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Abstract

A graph is Gaussian if it is the graph of arcs and self-intersections
of a closed C∞ curve in the plane. In this note we describe a recur-
sive characterization of 4-regular Gaussian graphs and give conditions
under which the Gaussian property is a graph invariant.

1 Introduction

Let G be an Eulerian planar graph, with planar embedding G. We allow G
to have loops and multiple edges. Let N be the set of edges incident with a
vertex v. If we label the edges of N clockwise in G from {1, . . . , deg(v)}, then
pairs of vertices with the same label modulo deg(v)/2 are said to be parallel.
A trail in G is said to be transverse in G if its successive edges are parallel. A
transverse circuit is said to be Gaussian if it contains all the edges of G. The
graph G is said to be Gaussian if there is an embedding G which contains a
Gaussian circuit. In Figure 1 there is an example of a Gaussian graph and
its transverse circuit. This example is the smallest simple 4-regular Gaussian
graph [2].

Gaussian graphs were introduced in [2], motivated by work of Gauss, [3]
on the theory of knots. Gauss observed that in the sequence of multiple

∗This author extends his thanks to WPI for an invitation to visit in November 1994
during which visit part of this work was completed.
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a) Gaussian Graph b) Transverse Circuit c) Alternating Knot

Figure 1:

points encountered while traversing a closed curve in the plane with only
double points, each multiple point occurs twice, once in an even position,
and once in an odd position. Gauss’s observation was proved in [4]. See [5]
for an elementary treatment. A graph theoretic reformulation and proof of
this theorem is given in [2].

Theorem 1 (Theorem of Gauss) Let G be a 4-regular planar connected
Gaussian graph with planar embedding G and Gaussian circuit C. Then every
proper subcircuit of C is of odd length.

An easy consequence of this result is that every 4-regular Gaussian graph
corresponds to the diagram of an alternating knot, see Figure 1.

2 Embedding invariance

If G is the planar embedding of an Eularian graph G, then the edges of G are
partitioned into transverse circuits. The number of transverse circuits will
in general depend on the embedding G, see Figure 2. Note that the example
in Figure 2 is only 1-connected. There are also 2-connected examples of
this type, however, if G is 3-connected, then the embedding G is essentially
unique, and the number of transverse circuits is a graph invariant. The next
theorem shows that for 4-regular graphs this invariance does not depend on
connectivity.
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Figure 2:

Theorem 2 Let G be a 4-regular planar graph. Then the number of trans-
verse circuits of G is independent of the planar embedding.

Proof: To eliminate the consideration of superfluous special cases, we will
assume that the graph is embedded on the sphere.

If G is 3-connected, then combinatorially there is only one embedding,
by Whitney’s theorem, see [7], so the result follows in this case.

Suppose that G is 2-connected. Then, [8], any two embeddings of G are
connected by a sequence of Whitney twists, see Figure 3.
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Figure 3:

Let us consider the possible cases for a single Whitney twist. Let {v, w}
be the cutset. Then either the portion of the graph to be twisted contains an
odd number of edges incident with v, and an odd number incident with w, in
which case twisting does not change the parallel classes at v and w, and so
does not alter the partition into transverse circuits, or both these numbers are
even, in which case the possibilities are illustrated schematically in Figure 4.

Note that there may be other transverse circuits completely contained in
the dotted sections. In the first case, the twist does not affect the partition
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Figure 4:

into transverse circuits, while in the other two, a twist does not alter the
number transverse circuits, since twisting simply exchanges the edges in paths
p1 and p2. Thus the result is true if G is 2-connected.

Finally, we must consider the case that G is 1-connected. We use induc-
tion on the number of blocks. If G has a single block, then G is 2-connected,
and the result follows from above. Otherwise, G has a cutvertex, v, and edges
reading clockwise e1, e2, e3, e4. Since v is a cutvertex, all four edges must be-
long to the same transverse circuit. Let us cut G at v into two graphs, G1

and G2, with e1 and e2 in G1 and e3 and e4 in G2, and let us also replace
e1 and e2 with a single edge E1 and e3 and e4 with a single edge E2. G1

and G2 are both 4-regular and planar, and by induction the number of their
transverse circuits is independent of the embedding, hence it follows that the
number of transverse circuits of G is independent of the embedding. 2

Consequently, for a 4-regular planar graph the property of being Gaussian
is a graph invariant. Thus to determine whether or not a given 4-regular
graph is Gaussian is no more difficult than to decide planarity.

3 Recursive construction of Gaussian graphs

We would like to describe how to recursively generate all 4-regular Gaussian
graphs together with their Gaussian circuits. First we define an operation
we call vertex splitting.

Definition 1 Let G be a 4-regular Gaussian graph with embedding G and
Gaussian circuit C. Let v be a vertex of G, and let the edges of G incident
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with v occur in C in the order {e1, e2, e3, e4}, with orientations as shown in
Figure 5. We modify G to form a new graph G→←v by removing v, replacing
e1 and e3 with a single edge e13 as well as replacing e2 and e4 with a single
edge e24. This process is called vertex splitting at v.

G G→←v
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Figure 5:

It is easy to see that G→←v is Gaussian. Note that, in the definition of the
split, if we were to pair the edges the other way, replacing e1 and e4 with a
single edge, as well as e2 and e3, then the result would not be Gaussian, but
have precisely two transverse circuits. Finally, note that performing vertex
splits on a simple graph may yield graphs with loops and parallel edges.

Since G may be split at any vertex to form a smaller 4-regular Gaussian
graph, we have the following result.

Theorem 3 Every 4-regular Gaussian graph may be transformed into the
figure eight graph (one vertex and two loops) by a sequence of vertex splits.

The reverse operation to vertex splitting is edge splicing.

Definition 2 Suppose G is a 4-regular graph with embedding G on the
sphere. The sequence of edges in the Gaussian circuit induces an orienta-
tion of the edges of G. Let F be a face of G. We say that two edges e1 and
e2 bounding F are co-oriented if they both have the same orientation with re-
spect to the orientation of F , and disoriented otherwise. ( Note that a vertex
split always results in a pair of co-oriented edges.)

Definition 3 Let G be a 4-regular Gaussian graph and e1 and e2 a pair of
co-oriented edges. Modify G to form G↗↖{e1, e2} by replacing the edges e1

and e2 with a new degree 4 vertex adjacent to the endpoints of e1 and e2.
G↗↖{e1, e2} is called the splice of G with respect to e1 and e2.
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We may now restate Theorem 3 in terms of splices.

Theorem 4 Every 4-regular Gaussian graph may be obtained from the figure
eight graph by a sequence of splices.

As an example, Figure 6 shows how to construct the smallest simple 4-
regular Gaussian graph from the figure eight by edge splicings. In each figure,
the edges to be spliced are indicated by arrows.
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Figure 6:

This recursive construction may be used to give an easy inductive proof
of the Theorem of Gauss, as well as the result that every regular projection
of a knot is also the regular projection of an alternating knot, as well as the
projection of a trivial knot.

To explicitly convert any Gaussian graph into a 4-valent Gaussian graph,
replace every vertex of degree 2n, n > 2, with a complete n-line, see [1].
This process is clearly reversible and shows that our recursive construction
is sufficient to generate all Gaussian graphs.
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