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Abstract. We consider the concept of abstract 2–dimensional rigidity and

provide necessary and sufficient conditions for a matroid to be an abstract
rigidity matroid of a complete graph. This characterization is a natural exten-

sion of the characterization of graphic matroids due to Graver or Sachs. We

also give an example of an abstract rigidity matroid which is not infinitesimal.

1. Introduction

Let G = (V,K) be the complete graph on the vertex set V = {1, 2, . . . , n}. A
2-dimensional framework is a graph (V,E) together with an embedding p of V into
real 2-space, where E is interpreted as the collection of those pairs of vertices whose
images under p are to be joined by rigid rods. We may identify the embedding p with
a point in R2n, and measure the distance between vertices by evaluating the rigidity
function ρ : R2n → R|K| defined by ρ(p)i,j = (pi − pj)2, (where the coordinates of
R|K| are indexed by (i, j) in, say, lexicographical order). Clearly ρ is continuously
differentiable and we define R(p), the rigidity matrix for the embedding p, by
ρ′(p) = 2R(p). R(p) is an (n

2 ) by 2n matrix whose entries are functions of the
coordinates of p as a point in R2n. The framework (V,E, p) is called rigid if the
rows of R(p) corresponding to E span a 2n− 3 dimensional subspace of R2n.

The vertices of a plane structure are in generic position if their coordinates
are algebraically independent over the rational field. This highly non-mechanical
assumption means that the linear dependence of the rows of the rigidity matrix
depends only on the underlying graph, and consequently the rigidity of the frame-
work depends on the graph only. A graph G is called generically rigid if there is a
generic embedding of G which is rigid.

One can use the rigidity matrix to define a matroid on the edge set E of a
framework (G, E, p) by calling a subset F of E independent if the rows in R(p)
corresponding to the elements in F are independent as vectors over R. Such a
matroid is called an infinitesimal rigidity matroid. If p is generic, the corresponding
matroid is called generic rigidity matroid and is denoted by G2(n).

2. Abstract Rigidity in the Plane

Infinitesimal rigidity matroids are special cases of abstract rigidity matroids in-
troduced by Graver in [4]. Let (V,K) be a complete graph, and for E ⊆ K let V (E)
denote the vertex set of the subgraph of (V,K) induced by E. If U is a subset of
V , let K(U) denote the set of edges having both endpoints in U . A 2-dimensional
abstract rigidity matroid A on K is a matroid on K whose closure operator, 〈·〉, in
addition to the four closure axioms of a matroid, satisfies:

C5: If |V (E) ∩ V (F )| ≤ 1 then 〈E ∪ F 〉 ⊆ K(V (E)) ∪K(V (F ))
1
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C6: If 〈E〉 = K(V (E)) and 〈F 〉 = K(V (F )) and |V (E) ∩ V (F )| ≥ 2, then
〈E ∪ F 〉 = K(V (E ∪ F )).

From Axiom C5 alone it follows that a single edge is independent, or 〈∅〉 = ∅, and
that 〈E〉 ⊆ K(V (E)) for any edge set E. From Axiom C6 we deduce that K4 is a
cycle in A. By induction on n we may show that any edge set in an abstract rigidity
matroid which is supported by n vertices has rank at most 2n − 3, i.e. Laman’s
condition

|I ′| ≤ 2|V (I ′)| − 3 for all non-empty subsets I ′ of I

must be satisfied for all independent sets I. A useful consequence of this fact is
that every independent set of a 2–dimensional abstract rigidity matroid contains
at least one vertex of valence at most 3, since the average valence of an edge set
satisfying Laman’s condition is at most 4− 6

n .
If an independent set I contains a vertex v of valence 2, we can, using Axioms C5

and C6, delete the edges of E incident with v to obtain a smaller independent set
I ′ with the same rigidity properties as I. This process is reversible, we can enlarge
an independent set by attaching a new vertex by two new edges and preserve
independence and rigidity properties. I is called a 0-extension of I ′. It follows that
every abstract rigidity matroid on the edge set of a complete graph on n vertices
has rank 2n− 3.

To simplify notation, we will write E − v for the edge set obtained by deleting
from E all edges with endpoint v. We shall also use + instead of ∪ and omit set
brackets around single element sets, so E + e stands for E ∪ {e}, whenever the
context is clear.

