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Classical Expanded Octahedron
Form-finding condition
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Abstract
The here presented achieve a good compromise
between the of cable-strut systems and the and

of tensegrity systems.

The modules are obtained by , and assembled by means of
; make the overall stiffness larger. After the first

assembling phase, the structure can be either folded back or further deployed; after the second
phase, the structure can support service loads.

tensegrity modules for cable-strut systems
structural efficiency deploying capability

controllability

'expansions' of an octahedron strut-
to-strut connections additional cables

1. Tensegrity Systems
Definition.
(1) tens egrity (2)
(3)

Form-Finding Property.
tensegrity configuration

Form-Finding Problem.

Tensegrity systems are spatial trusses composed by struts and cables, such that:
the collection of cables appears as a connected set ( ile-int ); the struts are never connected to each other (floating compression);
there are infinitesimal mechanisms, stabilized by a self-stress state.

Given a -element tensegrity system, if the lenghts of ( ) elements are fixed, then a stable equilibrium configuration
(a ) obtains when the last cable (strut) has minimal (maximal) lenght.

Find the set of all possible tensegrity configurations for a system of fixed topology.

¬

¬ form-finding condition

Certain authors regard both properties (1) and (2) as essential, others insist only on (1); others do not include anyone of the two into their definitions.

The solution of this problem constitutes the for the existence of a tensegrity system.

n n-1

2. Expanding Octahedra
- A strut-and-cable truss having the octahedron topology is modified by adding three elemento, each connecting a couple of
opposed vertices (Fig. ).
- The additional elements induce three independent self-stress states in the system (Figs. and show the two main types of
states).
- From an initial self-stressed configuration, the force vectors concurrent in a node are so decomposed as to justify one or more of
the following operations: (1) stressing/unstressing of elements; (2) creation and extension of elements; (3) doubling of nodes; (4)
doubling of elements.

Note that (4) implies (3) and (3) implies (2). The resulting system is expanded both in and ;
the increases and the system is in a .

This rule relates the number of ( ) and , stressed or not ( ) of the system with the number of ( ) and
( ); six is the number of rigidmotions in 3D.
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dimensions number of components
number of mechanisms tensegrity configuration

nodes n elements e mechanisms m
self-stress states s

¬

The Extended Maxwell's Rule: 3n - 6 - e = m - s

tensioned

compressed

unloaded

Third Expansion Sequence
The starting octahedron (Fig. ) has two self-stress states of the type shown in Fig. . Two struts are represented in a diagonal configuration; two of the four
unloaded elements are vertical, the remaining two are removed. - The horizontal strut is doubled, two new vertical cables are created; the other vertical elements
are tensioned. - One diagonal strut is doubled, as well as the four cables connected to it; two horizontal cables are created between doubled nodes. - The other
diagonal element is doubled and two horizontal cables are created.
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¬Form-finding condition. In this special case this condition is always satisfied.

First Expansion Sequence
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5. Folding Strategies

Folding Tips

Tensegrity systems change their shape through a process; they pass
from one tensegrity placement to another by changing the length of two (or more)
elements at the same time. Prof. (at Carnegie Mellon University,
Pittsburgh, PA) has developed the analytic framework we here use to study such
shape changes as , according to which the system follows a
continuous path in the space of tensegrity placements.

A system can be folded either by means of embedded
changing the length of some elements ( ) or with the aid of

, e.g., by human action ( ). In the former mode, the
prestress state is continuously controlled and the transformation choices are
reduced. In the latter mode, it is sufficient to disconnect some cables to fold the
system.Williams' analytic approach allows to design both.
- If both struts and cables change their length ( )
then more space is saved than when only cables do ( ), because struts
usually are the longest elements; on the other hand, struts usually are the most
stressed elements as well, hence the strut mode requires higher actuating energy.
- Many mechanisms mean an easy-to-fold systems,
possibly exhibiting equilibrium bifurcations or snap-through phenomena.
- This condition affects the
nodes shared by adjacent modules and the intermodule cables.

form-finding

W.O. Williams

folding processes

Active and passive modes.
actuators active mode
external forces passive mode

Strut and cable modes. strut mode
cable mode

Number of mechanisms.

Kinematic compatibility between adjacent modules.

I.b III.dI.a III.cIII.bIII.aII.bII.a II.dII.c

Figures
I.a,I.b - Cable Mode, Passive

II.a, II.b - Strut Mode, Passive

II.c, II.d - CableMode, Active.
III.a, III.b - Cable Mode, Active or Passive.
III.c, III.d - Cable Mode

(a similar strategy works for the module of the TorVergata
Footbridge).

