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1. Combinatorial Maps

Tutte [8] defined maps axiomatically. If we have three fixed
point free permutations τ0, τ2, and V on a set Φ of flags such
that

A1 τ 2
0 = τ 2

2 = Id

A2 τ0τ2 = τ2τ0

A3 Vτ2 = τ2V−1

A4 {V iφ} ∩ {V iτ2φ} = ∅
A5 τ0, τ2 and τ0τ2 are fixed point free

A6 〈τ0, τ2,V〉 acts transitively on Φ

then we can define a graph G whose vertices are the orbits of Φ
under 〈τ2,V〉 and whose edges are the orbits of Φ under 〈τ0, τ2〉.
The orbits of 〈τ0, τ2〉 each have four elements and intersect either
one or two orbits of 〈τ2,V〉, defining the endpoints of the edge.
M(G, τ0, τ2,V) is a combinatorial map.
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Decomposition of the hexagonal prism into flags.



Combinatorial Maps

The flag graph

Vertex splitting . . .

Reduction to . . .

Classification of . . .

Joining two maps

Regular maps on . . .

The 3-block tree

Matroids

∆-matroids

Home Page

Title Page

JJ II

J I

Page 4 of 36

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Orbits under τ2τ0, τ2τ1 and τ0τ1.
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Flags at an edge, and at a vertex.
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2. The flag graph

BS(M) and Co(M).

A map is orientable if and only if its flag graph is bipartite.
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τ0 red
τ2 green
τ1 blue



Combinatorial Maps

The flag graph

Vertex splitting . . .

Reduction to . . .

Classification of . . .

Joining two maps

Regular maps on . . .

The 3-block tree

Matroids

∆-matroids

Home Page

Title Page

JJ II

J I

Page 8 of 36

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3. Vertex splitting and edge con-
traction

Vertex split/edge contraction.

Number of faces stays the same. Contraction of a loop is unde-
fined.
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4. Reduction to unitary maps

A map is called unitary if it has exactly one vertex and one
face. By a sequence of edge contractions one can reduce the
number of vertices of a map M , or the number of faces of M ∗.

The flags {x, τ0x, τ2x, Ex} of a unitary map are distributed
among the two disjoint cycles of V by

(x,A, Ex,B)(τ2B, τ0x, τ2A, τ2x)

or

(x,A, τ0x,B)(τ2B, Ex, τ2A, τ2x)

Crosscap

A crosscap is assembled if A or B is empty. Crosscaps may be
assembled by a sequence of vertex splits and edge contractions.
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5. Classification of Surfaces

5.1. Normal forms

Map projection and polygon models of canonical normal forms.

Theorem 1 Every closed surface has the topological type of
either

1. The sphere. (χ(S) = 2).

2. A connected sum of n tori. (χ(T n) = 2(n− 1)).

3. A connected sum of n projective planes. (χ(P n) = 2−n).
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6. Joining two maps

6.1. Connected sum

The connected sum of two tori.

χ(S]S ′) = χ(S) + χ(S ′)− 2.
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6.2. Edge join

M1 +x1,y1M2, joining two maps along an edge.
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6.3. Vertex join

Two ways to join two maps at a vertex. Observe the sequence
of vertex valences around the exterior face.
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A Whitney twist: M1 +x1,τ2y1M2
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A Whitney flip: M1 +x1,τ0y1M2.
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7. Regular maps on the sphere

If M is a regular map, then the flag graph is a Cayley graph of
Aut(M) where the generating set S has three elements, namely
the three group elements which map a given flag φ to τ0φ, τ1φ,
and τ2φ.

Constructing a Cayley map for the icosahedron.
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7.1. Straightening Lemma

A complex M is harmonious if AutM = Isom(M). In [6] it
was shown that every planar combinatorial map can be straight-
ened to a harmonious map.

Theorem 2 Let M be a complex of polygons piecewise
linearly embedded on the sphere S2, the Euclidean plane
R2, or the hyperbolic plane H2, and M is the associated
map. If AutM has finitely many face orbits, then there
is a complex Ideal(M) of S2, E2 or H2 which is combina-
torially isomorphic to M and such that every automor-
phism of M is expressed as an isometry of Ideal(M), so
Isom(Ideal(M)) = Aut (M).



Combinatorial Maps

The flag graph

Vertex splitting . . .

Reduction to . . .

Classification of . . .

Joining two maps

Regular maps on . . .

The 3-block tree

Matroids

∆-matroids

Home Page

Title Page

JJ II

J I

Page 18 of 36

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Theorem 3 Every self-dual mapM with finitely many face
orbits is the map of a harmoniously self-dual complex.

(pm, pm)a.

(pm, pm)b.
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8. The 3-block tree

For planar graphs which are 3-connected, Whitney’s theorem [9]
says that all its planar or spherical maps are combinatorially
isomorphic and therefore, by the straightening lemma, can be
studied with geometric methods alone.
For graphs of lower connectivity, faces are not uniquely defined.

The 3-block tree.
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For a planar graph G, we may now analyze the automorphisms
of its 3-blocks via geometric methods, and then piece these sym-
metries together combinatorially via its structure trees. This
program has been followed for planar Cayley graphs [3] and
self-dual graphs and matroids, see [6] and [7], where the con-
struction of all self-dual graphs are described, even those which
have no associated self-dual map to be straightened.

