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Abstract

A dual-eulerian graph is a plane graph which has an ordering de-

fined on its edge set which forms simultaneously an Euler circuit in

the graph and an euler circuit in the dual graph. Dual-eulerian graphs

were defined and studied in the context of silicon optimization of cmos

layouts. In this paper we examine the connections between the dual

eulerian property, Petrie walks, and the connectivity of the graph. We

will also consider the dual-eulerian property for graphs embedding in

surfaces of higher genus.

1 Introduction

A plane graph is a planar graph G together with a particular embedding of G

into the plane, which we will usually regard as an embedding into the sphere
to avoid distinguishing the exterior face. An embedding of a graph in any
surface is regular if the interiors of the faces are homeomorphic to open disks
(i.e., have no handles). A convenient way to represent a regularly embedded
graph in an orientable surface is via a rotation system. Arbitrarily orient each
edge and to each vertex v we can associate the cycle of signed edges obtained
by reading off counterclockwise the edges incident to v and taking the edge
to be positive if it is oriented toward v and negative otherwise. The vertex
permutation V is the product of the disjoint cycles corresponding to the
vertex set V , and is a permutation of the set E∪(−E). The edge permutation
E transposes each edge and its negative. The cycles of the face permutation F
are found by reading around the boundary of each each face counterclockwise
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Figure 1: A rotation system for a tetrahedron.

with the opposingly oriented edges assigned a negative. See Figure 1. We will
notate the negative of the edge e by ē. Our permutations will act on the right.
The rotation system determines the graph, surface and embedding up to
homeomorphism. One need only specify the vertex or face permutation since
one has the relation FEV = 1. If the edges of the dual graph are oriented by
turning the edges of G counterclockwise and using the same symbols, then the
rotation system of the dual is (F ∗, E∗,V∗) with vertex permutation F ∗ = F ,
edge permutation E∗ = E and face permutation V∗ = EVE . For the example
of Figure 1, with the dual graph distinguished by hollow vertices, we have
vertices F∗ = (14̄3̄)(25̄1̄)(36̄2̄)(456), edges E∗ = (11̄)(22̄)(33̄)(44̄)(55̄)(66̄),
and faces V∗ = (321)(1̄54̄)(2̄65̄)(3̄46̄). (Note that for the double dual we have
V∗∗ = EVE and F∗∗ = EFE since the second turn reverses the orientation of
the edges.) For details on rotation systems see [5]

A circuit or walk in a graph is called eulerian if it contains all the edges
of G and a graph is called eulerian if it has an euler circuit. A graph is
eulerian if and only if all its vertices have even valence. If a bipartite graph
is embedded in a surface, then G∗ is eulerian. If G is embedded in the plane,
then the converse is also true.

A graph embedded in a surface is said to be dual-eulerian if it has an
eulerian circuit (walk) e1, . . . , ek such that e∗1, . . . , e

∗
k form an euler circuit

(walk) in G∗. Dual eulerian graphs were introduced in [9] as an aid in the ef-
ficient design of Complimentary Metal-Oxide Semi-conductor (CMOS) Very
Large Scale Integrated (VLSI) circuits, and subsequent work has had this
application in mind. In integrated circuit design, a logic fuction can be im-
plemented by means of a functional cmos cell consisting of a row of p-mos
transistors and a row of n-mos transistors, corresponding to the p-mos and
n-mos sides of the circuit. The p-mos and n-mos sides are dual to one an-
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other. In the graph model corresponding to such a circuit, every gate/drain
potential is represented by a vertex and every transistor is represented by
an edge connecting source and drain vertices. In order to omptimize circuit
performance and layout efficiency, transistors are alligned vertically with a
separation area required between physically adjacent transistors which are
not connected. An optimal layout is obtained by minimizing the number of
separations, which means that we are looking for an Eulerian path in the
graph model of the p-mos side vertices which is at the same time an Eulerian
path on the n-mos side. This leads to the definition of the dual-Eulerian
property. For details on the layout of cmos function arrays, see [9].
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Figure 2: A cmos circuit, its graph, layout, and optimal layout
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Many papers have studied the case of series-parallel graphs, [4, 6, 7, 9],
and in [2] is found a polynomial algorithm for deciding whether a 2-connected
plane graph is dual-eulerian or not. The problem of determining the mini-
mum number of disjoint Euler paths is NP-hard [10]. Also non-dual circuit
topologies have been studied [11].