Suppose that I is an independent set with a vertex v of valence 3, so (v, x),
(v, y) and (v, z) ∈ I. Then not all of (x, y), (y, z) and (x, z) belong to 〈I − v〉,
since otherwise, by C6, (v, x) ∈ 〈{(x, y), (y, z), (x, z), (v, y), (v, z)}〉 ⊆ 〈I − (v, x)〉,
contradicting the independence of I. It follows that given any vertex v of degree 3
in an independent set I, we can find an edge e joining some pair of its neighbors
so that I ′ = I − v + e is also independent. I is called a 1-extension of I ′. Any
independent set containing a vertex of degree 3 can be viewed as a 1-extension of a
smaller independent set, but a 1-extension of an independent set is not necessarily
independent.

An edge set E in A is called rigid if 〈E〉 = K(V (E)).
If in an abstract rigidity matroid A every 1–extension of an independent set is

independent, we say that A satisfies the 1–extendability condition. In [4] it is shown
that if V is a finite set and A any 2–dimensional abstract rigidity matroid for V
that satisfies the 1–extendability property, then E ⊆ K is independent in A if and
only if E satisfies Laman’s condition for dimension 2. This key observation serves
to characterize G2(n) combinatorially, and the following theorems are immediate
consequences.

Theorem 1. Let A be a 2-dimensional abstract rigidity matroid on n vertices. The
following are equivalent:

(1) A = G2(n);
(2) (Laman [5]) The independent sets of A are those sets which satisfy Laman’s

condition;
(3) A is maximal among all abstract rigidity matroids on n vertices;
(4) All cycles of A are rigid;
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(5) (Graver [4]) A has the 1-extendability property;
(6) (Dress [2]) For any closed set E of A with maximal cliques E1, . . . , Ek,

r(E) = r(E1) + · · ·+ r(Ek);

In dimension 1 there is only one abstract rigidity matroid, namely the generic
one, which coincides with the cycle matroid of Kn.

In dimension 2 there are many abstract rigidity matroids on Kn for n ≥ 6. The
following example shows that not all abstract rigidity matroids can be realized as
an infinitesimal rigidity matroid.
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Figure 1. Prisms

We define a matroid on the edges of K6 = (V,E) as follows. Let B denote the
collection of all subsets of E which are bases of G2(6) with the exception of those
which correspond to subgraphs isomorphic to the prism, illustrated in Figure 1a.
We first show that B is the collection of bases of a matroid, A. Every proper subset
of a prism is contained in a basis other than a prism, see Figure 2. It follows that a
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Figure 2. Subsets of prisms

minimal set not contained in an element of B is either a cycle in G2(6) not containing
a prism, or a prism. We show that the collection C of minimal sets which are not
subsets of elements in B satisfy the cycle axioms of a matroid. Clearly no element
of C is contained in another. Let C1, C2 ∈ C. If neither are prisms, then C1∪C2−e
contains a cycle of G2(6), hence an element of C. If C1 is a prism and C2 is not,
then C1∪C2 contains at least 11 edges, since the triangles are the only proper rigid
subgraphs of a prism and C2 is overbraced in G2(6). Likewise if both are prisms,
C1 ∪C2 − e violates Laman’s condition, and so contains a cycle of G2(6), hence an
element of C. To see that the matroid with bases B is an abstract rigidity matroid
we note that the only difference between its closure operator and that of G2(6) is
that the closure of a prism, or a prism minus an edge is that prism, and no such
edge set has either a separating vertex or is the union of two rigid subgraphs, so
the axioms are satisfied. Let A denote this matroid.
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To see that A is not an infinitesimal rigidity matroid, we have to show that there
is no embedding p of K6 into R2, so that the corresponding infinitesimal rigidity
matroid is isomorphic to A.

Consider a non-trivial infinitesimal motion of a prism, which we may assume to
be zero on one of the triangles. The motion of the other triangle must extend to an
infinitesimal isometry of R2, which is either an infinitesimal translation or rotation,
see Figure 3. If it is a translation the lines connecting the triangles are parallel,
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Figure 3. An infinitesimal motion on a prism

while if it is a rotation, the lines must all pass through the center of roation. So,
in order for the edge set of a prism to be infinitesimally dependent, the three lines
connecting the two triangles must be projectively concurrent. Since the 3 diagonal
points of a complete quadrangle are never collinear in the projective plane, there is
no general embedding of 6 points in R2 such that all prisms are dependent, see [1].

