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Introduction: A theorem of Marshall Hall, Jr. [5] (cf. also [2], [4]) states that if B = {h1, ..., hk} is a
free basis for a finitely generated subgroup H of a f.g. free group F , and if {x1, . . . , xn} is a finite subset
of F −H, then B can be extended to a free basis for a f.g. subgroup H∗ of finite index in F such that
{x1, . . . , xn} ⊂ F −H∗.

A similar theorem holds for free abelian groups, and this may be regarded as a generalization of the
fact that in a vector space, every linearly independent set can be extended to a basis.

We will prove that an analogous basis extension property holds in a class of groups which contains the
f.g. free and free abelian groups.

Given a graph Γ = (V,E), let FΓ denote the group with presentation

〈V | {xy = yx : (x, y) ∈ E}〉
Any group G isomorphic to FΓ for some Γ is called a graph group, and the image of the vertex set V
under any isomorphism FΓ → G will be called a basis for G. Note that free groups and free abelian
groups are graph groups, and for these groups this corresponds to the usual notion of basis.

A graph group FΓ is said to have the finite basis extension property, FBEP for short, if FΓ satisfies
the following analog of Marshall Hall’s property: given any f.g. subgroup H of FΓ such that H is itself a
graph group, and given a finite set {x1, . . . , xn} ⊂ FΓ −H, then H has a basis which can be extended to
a basis for a subgroup H∗ of finite index in FΓ such that {x1, . . . , xn} ⊂ F −H∗.

We remark that not every subgroup of a graph group need have a basis, that is, not every subgroup
of a graph group need be a graph group. Indeed, the following are equivalent [3]:

(1) every f.g. subgroup of FΓ is a graph group
(2) Γ has no full subgraph isomorphic to either a square or the three edge path, ◦ ◦ ◦ ◦.
(3) FΓ belongs to the smallest collection of groups containing the infinite cyclic group Z∠, and closed

under the binary operation (−)∗ (−) (free product) and unary operation Z∠⊕ (−) (direct product
with Z∠.)

If Γ satisies 2, Γ is called a special assembly.
Our main result is:

Theorem 1. Let Γ be a finite graph. Then FΓ has FBEP if and only if Γ is a special assembly.

A group has the finitely generated intersection property, FGIP, if the intesection of any two of its f.g.
subgroups is f.g. Howson [6] proved that free groups have FGIP. In section 4 we will show that a graph
group FΓ has FGIP iff every component of Γ is complete.

Theorem 1 - sufficiency: Let A = (V,E) be a finite special assembly. For each a ∈ FΓ, we define
|a|A, the A-length of a, to be the length of the shortest word in V ±1 which represents a. If it is clear
which graph is meant, we will often refer to the length, |a|, of a.

Proposition 1. Let H be a f.g. subgroup of FA and let M ≥ 0. Then H has a basis which can be
extended to a basis for a subgroup H∗ ≤ FA, with [FA : H∗] < ∞, and such that if x ∈ H∗ and |x|A < M ,
then x ∈ H. In particular, FA has FBEP.
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The length condition has the following topological interpretation: let CA be the Cayley complex of
the presentation

〈V | {xy = yx : (x, y) ∈ E}〉
That is, CA has one 0-cell, an oriented 1-cell for each vertex in V , and for each edge (a, b) ∈ E, a 2-cell
attached by
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Words in V ±1 correspond to cellular loops in CA, and the length of a word is equal to the total
number of edges traversed, counting multiplicity. For subgroups H ≤ H∗ ≤ FA, take covers XH →
XH∗ → CA, with base points vH and vH∗ realizing these subgroups, giving XH and XH∗ the induced cell
decompositions. Let k > 0, and define [XH ]k to be the subcomplex of XH consisting of those vertices
which are joined to the basepoint by a cellular path of length < k, together with all 1 and 2-cells spanned
by those vertices. Elementary covering space theory gives

Proposition 2. The following are equivalent:
(1) For all x ∈ H∗, if |x| < 2M then x ∈ H,
(2) The covering map XH → XH∗ maps [XH ]M homeomorphically onto [XH∗ ]M .