A self-dual graph drawn on an unfolded cube with no corre-
sponding self-dual map.
A refinement of the 24 symmetry pairings of maps on the sphere
was obtained by Graver and Hartung in [5] by considering grid
patches.
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9. Matroids

Whitney [10] defined a matroid on a finite set E to be a pair
(E, I) where E is a finite set and I is a collection of subsets of
E such that

I1 ∅ ∈ I;

I2 If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I
I3 If I1 and I2 are members of I and |I1| < |I2|, then there

exists an element e in I2 − I1 such that I1 + e is a member
of I.
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Because of condition [I2], all of the maximal independent sets
have the same cardinality. These maximal independent sets are
called the bases of the matroid. The bases may be described
directly: Let E be a finite set, a nonempty collection B of
subsets of E is called a basis system for E if

B1 B 6= ∅
B2 For all B1, B2 ∈ B, |B1| = |B2|
B3 For all B1, B2 ∈ B and e1 ∈ B1 − B2, there exists e2 ∈

B2 −B1 such that B1 − e1 + e2 ∈ B.

Condition [B3] is sometimes called the exchange axiom. It also
has a slightly different but equivalent formulation:

B3’ For all B1, B2 ∈ B and e2 ∈ B2 − B1, there exists e1 ∈
B1 −B2 such that B1 − e1 + e2 ∈ B.

Complements of bases also satisfy [B3], these complements are
bases of the dual matroid. Every matroid M has a dual M ∗.
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Let M be a matroid on E with independent sets I and define
r(I), a function from the power set of E into the nonnegative
integers by r(I)(S) = max{|I| : I ∈ I, I ⊆ S}. The function
r = rI is called the rank function of M .
In general, let E be a finite set and r a function from the power
set of E into the nonnegative integers so that

R1 r(∅) = 0;

R2 r(S) ≤ |S|;
R3 if S ⊆ T then r(S) ≤ r(T );

R4 r(S ∪ T ) + r(S ∩ T ) ≤ r(S) + r(T );

then r is called a rank function on E. If r is a rank function
on E we define I(r) = {I ⊆ E | r(I) = |I|}
Condition [R4] is called the submodular inequality.
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Given a finite set E, we call a collection C a cycle system for
E, if the following three conditions are satisfied:

Z1 If C ∈ C then C 6= ∅
Z2 If C1 and C2 are members of C then C1 6⊆ C2

Z3 If C1 and C2 are members of C and if e′ is an element of
C1 ∩ C2, then for each e ∈ (C2 − C1) there is an element
C ∈ C, such that e ∈ C ⊆ (C1 ∩ C2 − e′).
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A matroid is graphic if it is isomorphic to the cycle matroid on
a graph G. Non-isomorphic graphs may have the same cycle
matroid, but 3-connected graphs are uniquely determined by
their matroids.
M is co-graphic if M ∗ is graphic.
M is graphic as well as co-graphic iff G is planar. Map duality
(geometric duality) agrees with matroid duality. If G(V,E) is
planar and connected, its cycle matroid has rank |V | − 1, its
co-cycle matroid has rank |F | − 1, so |V | − 1 + |F | − 1 = |E|.
The facial cycles generate the cycle space.



Combinatorial Maps

The flag graph

Vertex splitting . . .

Reduction to . . .

Classification of . . .

Joining two maps

Regular maps on . . .

The 3-block tree

Matroids

∆-matroids

Home Page

Title Page

JJ II

J I

Page 26 of 36

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

cubeflag01.pdf
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10. ∆-matroids

Introduced by Bouchet as set systems satisfying the symmetric
exchange axiom
For F ′, F ′′ ∈ F , x ∈ F ′∆F ′′, there exists y ∈ F ′′∆F ′ such
that F ′∆{x, y} ∈ F .
Feasible sets need not be equicardinal.
In [2] Bouchet associates a ∆-matroid to a map on a topological
surface S by defining edge sets F feasible if S − cl(F ∪ F ∗) is
connected. This easily translates to connectivity properties of
the flag graph.
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For example consider K4 embedded on a torus.
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From each red-green square both edges of one color must be
deleted without destroying connectivity of the flag graph.
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Theorem 4 Let D(M) be the ∆-matroid of a map M(G,S)
and let M ∗(G∗, S) be the dual map. Then

� D(M ∗) = D(M)∗;

� the lower matroid of D is the cycle matroid of G;

� the upper matroid of D is the co-cycle matroid of G∗;

� w(D) = 2− χ(S).
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Note that there are connections to 2-matroids and ribbon
graphs. A good reference for ribbon graphs is [4], see also [1].

e
f

g

A ribbon graph.
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K5 on the torus

, ,
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Another way to embed K5 on the torus

1 2 3 4 5 1 2 3 4 51 2 3 4 5

1 2 3 4 51 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

1 2 3 4 51 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5 1 2 3 4 51 2 3 4 5
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1 2 3 4 5 1

1 2 3 4 5 1

1 2 3 4 5 1

1 2 3 4 5 1

1 2 3 4 5 1

1 2 3 4 5 1

1 2 3 4 5 1

1 2 3 4 5 1

1

34

5
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