] that if G ∈ Gn,d for any fixed
d ≥ 3, then G is a.a.s. d-connected. This result was extended
to all 3 ≤ d ≤ n − 4 by Cooper et al. [3] and Krivelevich et
al. [9]. Stronger results hold if we discount ‘trivial’ cutsets. In
[18], Wormald shows that if G ∈ Gn,d for any fixed d ≥ 3, then
G is a.a.s. cyclically (3d− 6)-edge-connected.



Pseudo-triangles

Some Examples:

Does planarity . . .

Matroids on Graphs

Matroid connectivity

Configuration Index

Global rigidity

Example

Random graphs

Assur Decomposition

Molecular . . .

Home Page

Title Page

JJ II

J I

Page 70 of 108

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Theorem 13 If G ∈ Gn,4 then G is a.a.s. globally rigid.

In fact this result holds for all d ≥ 4.

Theorem 14 If G ∈ Gn,d and d ≥ 4 then G is a.a.s. glob-
ally rigid.

Proof: If d ≥ 6 then G is a.a.s. 6-connected by [3, 9] and the
result follows from Theorem 5. If d = 5 then the result follows
from Theorem 13 by contiguity, see [18]. �
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Let G(n, p) denote the probability space of all graphs on n
vertices in which each edge is chosen independently with prob-
ability p. In the following we will assume that all logarithms
are natural. We will need the following results on G(n, p).

Lemma 1 Let G ∈ G(n, p), where p = (log n + k log log n +
w(n))/n, k ≥ 2 is an integer and limn→∞w(n) = ∞. For
each fixed integer t, let St be the set of vertices of G of
degree at most t. Then, a.a.s.
(a) Sk−1 is empty,
(b) no two vertices of St are joined by a path of length at
most two in G,
(c) G− St−1 is non-empty and t-connected.

Proof: Facts (a) and (b) are well known, see for example [2].
Fact (c) follows from (a), (b) and [11, Theorem 4] �
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Theorem 15 Let G ∈ G(n, p), where p = (log n +
k log log n + w(n))/n, and limn→∞w(n) =∞.
(a) If k = 2 then G is a.a.s. rigid.
(b) If k = 3 then G is a.a.s. globally rigid.

Proof: (a) We adopt the notation of Lemma 1. It follows from
Lemma 1 that a.a.s. S1 = ∅ and G− S5 is a.a.s. 6-connected.
Hence G − S5 is a.a.s. (globally) rigid by Theorem 5. Since
adding a new vertex joined by at least two new edges to a rigid
graph preserves rigidity, it follows that G is a.a.s. rigid.
(b) This follows in similar way to (a), using the facts that S2 = ∅
and that adding a new vertex joined by at least three new edges
to a globally rigid graph preserves global rigidity. �



Pseudo-triangles

Some Examples:

Does planarity . . .

Matroids on Graphs

Matroid connectivity

Configuration Index

Global rigidity

Example

Random graphs

Assur Decomposition

Molecular . . .

Home Page

Title Page

JJ II

J I

Page 73 of 108

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The bounds on p given in Theorem 15 are best possible since if
G ∈ G(n, p) and p = (log n+k log log n+c)/n for any constant
c, then G does not a.a.s. have minimum degree at least k, see
[2].
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10. Assur Decomposition
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The excavator with its kinematic system.
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The unified structural scheme of the kinematic system of the
excavator.
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The unique decomposition into Assur groups of the structural
scheme of the kinematic system of the excavator.
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10.1. Basic Characterization of Assur Graphs

Theorem 16 Assume G = (V, P ;E) is a pinned isostatic
graph. Then the following are equivalent:
(i) G = (V, P ;E) is minimal as a pinned isostatic graph:
that is for all proper subsets of vertices V ′ ∪ P ′, V ′ ∪ P ′
induces a pinned subgraph G′ = (V ′ ∪ P ′, E ′), |E ′| ≤ 2|V ′ ∪
P ′| − 1.
(ii) If the set P is contracted to a single vertex p∗, inducing
the unpinned graph G∗ with edge set E, then G∗ is a rigidity
circuit.
(iii) Either the graph has a single free vertex of degree 2 or
each time we delete a vertex, the resulting pinned graph has
a motion of all free vertices (in generic position).
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Assur Graphs

Corresponding circuit for Assur Graphs
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10.2. Singular realizations of Assur Graphs

Theorem 17 If we have a planar Assur Graph (minimal
isostatic pinned framework: - property (i)) then

1. we have realizations p, such that there is a single self
stress, and this self-stress is non-zero on all edges.