Proof. (of Proposition 1) We assume that FA is not infinite cyclic, so there are two cases: either A is
disconnected, so FA = FA1 ∗ FA2 or FA = Z∠⊕ FA1 , for smaller special assemblies A1 and A2.

Case 1: Realize each FAi by its Cayley complex, Ai, with vertex pi, as described before. FA is then
realized by attaching p1 and p2 to a third vertex, p, by edges e1 and e2 respectively, as shown
below: Denote this complex by F , and take p to be the base point. Realize H ≤ FA by a cover H'

&

$

%

'

&

$

%
s s

s��
�

��

Q
Q

Q
QQ

A1 A2

p

p1 p2

e1 e2

Figure 1. The complex F

with base point pH covering p. Ai lifts to a disjoint union of covers A(j)
i of Ai in H. H is finitely

generated, and since it is a graph group, it is finitely presented as well, so π1(H, pH) is carried by
some finite subcomplex of H. Thus, there is some M ′ ≥ M such that π1([H]M ′ , pH) = π1(H, pH).
Let U denote the union of [H]M ′ and all those A(j)

i which intersect [FH ]M ′ non-trivially, noting
that there are only finitely many such A(j)

i ’s. Then

H = π1(H, pH) = π1([H]M ′ , pH) = π1(U , pH).

Now, choose a maximal tree for each A(j)
i , their union is a forest for U . Extend this to a maximal

tree T of U by adding only lifts of the edges e1 and e2. Choose a base point pij for each A(j)
i and

a path wij in T from the base point to pij .
For each A(j)

i contained in U , π1(A(j)
i , pij) is a finitely generated special assembly group, so,

by induction, A(j)
i has a cover B(j)

i such that π1(B(j)
i ) has a basis B

(j)
i which is an extension of

a basis A
(j)
i of π1(A(j)

i ), and such that [B(j)
i ]2M ′ = [A(j)

i ]2M ′ . π1(U , p) has a basis A′, (see [9],
page 167), whose connected components are wijA

(j)
i w−1

ij , together with a set of isolated vertices,

E, corresponding to lifts of e1 and e2 which are not in T . If we replace each A(j)
i with B(j)

i along



[A(j)
i ]2M to form U ′, then π1(U ′, p) has a basis B whose connected components are wijB

(j)
i w−1

ij ,
together with E. So B is an extension of A′, and [U ′]2M = [FH ]2M .
U ′ is a finite complex, but it is not a cover, since there may be a lift of pi which is not adjacent

to a lift of ei. At each such vertex attach a copy of F − Ai, to form H∗. H∗ is a finite cover
of F , and π1(H∗, p) has a basis B′, which is the union of B with some connected components
isomorphic to either A1 or A2, hence B′ is an extension of A′, and since [H∗]2M = [FH ]2M , the
length condition is also satisfied.

Case 2: FA = 〈t〉 ⊕ FA1 , where A1 is a smaller special assembly. Let M ≥ 0 be given, and let
H ≤ FA be finitely generated. Then there is an exact sequence

1 → H ∩ 〈t〉 → H → ρ(H) → 1

where ρ : FA → FA1 is the natural projection. Now, ρ(H) is finitely generated, so there is a
subgroup K of finite index in FA1 , with a basis Y such that:
(1) some subset X of Y is a basis for ρ(H), and
(2) if k ∈ K has A-length ≤ M , then k ∈ ρ(H).

Let X∗ be any preimage of X in H, let Y ∗ be any preimage of Y containing X∗, and let K∗

be the group generated by Y ∗.
Suppose first that H ∩ 〈t〉 = 〈tk〉, for some k > 0. Then the set {tk} ∪X∗ is a basis for H, [3].

Clearly {tk} ∪ Y ∗ is a basis for 〈tk〉 ⊕K = K∗, and this set contains a basis for H. Let k ∈ K∗

have A-length ≤ M . Then ρ(k) has A1-length ≤ M , and so ρ(k) ∈ ρ(H). Thus, k ∈ gp〈tk,
X∗〉 = H.