2 Petrie Paths and dual eulerian graphs.

Given a graph embedded in a surface, if two consecutive edges of a walk are
consecutive edges along the boundary of a face, then we say that they form
a turn. That face lies on the same side of both edges and we call the turn
a right turn or a left turn depending on which side the face lies as we move
along the edges of the walk. If the two edges meet at a vertex of valence two,
then they will be simultaneously both a left and a right turn. If a pair of
edges forms a left turn with respect to a walk w, then they form right turn
with respect to the reverse walk, and vise versa. A Petrie walk is a walk such
that every two consecutive edges are a turn, and the turns alternate left and
right. A Petrie circuit is a closed Petrie walk. We will often indicate the
turns in a petrie walk by a small arc at the turns, see Figure 3. In terms of a
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Figure 3:

rotation system, a walk is a list of signed edges, e1, e2, . . . , ek with the edge
labelled positive if it points in the direction of w and negative otherwise. If w

is a petrie walk, then at the left turns, such as at face f1 in Figure 3, we have
ei+1 = eiF , while at the right turns, such as at face f0, we have ēi = ēi+1F ,
or ei+1 = eiEF

−1E . Thus the signed edges of a petrie walk are characterized
by

e0
F

−→ e1
EF−1E
−→ e2

F
−→ e3

EF−1E
−→ e4 · · ·
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Theorem 1 Suppose a graph G embedded in an orientable surface has an
Euler Petrie walk (circuit) w = (e1, . . . , en), then w is a dual-eulerian walk
(circuit) for G.

Proof: Choose a rotation system for the embedding. If we have a petrie
walk

e0
F

−→ e1
EF−1E
−→ e2

F
−→ e3

EF−1E
−→ e4 · · ·

Then e2k
F

−→ e2k+1 implies e2k+1 = e2kV
−1E , or ē2k+1 = e2kV

−1, so ē2k+1 =

e2k(E(V∗)−1E). Similarly, e2k−1
EF−1E
−→ e2k implies e2k = e2k+1EF

−1E , or e2k =
e2k−1VE , so e2k = ē2k−1EVE = ē2k−1V

∗. Thus

e0
E(V∗)−1E
−→ ē1

V∗

−→ e2
E(V∗)−1E
−→ ē3

V∗

−→ e4 · · ·

and (e0, ē1, e2, ē3, . . .) is an euler petrie walk in G∗.
The converse of Theorem 1 is not true. Tracing out the figure eight graph

in Figure 4 in the usual way is a dual-eulerian circuit which is not a petrie
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Figure 4: A non-petrie dual-eulerian circuit.

circuit. It does, however, have a petrie circuit, which by Theorem 1 is another
dual eulerian circuit. The remainder of this section and much of Section 4
will be devoted to proving this partial converse to Theorem 1

Theorem 2 If a plane graph G has a dual-eulerian circuit w, then G has a
dual-eulerian circuit w′ which is also a petrie circuit.

Thus to decide whether a plane graph has a dual-eulerian circuit we need
only check for petrie circuits, which we may do by starting at any edge and
proceeding turning left-right-left-. . . in succession until we return to the start,
the maximal Petrie path being determined by the initial choice of left or right.
If we have spanned the edges we are done. If not, then we need only check
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the maximal Petrie walk starting with the other turn. This should simplify
the algorithm of [2].

The requirement in Theorem 2 that G be planar is necessary, as we see
in Figure 5a, which is a dual eulerian graph on the torus with no eulerian
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Figure 5:

petrie circuit. It is also necessary in Theorem 2 that we restrict to dual
eulerian circuits, as we see in Figure 5b which shows a plane graph with a
dual-eulerian walk in which e2 follows e1, but no eulerian petrie walk. If we
restrict ourselves to 2-connected planar graphs, however, the only possible
dual-eulerian walks are petrie walks, and the converse of Theorem 1 is true.

Theorem 3 If a 2-connected plane graph G has a dual-eulerian walk (cir-
cuit) w, then w is also an eulerian petrie walk (circuit).

Proof: Suppose there is an euler circuit, and use it and its dual to orient
the edges of G and G∗. Suppose e is an edge of the euler circuit with initial
vertex v0 and terminal vertex v1, and suppose for the moment that both
have valence at least three, and that the edge dual to e is oriented from f0

to f1. The situation is as in Figure 6. By 2-connectivity, no vertex occurs
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Figure 6:

twice along the boundary of any face, so every face is incident at a vertex
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with exactly 2 edges, (since there are no loops.) Thus the edge previous
to e in the dual-eulerian circuit must cross the edge bounding f0 and fa,
and similarly the edge following e must cross the unique edge incident to v1

bounding fd and f1, so the dual-eulerian path must turn left at v0 and right
at v1.