2. at that configuration p there is a unique (up to scalar)
non-trivial first-order motion and this is non-zero on all
inner vertices.
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The sequence of steps for producing the configuration for a pla-
nar Assur Graph which has both a non-zero self-stress and a
non-zero motion: (a) take a generic realization of the underly-
ing circuit and form its reciprocal; (b) Split the reciprocal face
K in order to separate the ground vertex into distince points,
still with a self-stress; (c) use the additional self-stress to form
a parallel drawing; (d) use the parallel drawing to create differ-
ence vectors, and (e) turn these difference vectors to create the
first-order motion which is non-zero on all inner vertices.
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Theorem 18 If we have an arbitrary Assur Graph then

1. we have realizations p, such that there is a single self
stress, and this self-stress is non-zero on all edges.

2. at that configuration p there is a unique (up to scalar)
non-trivial first-order motion and this is non-zero on all
inner vertices.
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Given a non-planar graph (or drawing) (A) )we can insert cross-
ing points to create a planar graph (Bow’s Notation). Working
on this planar graph we have a reciprocal (B) which also is a
non-planar drawing of the planar reciprocal (C).
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c)

A
B C

D
X

K1

K2

d)

A
B C

D
X

K1

K2

e)

A
B C

D
X

K1

K2

Given the reciprocal pair, we can again split the face K (b) and
split the ground vertex in the original. This configuration of
the Bowed graph has a non-zero stress, as does the non-planar
original. The non-trivial parallel drawing of the Bowed graph
is a non-trivial parallel drawing of the non-planar original (c)
and induces the required first-order motion on the non-planar
original (d,e).
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10.3. Decomposition of one-degree of freedom

linkages

Decomposible - not Assur Graphs

Decomposition - with identified subcircuit(s).
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11. Molecular conjectures

3-space: Generic Body and Hinge Frameworks

Solved

Alternate generalization to 3-space:

Two bodies, joined on linear hinge
6 degrees for each body.
Each hinge removes 5 degrees of freedom

A
B
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Graph G = (C,H)
C: vertices for abstract bodies,
H: for pairs which share a hinge.
Necessary count for independence becomes: 5|H| ≤ 6|C| − 6

Theorem 19 (Tay and Whiteley (84)) Also sufficient
for generic independence with hinges, with

5|H| ≤ 6|C| − 6
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Algorithms:

6|C| − 6 = 6(|C| − 1)

or
6 spanning trees if replace ‘hinge edge’ by five edges for multi-
graph.
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11.1. Modeling molecules

(special graphs) - can we predict rigidity?

Single atom and associated bonds

|V | = 5 |E| = 10

|E| = 3|V | − 5 overbraced
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Adjacent atom clusters

Flexible

|C| = 2, |H| = 1, 5|H| = 6|C| − 7,

|V | = 4, |E| = 5 |E| = 3|V | − 7
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Rings of atoms:

Ring of 6 atoms and bonds

Body and hinge: |B| = 6, |H| = 6, 5|H| = 6|B| − 6
Just the right number to be rigid - generically.
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Graph G of atoms and covalent bonds
Body and hinge model
Atoms are bodies
bonds are hinges
count as body and hinge structure
Problem: Special geometry with hinges concurrent
Special geometry may lower rank!
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Graph G of atoms and covalent bonds
Form G2

atoms are vertices
bonds are edges
second neighbor bond bending pairs are edges count as

3|V | − 6

priority system on bond edges.
Problem: for general graphs G the rank may be lower. (May
work for G2?)
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Lots of experimental evidence;
Proofs of correctness for special classes of graphs
Plausibility arguments related to other conjectures on 3-space
rigidity
Sketched proof of equivalence of the two conjectures.
Conjectures embedded in implemented algorithms: FIRST on
the web (Arizona State University)
Seek additional graph models for applications biochemical con-
straints:
Apply to other problems in biochemistry, chemistry
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11.2. Molecular Conjecture in the Plane

Given: Simple graph G = (V,E).

� Regard as a body and pin graph of a structure in the plane:

Vertices are bodies.

Edges denote pins.

� Note: Each pin connects just two bodies. Otherwise we
would need a hypergraph.

� Realizations:

– Amorphous bodies. Embedding specifies the location of
the pins.

– Line bodies. Embedding may specify either lines or pins.

– Question: Does the line realization always exist?
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11.3. Realization in the Plane.

Theorem 20 If G = (V,E) is simple, then a pin collinear
structure exists.

Take any generic embedding of the structure graph G = (V,E)
in R2. Form the polar of that embedding.

a

b

c
d

e
f

g

h

D

E

C

B

A

F

H

G
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Question:

Is the polar generic as a line pin structure?