Now suppose that H∩〈t〉 = {1}. Let X∗ = {tnixi}, where each xi ∈ FA1 , and let N = max|ni|.
Since FA1 contains only finitely many elements of length ≤ M , we can choose T such that any
reduced product of T or more xi’s and their inverses has length > M . Let L = M + TN + 1,
and let K∗ = K ⊗ 〈tL〉. Then, as before, if k ∈ K∗ has A-length ≤ M , then ρ(k) ∈ ρ(H), so
that k ∈ gp〈tL, X∗〉. Suppose k = (tL)s(tm1y1t

m2y2 · · · tmryr), where each tmiyi = (tnj xj)±1,
for some j. Suppose s 6= 0. Then |k|A = |sL +

∑
mi| + |y1y2 · · · yr|A, and, since |k|A ≤ M ,

r < T . Therefore, |k|A ≥ |s|L − |
∑

mi| ≥ |s|L −
∑
|mi| ≥ |s|L − TN ≥ L − TN = M + 1, a

contradiction. Therefore, s = 0, and k ∈ H.
�

Theorem 1 - necessity:

Proposition 3. If Γ is finite and FΓ has FBEP, then Γ is a special assembly.

We prove this via a sequence of lemmas:

Lemma 1. If Γ is a connected graph, then FΓ is (freely) indecomposable, that is, FΓ is not the free product
of two of its nontrivial subgroups.

Proof. This is clear if FΓ is infinite cyclic, so suppose Γ has more than one vertex, and that FΓ = G ∗H.
Let v be a vertex of Γ. Then v is adjacent to at least one other vertex of Γ, so the centralizer of v in FΓ

is not cyclic. Therefore, v belongs to a conjugate either of G or of H, so we may suppose that v ∈ G.
But then any element which commutes with v must also lie in G, in particular, any vertex adjacent to
v must lie in G. Thus, since any vertex of Γ can be reached by a path from v, G must contain all the
vertices of Γ. But the vertices of Γ generate FΓ, so H = 1. �

Lemma 2. Let Γ be finite graph such that FΓ has FBEP, and suppose that Γ and its complement are both
connected. Then Γ consists of a single vertex. (In particular, any graph group which has FBEP is either
infinite cyclic, or it is the free or the direct product of two of its subgroups.)

Proof. Suppose Γ has more than one vertex. Then FΓ contains a free abelian subgroup of rank 2, and is
indecomposable, by Lemma 1. Thus, if H is a subgroup of finite index in FΓ, then H is not infinite cyclic,
and H is indecomposable. Let v1, . . . , vk be the vertices of Γ, and let H be the infinite cyclic subgroup
generated by the element v = v1 · · · vk. Suppose H∗ has finite index in FΓ, and suppose H∗ has a basis
B containing v. Since Γ has connected complement, the centralizer of v in FΓ is cyclic, [7]. Thus, v does
not commute with any other elements of B. Thus, either H is a proper free factor of H∗, or H∗ = H,
neither of which is possible. So Γ has only one vertex. �



Lemma 3. If G1 ⊕G2 is the direct product of two f.g. graph groups and G1 ⊕G2 has FBEP, then each
of G1 and G2 has FBEP.

Proof. Let A be a basis for H ≤ G1, and let C2 be a basis for G2. Then A∪C2 is a basis for a subgroup
H ⊕ G2 ≤ G1 ⊕ G2. Since G1 ⊕ G2 has FBEP, there is a set D such that A ∪ C2 ∪ D is a basis for a
subgroup H∗ of finite index in G1 ⊕ G2. Let p : G1 ⊕ G2 → G1 denote the natural projection. Then
p : 〈A ∪D〉 → G1 is injective, since the sets A ∪D and C2 generate subgroups with trivial intersection.
Thus p(A ∪D) = A ∪ p(D) is a basis for a subgroup K∗ of G1. Moreover, H∗ = K∗ ⊕G2, and since H∗

has finite index in G1 ⊕G2, K∗ has finite index in G1. �

Lemma 4. Let A = A1 ∗ · · · ∗Ak be the free product of f.g. graph groups, where the underlying graphs of
the free factors are connected. If A has FBEP, then each Ai does, as well.