Now we consider the case of vertices of valence 2, at which turning left and
right have the same effect. If G is just a cycle, then as we traverse the cycle
the dual circuit alternates back and forth between the inside and outside
face, hence the circuit must have even length and me may make a left-right
assignment on the cycle. If G is not a cycle, let v0, . . . , vn be consecutive
vertices along the dual-eulerian walk so that v1, . . . , vn−1 have valence 2, and
v0 and v1 have valence at least 3, and that the edge dual to e is oriented from
f0 to f1. By 2-connectivity, v0 6= vn. If n is even, then the situation is as
in Figure 7a. As before, the edge previous to v0 bounds f0 and fa and the
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dual-eulerian circuit makes a left turn at v0. As we move from v0 to vn to
dual path alternates from f0 to f1, ending at f0, and so the path must make
a another left turn at vn. Since n is even, we can simply turn left at vi when
i is even and right when i is odd.

If n is odd, the situation is as in Figures 8a and b, so by a similar argument
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must turn left at v0 and right at vn, and we again turn left at vi when i is
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even and right when i is odd.
If a 2-connected graph has an Euler circuit, then of course, the reverse

circuit it also a petrie circuit. It may also happen that, starting at the same
edge, the petrie circuit generated by making the opposite first turn is also
eulerian. This is the case in Figure 9a, since left and right are equivalent
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Figure 9:

by symmetry, with Figure 9b exhibiting the same phenomenon on the torus.
We have the following.

Corollary 1 A plane 2-connected graph has at most 4 dual-eulerian cir-
cuits.

If G is connected but not 2-connected, then its blocks are 2-connected,
and we can use Theorem 3 and the following.

Theorem 4 Let G be a plane graph G with Eulerian path (circuit) w. Then
w is dual-eulerian if and only if the restriction wB of w to any block B of G

is an Euler petrie path (circuit) for B, with the walk turning, at each vertex
of attachment, along the faces of attachment, and, for the case of a path,
having at most two endpoints which are not at vertices of attachment with
dual path ending at its face of attachment.

Proof: Sufficiency: If G is 2-connected we are done, so let v be a vertex
of G and let f be a face whose boundary meets v more than once, so v is
a cut vertex. The boundary p of f factors as into segments p = p1 . . . pn,
with pi = ei,1, ei,ki

such that each starts and ends at v but does not meets v

in its interior, see Figure 10, where f is drawn as the exterior face. As the
dual-eulerian walk w passes through the cutvertex v of G, crossing between
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the leaves of v with respect to f , the dual circuit must pass through the
cutvertex f of G∗, and this can only happen along the edges ei,1 and ei,ki

,
since they are the only edges along the boundary of f which are incident
with v.

If the dual-eulerian path crosses v twice, once into and once out of Li,
then one segment of w is an dual eulerian walk of wi of Li, beginning and
ending at ei,1 and ei,ki

, so adding a turn there completes it to a circuit.
If the dual-eulerian path crosses v just once once into Li, then w is a path

with, say, the initial endpoint in Li, an initial segment forming a dual-eulerian
walk for Li ending at v whose dual walk ends at f .

The result now follows by induction on the size of the block cutpont tree
of G.

Necessity: Again consider the leaves of a vertex v with respect to a face
f . By induction, each has a dual eulerian walk (circuit) which turns or ends
at f , which may be concatenated to form a dual-eulerian walk (circuit) for
G.

The proof of Theorem 2 is now clear, since at the end of the previous
proof, in the case of a circuit, we may concatenate the paths or their reverses
in any order to form a dual eulerian circuit for G. Thus we chose each
passage through v to be a turn along f which is compatible with the euler-
petrie circuits of the Li which exist by induction. Moreover, since all these
choices are independent, we may count the number of dual-eulerian circuits
of a dual eulerian plane graph. By Corollary 1 we may assume that G is not
2-connected. Let G be a dual-eulerian plane graph which is not 2-connected.
Let {c1, . . . cp} be the cutpoints of G, and for each ci let fi denote the numbed
of faces of G which meet ci more than once, and {l1, . . . lfi

} be the number
of leaves of G at ci with respect to those faces, so if δ(ci) is the valence of ci

in the block cutpoint tree of G, δ(ci) =
∑

lfi
.
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Theorem 5 The number de(G) of dual-eulerian paths of G is

de(G) =
p∏

i=1

(
fi∏

j=1

2li(li − 1)!) ≤
p∏

i=1

2δ(ci)(δ(ci) − 1)!

with exactly two of them being euler petrie circuits, one the reverse of the
other.

