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1 Introduction

A graph G is generically [4] rigid in dimension one if and only if it contains
a spanning tree, that is, a spanning subgraph assembled by inductively joining
1-simplices along 0-simplices. The analogous property is sufficient but not neces-
sary for the generic rigidity of graphs in higher dimensions, that is, a generically
rigid graph in R™ need not contain a spanning subgraph consisting of n-simplices
joined along (n — 1)-simplices, see Figure la. Indeed, a graph which is generi-
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cally rigid in the plane need not contain any triangles at all. For example the
graph in Figure 1b, K3 3, is generically isostatic in R?, and its shortest cycle is
of length four. Observe further that the graph in Figure la behaves tree-like
with respect to rigidity in the sense that the removal of any single edge cuts the
graph into two rigid components. In sharp contrast, the removal of any edge
of K3 3 produces a graph of degree of freedom one in which any edge can move
nontrivially relative to any other edge, which is to say that the set of maximal
rigid subgraphs equals the edge set.

The two graphs in Figure 1 also behave quite differently with respect to
the addition of a single edge. For the graph in Figure la the addition of an
edge yields minimally dependent sets of various sizes depending on where it is
placed. On the other hand, the addition of any edge to K33 produces a single
minimally dependent edge set comprising all 10 edges, i.e. the graph can be
globally reinforced by the addition of a single edge.



It is our aim to construct rigid graphs of large girth and show that they
possess the featured properties of K3 3.

2 The Ramanujan Graph X714

The length of the shortest cycle in a graph is called the girth of the graph. If we
fix the number of vertices and try to construct an edge maximal graph of large
girth, we expect the connectivity to be low which tends to produce non-rigidity.
A graph theoretic concept that might be more intimately related to rigidity
than connectivity is toughness. A graph is t-tough if the removal of at least
tx vertices is necessary to disconnect the graph into x connected components
(where z > 1). Note that t-toughness implies 2-t connectivity but the reverse
implication is not true.

We now describe the construction of a class of Cayley graphs given in [7]:
Let p and g be primes, p = ¢ = 1(mod 4). XP? will be a (p + 1)-regular
graph, namely the Cayley graph of PSL(2,q) if (%) = 1, (where (%) is the
Legendre symbol) and PGL(2, ¢) if (%’) = —1. The generators correspond to
the p + 1 ways of presenting p as a sum of four squares under the following
normalizing conditions: p = a3 + a? + a3 + a3 (with ag > 0, ap odd and a; even
for j € {1,2,3}.)

The number of representations of integers by certain quarternary quadratic
forms is needed in the construction and in the proofs that the constructions
work. Progress on one of Ramanujan’s conjectures was a necessary ingredient in
the work of Lubotzky, Phillips and Sarnak, [7] hence the name Ramanujan graph
was chosen by them. Ramanujan graphs possess, among other nice extremal
properties large chromatic number, incidence number and girth, g > 2log,(q),
and good expansion properties. The second largest eigenvalue of their adjaceny
matrix equals 2,/p.

In [1] an explicit proof is given that the toughness ¢t of X7 satisfies
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Therefore we can choose p large enough so that ¢ > 3. Choose ¢ large enough
so that 210gp(q) > g. Then XP'? will be 3-tough, therefore 6-connected, hence
generically rigid in R? by [6], and of girth at least g by the bounds in [7]. We
have proved the following.

Theorem 2.1 Given a natural number g, there exists a graph which is generi-
cally rigid in the plane and has girth at least g.

While upper and lower bounds of X?-?, see [2, 7], are quite close, the bound
on the toughness is not tight. Looking for a triangle free rigid graph in the
plane using these bounds we would need to construct X414 where ¢ is a prime
number larger than 4013 = 64,481,201, so the number of vertices is on the
order of 10?3, (Avogadro’s number.) Note that K33 does the job with only 6



vertices. Thus it would be of great interest to study the rigidity properties of
the Ramanujan graphs directly.

3 An Example: X*13

We now construct the Ramanujan graph X >3, There are 8(p-+1) = 48 solutions
to a2 + a? + a2 + a3 = 5, with 6 of them having the property that ag > 0 and
a1, asz,az even and ag odd. To each of these solutions o we associate a matrix
& in PGL(2,q) as follows:
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where i2 = —1(mod 13).

a1 = (1,0,0,-2) = i1’> :f}

as = (1,0,—2,0) G2 = - ; 111

as = (1,-2,0,0) s = | é 101
as = (1,0,0,2) au=| 110 110 ]
as = (1,0,2,0) a5 = _ 111 ? _
ag = (1,2,0,0) Qg = _ 101 2 _

The six matrices @; are the generators for X'3, the Cayley graph of the
group PGL(2,13). This Cayley graph is bipartite and has n = q(¢®> — 1) = 2,184
vertices. It is 6-regular and hence has 6,552 edges. The rigidity matrix in R3 is
a square matrix of size 6,552. It follows that X! is generically dependent in
R3.

In [9], X513 was randomly embedded in R? and the rank of the corresponding
rigidity matrix was computed to be 6,546, which shows that X®13 is generically
rigid in dimension three. The girth was computed to be 8. (The theory of
cages (8] yields that the girth is at most 10, the bounds from [7] and [2] imply
that 6 and 8 are the only possible values.) X513 is not only rigid, it remains
rigid even after the removal of any two vertices, or after the removal of six
“random” edges.

4 Open Problems

Is X5 rigid (vertex birigid) for all ¢? If one could show that they are Hamil-
tonian, in fact, possibly even the union of three disjoint Hamiltonian cycles, one



might be able to use the 6T3 decompositions obtained by deleting 6 of the edges
of the graphs (avoiding the removal of of more than 3 incident with one vertex,
to show rigidity.

Is there a realization of X7 in R® such that the ratio of the longest to
shortest edge is small, and the ratio of the diameter to the length of the longest
edge is large?

An example of an embedding of a regular vertex birigid graph in 2-space is
the following: G = (V,E), V ={1,2,...,n}, E={(:,(: +3) mod n} U {(3, (i +
1) mod n}. If the vertices are embedded on a regular polygon, the graph is
realized with two edge lengths and, as n approaches infinity, the ratio of the
diameter to either of these edge lengths approaches infinity also, while the ratio
of the longest to shortest length approaches 3. These graphs are the edge disjoint
union of two Hamiltonian cycles, as indicated by the thick and thin edges of
Figure 2. One can use this partition to quickly get a 3T2 decomposition of the

1
10 2

Figure 2: A Decagon

graph (after the deletion of three non-mutually-incident edges).

Recentley, in [5], an algorithm was published which generates random k-
regular graphs on n vertices quickly. Is a random 6 regular graph rigid with
probability converging to 1 as n goes to infinity? Given a random embedding
of a 6-regular graph, can anything be said about the proportion of long edges
to short edges as described in the previous problem?

Given t and g, one can construct a graph which is 2¢-connected (in fact ¢-
tough) and has girth at least g. For ¢ = 3 this provides a class of rigid graphs
in R? which has arbitrarily large girth. Is t = 3 best possible for R?? What ¢
works for the same result in R3?
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