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1. Abstract

We consider the 2-dimensional generic rigidity matroid R(G) of a graph G and
give a characterization of the dual of R(G). We show that the connectivity of
R(G) implies the birigidity of G but not conversely. Finally we give necessary and
sufficient conditions for a connected matroid to be the rigidity matroid of a birigid
graph.

2. Introduction and Basic Definitions

Let G = (V,E) be a graph on the edge set E, vertex set V . We define the support
σ(F ) of a subset F of E to be the set of endpoints of edges in F .

We define a subset F of E to be independent if |F ′| ≤ 2|σ(F ′)| − 3 holds for all
subsets F ′ of F . It is well known, see [8] and [14], that these independent edge sets
are the independent sets of a matroid, the so-called 2-dimensional generic rigidity
matroid, R(G), of the graph G. The closure operator and rank function of this
matroid will be denoted by c and r respectively. The term circuit will always refer
to a circuit in R(G).

G = (V,E) is called rigid if r(E) = 2n − 3, where |V | = n. G is called edge
birigid, if r(E − e) = 2n − 3 for every e ∈ E. G is called birigid if G is rigid and
r(E−star(v)) = 2(n−1)−3 = 2n−5 for every v ∈ V , where star(v) denotes the set
of edges adjacent to v. We will henceforth abbreviate E − star(v) with E − v. To
simplify notation and language we will not distinguish between sets of edges and
the subgraphs they induce.

The following observations are immediate consequences of the definitions. The
union of two graphs G1 and G2 having at most one vertex in common is not rigid,
and c(G1∪G2) = c(G1)∪c(G2). If two rigid graphs intersect in two or more vertices,
their union is rigid. Rigidity induces an equivalence relation on the edge set of G.
The equivalence classes are called r-components. It follows that r-components have
at most one vertex in common and that birigid graphs are at least 3-connected.
Moreover, R(G) can be written as the direct sum over the r-components of G.

3. A Characterization of R∗(G)

Harary [1969] calls a set X of edges of a connected graph G a cutset of G if the
removal of X from G results in a disconnected graph, and then defines a cocycle of G
to be a minimal cutset of G. We can define an r-cutset and a cocircuit analogously
for a rigid graph. Welsh [1976] extends Harary’s definition to disconnected graphs
by calling a set X of edges a cutset of G if its removal from G increases the number
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of connected components. We cannot simply replace connected components by r-
components in this definition to obtain a reasonable definition for an r-cutset of a
non-rigid graph, since the number of r-components of a graph may actually decrease
with the removal of a set of edges, e.g., if G has n r-components, one of which is an
edge e, then the removal of e results in a graph with n-1 r-components. We know
that the rank of E(G) decreases as we remove edges from G, or, equivalently, the
degree of freedom of G increases, and we therefore define a cocircuit of G to be a
set X of edges of G whose removal from G increases its degree of freedom and is
minimal with respect to that property. An immediate consequence of this definition
is

Lemma 1. The set X is a cocircuit of G if and only if X is a minimal subset of
E(G) such that X has non-empty intersection with every base of R(G).

and

Theorem 1. If G is a graph and C∗(G) denotes the set of cocycles of G, then
C∗(G) is the set of circuits of a matroid R∗(G) on E(G) and

(1) R∗(G) = (R(G))∗

(2) R(G) = (R∗(G))∗.
R(G)∗ is called the cocircuit matroid of G.

We can characterize the cocircuits of R(G) as follows:
It will in general not be possible to construct a G such that every vertex of G

corresponds to a cocycle of R(G), because the next theorem shows that birigidity of
G implies the connectivity of R(G) and that this implication is not an equivalence.

Theorem 2. If G = (V,E) is birigid and |V | > 3, then R(G) is connected but not
conversely.

Proof. Assume that G is birigid and that R(G) is not connected. Consider the
connected components Ri of R(G). Then there is a partition of E,

E = E1 ∪ E2 ∪ · · · ∪ Ek,

such that
R(G) = R1 + R2 + ... + Rk,

where Ri = R(Gi), with Gi = (σ(Ei), Ei). since every Gi is rigid, we have

2|V | − 3 = r(G) = Σk
i=1r(Gi) = Σk

i=1(2|σ(Ei)| − 3)

. Let us define Ni, ni, N , and n by the following equations:
(1) Ni = |σ(Ei)− ∪i 6=jσ(Ej)|
(2) |σ(Ei)| = ni + Ni

(3) N = Σk
i=1Ni

(4) |V | = n + N .
So

n ≤ 1
2
Σk

i=1ni

Rewriting [1] in this new notation we obtain

2n + 2N − 3 = Σk
i=1(2(ni + Ni)− 3)

or
2n = 3(1− k) + Σk

i=12ni
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so that [2] and [3] give

(Σk
i=12ni)− 3(k − 1) ≤ Σk

i=1ni,

or
Σk

i=1ni ≤ 3(k − 1).
Furthermore, since every cutset in a birigid graph has cardinality at least 3, we
have that

|σ(Ei) ∩ (∪i 6=jσ(Ej))| ≥ 3,

which implies that ni ≥ 3 for all i. This combined with [4] gives

3k ≤ Σk
i=1ni ≤ 3(k − 1),

a contradiction.
If R(G) is connected, G need not be birigid: If G is a wheel, R(G) consists of a

single circuit and hence is connected. But the removal of the center vertex leaves a
non-rigid graph if the number of spokes is larger than 3. �
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