3 Connectedness of dual-eulerian graphs.

A consequence of Euler’s theorem its that a plane graph with an euler walk
or circuit must have low connectivity.

Theorem 6 No 3-connected plane graph has a dual eulerian walk or circuit.

Proof: Let vi be the number of vertices of valence i, and fi be the number
of faces whose boundary contains i edges. So, if G is 3-connected then
v2 = f2 = 0 and a simple calculation involving the euler characteristic gives

v3 + f3 = 8 +
∞∑

i=5

(i − 4)(vi + fi),

so v3 + f3 ≥ 8, so either G or G∗ has 4 vertices of valence 3, and so has no
eulerian path or circuit.

The proof shows in fact that, like for the case of dual-eulerian circuits,
the graph must have vertices of valence 2 or parallel edges. It is possible
for a dual eulerian graph to 3-connected except for the presence of parallel
edges and vertices of valence 2, in other words, a series parallel extension of
a 3-connected graph, see for example Figure 9a.

Theorem 7 Every connected plane graph has a dual-eulerian series-parallel
extension with at most 4|E| edges.

Proof: Let G be a plane graph, and choose a maximal tree T . Form G′ by
doubling the edges of T and then adding a vertex of valence 2 to the interior
of each, and then subdivide each edges of G not in T with a vertex of valence
2 and double both halves, see Figure 11. Thus each edge of G has been
series-parallel extended to 4 edges of G′. Considering T and T ′ alone, the
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Figure 11: A dual-Eulerian series parallel extension of the cube.

boundary of the exterior face touches every edge of T twice, and so for T ′ the
boundary of the exterior face is an euler petrie path since every second vertex
is of valence 2. We may now form G′ from T ′ by attaching doubled paths of
length 2 one by one. Each time we are adding a new doubled chord of length
2 to a face at two vertices where the petrie path turns along that face, see
Figure 12. This addition allows us to extend the petrie path by splicing in

r

r

r
r
r� �

� �
-

Figure 12:

a spur of length 2 to each section of the petrie path. Moreover, the petrie
path turns at the two vertices of attachment along the newly created faces,
so the process may continue.

The bound of 4|E| edges is very rough. The examples we have looked at
all required at most |E|. If a relatively few new edges would be required to
make G dual-eulerian, then it may be possible to use the series parallel dual
eulerian extension to achieve a fairly optimal cmos layout of G, so finding a
better bound is an important open question.

4 Higher genus surfaces.

If we consider the dual eulerian property for graphs embedded in other sur-
faces then, as we have seen, the situation is more difficult since, even for
2-connected graphs, we cannot check for the dual-eulerian property by sim-
ply looking for eulerian petrie paths. One solution is to restrict ourselves to
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strongly regular embeddings, that is, embeddings such that every closed face
is homeomorphic to a closed disk. In the plane this is equivalent to requiring
2-connectivity of the graph. For a strongly regular embedding, each vertex
occurs only once as we read around the boundary of a face, so the proof of
Theorem 3 works and we have the following.

Theorem 8 If a graph G, strongly regularly embedded in an orientable sur-
face, has a dual eulerian walk or circuit w, then w is also an euler petrie
walk or circuit.

It is well known that every finite graph embeds in a surface of high enough
genus.

Theorem 9 Given a graph G having euler walk (circuit) w, G has an em-
bedding on an orientable surface such that c is a dual-eulerian walk (circuit).

Proof: If G has euler circuit c, then c defines an orientation on the edges
of G by taking the cyclic order of edges around a vertex to to be the order
induced from the circuit. Label and orient the edges of G so that the euler
circuit is (e1, e2, . . . , e2n). We need only find a rotation system for G such
that w satisfies equations e2i+1 = e2iF and e2i = e2i−1EF

−1E , or equivalently,
ē2i+1V = e2i and ē2i = e2i−1V . Because of our choice of labels, for every
vertex v the signed edges incident with v come in pairs of the form {ei, ēi+1}.
We may thus chose a cyclic permutation of those signed edges in which ei is
the predecessor of ēi+1 if i is odd, the successor if i is even, and the equations
above are satisfied.

Figure 13 shows an Euler circuit on the octahedron graph, and the dual-
eulerian embedding of that graph into the two-holed torus that results.

In fact, for each vertex v, we may cyclicly order the adjacent pairs any
way we wish, so, if α(G) is the number of euler circuits of G, we have the
following.

Theorem 10 Up to homeomorphism, there are

1

2
α(G)

∏

v∈V

(δ(v) − 1)!

2

embeddings of G which are dual eulerian.
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