(the kinematic compatibility condition between adjacent modules of a
grid would not be satisfied were this foldingmodeactive).

(all elements involved are shared with the adjacent modules).

A Beam-like Assembly
Modules of the third type need no intermodule elements to be assembled; the intrinsic module
stiffeness suffices.
Both Fig. and Fig. show the module in Fig. in Section 3 with four additional cables
replacing the vertical ones; in both cases the result is another type of tensegrity system.
Fig. shows certain admissible placements for bracing and horizontal elements (note that
horizontal elements are not anymore necessary).
Fig. shows an 8-module beam. As for the , this structure suffers torsional actions, a problem
that can be eliminated by employing the stiffer module in Fig. in Section 3.
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III.d TVF
III.c

A Plate-like Assembly
Modules of the second type are well-suited to realize `two-dimensional' cable-strut
structures. Bracing elements can be employed both to remove global mechanisms and to
stiffen the structure in correspondence of concentrated actions.
Fig. shows the module of Fig. in Section 3 with a first set of four additional cables; the
result is a tensegrity system with less mechanisms; a second set of bracing elements
(Fig. ) removes allmechanisms and gives the module a higher stiffness.
Fig. shows a 2-module assembly realizing straight compressive and tensile paths;
additional bracings are also shown.
Fig.s and show grids with 2 by 2 and 5 by 5 modules, respectively, without bracing
elements.
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The TVF
The is to be built near the School of Engineering of the University of RomeTorVergata, to allow safe
pedestrian crossing of a motor way bordering the Campus. Our choice of a tensegrity concept has been influenced by the
sense of transparency and lightness emanating from the large tensegrity sculp/struc-tures realized by K. Snelson, which are
looked at not only from a distance but also from their inside: we have chosen a structure people become familiar with as they
walk through it.
We chose the module in Fig. in Section 3 because it enjoys a wide `cross-sectional' space and the smallest number of
mechanisms. The module is 3 m wide and 2.6 m high, enough to accomodate a deck that can be walked on confortably. The
footbridge consists of 5 modules and has a span of 32 m in total; it has a 'banana shape', to have a higher geometric stiffness
at the expenses of heavier foundations. Modules are to be assembled in the plant. For ease of transportation, some
elements are detached from the module allowing for folding into a compact bundle (Figs. and in Section 5). On
location, the modules are assembled together and supplementary elements are added. Finally, the deck is installed, and the
whole footbridge is lifted up and placed on its supports. Figs. and show two sets of stiffening elements: the first set
resists vertical actions, the second horizontal and torsional actions (this type of structure is especially sensitive to torsional
actions).

TorVergata Footbridge
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3. Expansions

4. Examples
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Starting from a fully self-stressed expanded octahedron (Fig. ), pairs of parallel struts are doubled so as to obtain the classical expanded octahedron often found in the literature. The latter system can be further expanded by means of a similar strut-doubling mode; three other new modules are obtained.
- The vertical strut is doubled, as well as the four cables connected to it. - Both the strut parallel to the axis and four other cables are doubled. This picture features both the previously obtained module (not a tensegrity system) and the following module (a tensegrity system). The difference between the two consists in the doubling of the strut parallel to the axis and the cables

connected to it. In this special configuration, 8-16 cables have null stress. While doubling the strut parallel to the x axis, it is necessary to pass through this configuration to satisfy the form-finding condition of the tensegrity system. - This module is the classical expanded octahedron. - First re-expansion: vertical struts are doubled; between their doubled end nodes, four cables are
created, parallel to the axis. - Second re-expansion: struts parallel to the axis are doubled; four other cables parallel to the axis are created. -Third re-expansion: struts parallel to the axis are doubled; four other cables parallel to the y axis are created.

This condition is independent of the distance between pairs of doubling struts, but it does depend on the parameters indicated in Fig. 2 in Sections 2.
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Second Expansion Sequence
This sequence starts with the octahedron shown in Fig. , with no unloaded elements. - To visualize the expansion, the octahedron is depicted inside a tetrahedron, sharing with it the planes of four faces. -
The nodes of the compressed horizontal square are doubled, horizontal struts are separated and four new cables are created between their end nodes (to obtain a tensegrity systems, these elements must lay on the
edges of the tetrahedron). Themodule is further re-expanded by doubling the vertical strut and creating horizontal cables between the doubled nodes. - Themodule in this figure obtains just as before.
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II.c - II.d
¬ This condition requires that there the aforementioned tetrahedron exists.Form-finding condition.
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