Proof. Let B1 be a finite basis for a subgroup H1 of A1, and let B = B1 ∪B2 be a basis for a subgroup
H∗ of finite index in A. Now, B is the set of vertices of a graph Γ; let C denote the set of all vertices
which can be reached by a path in Γ from some vertex in B1. Clearly, B1 ⊂ C, and by an argument
similar to that in Lemma 1, C ⊂ A1. Let H∗

1 be the group generated by C. To show that A1 has FBEP,
it will suffice to show that H∗

1 has finite index in A1. C is a union of connected components of Γ, so H∗
1

is a free factor of H∗. Thus, H∗
1 ∩ A1 = H∗

1 is a free factor of H∗ ∩ A1, and H∗ ∩ A1 has finite index in
A1. But A1 is indecomposable, so H∗ ∩ A1 is indecomposable. Therefore, H∗

1 = H∗ ∩ A1. Thus H∗
1 has

finite index in A1, so A1 has FBEP. �

We have shown so far that if FΓ has FBEP, then it belongs to the smallest class of groups containing
the integers which is closed with respect to free products and direct products. We remark that FΓ belongs
to this class if and only if Γ has no full subgraphs isomorphic to ◦ ◦ ◦ ◦, such a graph is called an
assembly. To finish the proof of Proposition 3, it will therefore suffice to show:

Lemma 5. If Γ is finite and FΓ has FBEP, then Γ has no full subgraph isomorphic to the square.

Proof. Since the square is connected, we may suppose that Γ is connected. If Γ contains a square, then
FΓ has a direct factor of the form A = (A1 ∗ A2) ⊕ (A3 ∗ A4), where each Ai = FΓi for some assembly
FΓi . If FΓ has FBEP, then, by the above, so does A. Consider an element a = a1a2a3a4, where ai is a
vertex of Γi. We will show that the set {a} cannot be extended to a basis for a subgroup of finite index in
(A1 ∗A2)⊗ (A3 ∗A4). Suppose H∗ ≡ FΣ has finite index in A, and that a is a vertex of Σ. Then Σ must
be an assembly, [8], and it must be connected since A is indecomposable. By [7], the centralizer in A of a
is the subgroup 〈a1a2〉⊕〈a3a4〉, which is a free abelian group of rank two. So if a is a vertex of Σ, it must
be a pendant vertex. But a connected assembly with a pendant vertex is a star, so H∗ ≡ F ⊕Z∠, where F
is free. Thus, any subgroup of H∗ is either free or the direct product of Z∠ with a free group [3]. Now, A
contains a subgroup K isomorphic to F2 ⊕F2, where F2 is free of rank 2, and H∗ ∩K has finite index in
K. But it is straightforward to see that any subgroup of finite index in K contains a subgroup isomorphic
to Fn ⊕Fm, where Fn and Fm are non-cyclic free groups. This is impossible, since H∗ ∩K ≤ H∗. Thus,
A does not have FBEP. �

The finitely-generated intersection property:

Theorem 2. The graph group FΓ has FGIP iff each connected component of Γ is a complete graph.

Proof. The given condition is equivalent to requiring that no full subgraph of Γ be isomorphic to L2,

L2 =
x◦

y
◦ z◦ .

Suppose first that every connected component of X is a complete graph. Then FX is either a free abelian
group, or it is a free product of free abelian groups, which has FGIP by [1].

For the converse, it will suffice to show that the group FL2 does not have FGIP, since any subgroup of
a group with FGIP must itself have FGIP. Let H be the subgroup of FL2 generated by the elements x−1y
and y−1z. Let t be a generator of an infinite cyclic group. Then H is the kernel of the homomorphism
f : FL2 → 〈t〉 defined by f(x) = f(y) = f(z) = t. Let K be the subgroup of FL2 generated by x and z.
Clearly K is free. Now H and K are both finitely generated, but their intersection is the kernel of the
restriction of f to K; since this kernel is the normal closure in K of the element x−1z, it is free of infinite
rank. Thus, FL2 does not have FGIP. �
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