Question:

Is it generic as a body pin structure?

a

b

c
d

e
f

g

h

D

E

C

B

A

F

H

G
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Note: A general pin body structure may have no pin collinear
realization:

The incidence structure is a hypergraph.
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EGRES TECHNICAL REPORTS TR-2006-06
Pin-collinear Body-and-Pin Frameworks and the Molecular
Conjecture
Bill Jackson, Tibor Jordàn
Abstract
T-S. Tay and W. Whiteley independently characterized the
multigraphs which can be realized as an infinitesimally rigid
d-dimensional body-and-hinge framework. In 1984 they jointly
conjectured that each graph in this family can be realized as
an infinitesimally rigid framework with the additional prop-
erty that the hinges incident to each body lie in a common
hyperplane. This conjecture has become known as the Molec-
ular Conjecture because of its implication for the rigidity of
molecules in 3-dimensional space. Whiteley gave a partial so-
lution for the 2-dimensional form of the conjecture in 1989
by showing that it holds for multigraphs G = (V,E) in the
family which have the minimum number of edges, i.e. satisfy
2|E| = 3|V | − 3. In this paper, we give a complete solu-
tion for the 2-dimensional version of the Molecular Conjecture.
Our proof relies on a new formula for the maximum rank of
a pin-collinear body-and-pin realization of a multigraph as a
2-dimensional bar-and-joint framework.
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Theorem 21 A multigraph G can be realized as an in-
finitesimally rigid body and hinge framework in Rd if and
only if (

(
d+1

2

)
− 1)G has

(
d+1

2

)
edge-disjoint spanning trees.

(Tay and Whiteley, 1984)
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Recent Advances in the Generic Rigidity of Structures, Tiong-
Seng Tay and Walter Whiteley Structural Topology # 9, 1984
Many body and hinge structures are built under additional con-
straints. For example in architecture flat panels may be used in
which all hinges are coplanar. In molecular chemistry, we can
model molecules by rigid atoms hinged along the bond lines so
that all hinges to an atom are concurrent. This is the natural
projective dual for the architectural condition.
Conjecture: A multigraph is generically rigid for hinged struc-
tures in n-space iff it is generically rigid for hinged structures
in n-space with all hinges of body vi in a hyperplane Hi of the
space.
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Remarks: For the plane (n=2 with all pins along a line), this
conjecture was made in 1979 but remains unsolved. With the
recent breakthrough for real structures in 3-space the problem
becomes more important.
Only in 3-space does projective duality convert a hinge structure
to a new hinge structure.
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Jackson-Jordan prove first:

Theorem 22 Let G(V, P ) be a graph with no isolated ver-
tices. Then the maximum rank of a pin-collinear body
and pin realization of G as a bar and joint framework is
2(|V | + |P |)− 3− def(G).

A pin-collinear body and pin realization ofG(V, P ) is the square
of a subdivision of G.
The deficiency of G(V, P ) is 3V − 3 − r2(G), where r2 is the
rank in the associated 2-polymatroid of G.
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2-polymatroid associated to G(V, P ) with a body and pin re-
alization G∗ embedded in R2: An infinitesimal motion of G
is a map S : V → R3 satisfying the constraints that for all
p = uv ∈ P we have S(u)− S(v) = 〈(x(e),−y(e), 1)〉.
The set of infinitesimal motions is the nullspace of a 2|P |×3|V |
matrix.
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Jackson and Jordan show further, that a pin-line generic pin-
collinear body-and-pin realization of G has maximal rank over
all pin-collinear body and pin realizations of G.
The main theorem is then:

Theorem 23 Let G(V, P ) be a graph with no isolated ver-
tices. Then the maximum rank of a pin-collinear body
and pin realization of G as a bar and joint framework is
2(|V | + |P |)− 3− def(G).
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Finally Jackson and Jordan show that the body-and-pin and
rod-and-pin 2-polymatroids of a graph are identical. As a solu-
tion to the molecular conjecture they formulate

Theorem 24 Let G(V,E) be a multigraph. Then the fol-
lowing statements are equivalent:
(a) G has a realization as an infinitesimally rigid body and
hinge framework in R2.
(b) G has a realization as an infinitesimally rigid body-and-
hinge framework (G, q) in R2 with each of the sets of points
{q(e) : e ∈ EG(v)}, v ∈ V , collinear.
(c)2G contains 3 edge disjoint spanning trees.
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In the body-and hinge frameworks so far investigated, each
hinge is shared by exactly two bodies. Can one generalize from
body-pin graph to body and pin incidence structure?
J-J conjecture yes and point out that Whiteley proved this for
independent structures and made a similar conjecture in 1989.
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