3. Conditions for a matroid to be an abstract rigidity matroid

Graver [3] and Welsh [8] proved that a matroid M is the cycle matroid of a
graph if and only if it is binary and has a 2-complete basis of cocircuits, i.e. a basis
for the cocircuit space such that each element of M is contained in at most two
members of this basis, see also [7]. For each graphic matroid M there is a graph
G = (V,E) which has M as its cycle matroid and every connected component of G
is 2-connected. Then a 2-complete basis of cocircuits consists of all but one of the
vertex cocycles star(v) = {e ∈ E | v is an endpoint of e}.

To generalize the above result to dimension 2 we need an appropriate collection of
cocircuits through which we can identify the vertices. The next theorem shows that
the stars of vertices minus one edge are cocycles in every 2-dimensional abstract
rigidity matroid on n vertices if n > 2.

Theorem 2. Let Kn be the complete graph on n vertices and and A be any abstract
rigidity matroid on K. Let r denote the rank function of A. Then r(K − v +
e) = 2n − 4 for all e ∈ star(v), and if S is any proper subset of star(v) − e then
r(K − S) = r(K).

Proof. K − v + e is the 1-point union of a complete graph on n− 1 vertices and an
edge, and so by C5 has rank 2n − 4. If v is connected to this Kn−1 by more than
one edge, then by C6 the resulting graph has full rank. �

The “vertex cocycles” allow us to find conditions under which a matroid is an
abstract rigidity matroid of a complete graph.

Theorem 3. A matroid M on E, |E| = (n
2 ), is isomorphic to an abstract rigidity

matroid on n vertices if and only if there is a collection of n subsets {Ei} of E,
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with |Ei ∩ Ej | ≤ 1 and each e ∈ E is contained in exactly 2 of the Ei’s, such that
the following conditions hold

A1: Ei − e is a cocircuit for each e ∈ Ei.
A2: For all non-empty F ⊆ E we have r(F ) ≤ 2σ(F ) − 3 where σ(F ) is the

number of E′
is with non-empty intersection with F .

Proof. For each Ei we draw a vertex vi, and if e ∈ Ei ∩ Ej we say the edge e
joins vi and vj . Clearly we obtain Kn by this process, so M is a matroid on the
edges of Kn. Since then σ(F ) = |V (F )|, A2 can be written to say that r(F ) ≤
2|V (F )| − 3. It remains to show that A1 and A2 imply that M is an abstract
rigidity matroid. Observe that no cycle in M has a vertex of valence less than 3,
since otherwise there would be a cocircuit intersecting this circuit in exactly in one
edge, which is impossible. It follows that if F is independent in M and v 6∈ V (F )
then F + (x, v) + (y, v) is independent in M for all x, y ∈ V (F ). A single edge is
independent, since it intersects some vertex cocycle in exactly one edge, and by the
above, any sequence of 0-extensions of an edge is independent, hence the rank of
M is 2n−3. To show that M satisfies C5, let E and F be subsets of K intersecting
in at most one vertex. Without loss of generality we may assume that both E and
F are complete. If there was an edge e ∈ 〈E ∪ F 〉 − E − F , then we can obtain
a basis for 〈E ∪ F 〉 by first choosing a basis B for E, and then augmenting B + e
by connecting the free endpoint of e in B + e to the vertex of intersection of E
and F (if E and F do not intersect at all, choose any edge of F incident with e)
and then attaching all remaining vertices of F by 0-extensions. The so constructed
independent set has rank 2(|V (E ∪ F )|)− 3 = r(E) + r(F ) + 1, a contradiction.

To verify that M also satisfies C6, we take two complete graphs whose intersec-
tion contains at least one edge and use 0-extensions on the edge of intersection to
show that the union of the two graphs has full rank. �

In [6] the above conditions were claimed to characterize G2(n), which cannot be
the case since there are many 2-dimensional abstract rigidity matroids which are
not generic, for instance any infinitesimal rigidity matroid arising from a general
but not generic embedding. The mistake in the proof of Theorem 3 in [6] was the
tacit assumption that cycles are rigid. The proper setting for the results in the
remainder of [6] is the theory of abstract rigidity matroids.

Theorem 1 suggests many ways to add another condition to those of Theorem 3
to give a characterization of the generic rigidity matroid of a complete graph, for
instance

A3: All sets satisfying Laman’s condition are independent.
A3’: All cycles are rigid.
A3”: M has the 1-extendability property.
A3”’: Every proper connected closed set of edges is the complement of the

union of sets Ei − e.

Note that A3”’ corresponds to Dress’s characterization.
To obtain conditions under which a matroid is a generic rigidity matroid of some

graph, a careful study of the behavior of A under restriction is necessary.
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