
PATH PARTITIONS OF RIGID GRAPHS

BRIGITTE SERVATIUS AND HERMAN SERVATIUS

Laman [4] proved that a simple graph G = (V,E) is (generically) rigid in the
plane, if and only if there is a subset F of E such that

|F | = 2|V | − 3, and(1)
|F ′| ≤ 2|σ(F ′)| − 3, for all nonempty F ′ ⊆ F ,(2)

where σ(X) denotes the set of endpoints of the edge set X. Condition (1) ensures
that G has enough edges to be rigid, while condition (2) ensures that no subset of
vertices is overbraced by the edges satisfying (1).

Let G = (V,E) be a graph. An edge set F ⊆ E is called independent if condi-
tion (2) is satisfied. The independent subsets of E are the collection of independent
sets of a matroid on E which we denoted by M(2, E). If the graph is Kn, the
complete graph on n vertices, then the matroid is denoted by M(2, n) and is called
the 2–dimensional generic rigidity matroid. Since the independence of F ⊆ E is
not affected by any of the edges in G not in F , we may regard G as a subgraph of
Kn for some n > |V | and M(2, E) will then be the restriction of M(2, n) to E.

A set F of edges is said to be isostatic if it is both independent and rigid, and
if E = F , then we sa y the graph G = (V,E) is isostatic. Lovasz and Yemini [5]
observed that Laman’s condition for a graph G to be isostatic is related to a theorem
by Nash–Williams [6, 7]: E(G) is isostatic if and only if adding any edge to G yields
the edge disjoint union of two spanning trees. Equivalently, E(G) is independent in
M(2, n), if, after adding any edge to G, the resulting graph can be decomposed into
two spanning forests. Recski [8, 9] proved that in the above statements, ”adding
any edge to G” may be replaced ”by doubling any edge of G”, and it has been
shown in [1] that

Theorem 1. A graph G on n vertices is a cycle in M(2, n) if and only if it is the
edge disjoint union of two trees no two of whose subtrees have the same span.

For a direct proof see [11]. Two such decompositions are illustrated in Figure 1.
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Figure 1. A graph partitioned into two trees
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2 BRIGITTE SERVATIUS AND HERMAN SERVATIUS

A graph G is called edge birigid if its edge set is rigid in M(2, n) and the removal
of any edge of G leaves a rigid graph. It is easy to show, see [10], that cycles in
M(2, n) are edge birigid. Examples of cycles and an account of their properties can
be found in [12]. We note that the average valence of a vertex in such a cycle is
4− 4/n and that the minimum valence is 3. It follows that every cycle has at least
4 vertices of valence 3. We would like to consider cycles that have exactly 4 vertices
of valence 3 and all other vertices of valence 4. An example is given in Figure 1a.
The graph depicted there has a decomposition into the two Hamiltonian paths of
Figure 1b. This motivates the following

Problem 1. If a graph is the edge disjoint union of two spanning paths such that
no two subpaths have the same span, then its edges form a cycle in M(2, n) with
exactly 4 vertices of valence 3 and all other vertices of valence 4. Is the convers
true?

In [10], birigidity in the plane is examined. A graph G is called (vertex) birigid
if its edge set is rigid in M(2, n) and remains rigid even after the removal of any
vertex of G, together with the edges incident with it. A simple infinite family of
birigid graphs in 3–space, which are in some sense the 3–dimensional analogue to
the graphs under consideration in the previous problem, may be constructed as
follows. Take m disjoint tetrahedra {T1, . . . , Tm} and for each 1 < i < m glue two
distinct faces of Ti to Ti−1 and Ti+1 respectively. Notice that this graph is planar
and also that it may be constructed such that it has no vertex of valence greater
than 6, and exactly 6 vertices of valence less than 6. These last six vertices may be
paired off with three additional edges such that each has valence 5. Figure 2 has an
example. In [11] such a graph is shown to be birigid in 3–space. Figure 2 shows a
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Figure 2. A decomposition of a graph birigid in 3–space.

decomposition of such a graph into the edge disjoint union of three spanning paths,
motivating the following ambitious

Problem 2. Characterize graphs with k-path decompositions in terms of rigidity
in dimension k.
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