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ABSTRACT

The reachability of a strongly connected network may be des-

troyed after link damage. Since many networks have directed links

with the potential for reversal, the reachability may be restored by

reversing the direction of links. In this paper, the reliability of a net-

work that allows reversal of links is discussed.

Index Terms: Network reliability, degradable network, network

reconfiguration, fault tolerant system, fault tolerant network,

strongly connected network.

1. Introduction

Some networks are vulnerable to failure. A fault in any node or cable segment
breaks the network and may bring network operations to an immediate halt. To
improve the reliability of networks, the failed network may be reconfigured,
thereby obtaining protection from failures while still retaining overall network
connectivity. To protect networks from failure, the designers have made great
strides and a number of reconfiguration techniques that deal with network recovery
have been discussed in the literature [1, 2, 3, 4, 5, 6, 7, 8].

Many systems with potentially reversible directed links are represented by
directed networks or mixed networks. For instance, fiber-optic networks are the
preferred choice for local area networks, because of the lower cost of uni-
directional fiber- optic links. At present, the majority of fiber-optic networks use
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uni-directional fiber-optic links which can be reversed by interchanging
transmitters and receivers.

Although actual links are bi-directional in some networks, in fact, each physi-
cal bi-directional link consists of two dedicated uni-directional links. Even though
the physical link between two nodes is bi-directional, the direction of the signal,
which propagates along the link, is restricted by the transmitter and receiver. A
transmitter or receiver failure may destroy signal propagation in only one direc-
tion. As shown in Figure 1.1, a bi- directional link becomes a uni-directional link,
shown in Figure 1.1(b), and the undirected network becomes a mixed network

which includes both directed and undirected links. Therefore, to model undirected
networks with failure, two uni-directional links in opposing directions should be
used instead of a bi-directional link between two nodes. This is also true for
frequency-division multiplexing (FDM) networks because the signals in different
directions are transferred in different frequency bands along a link and the direc-
tion is determined by the transmitters and receivers of nodes. The communication
path is equivalent to a number of uni-directional links between the two nodes
which correspond to different frequency bands.

Transmitter

Receiver Transmitter

Receiver

|| bi-direction link

Failure

(a) Bi-directional link with one receiver failure

Transmitter Receiver

bi-direction link

(a) A uni-directional link results due to a receiver failure

Figure 1.1

In general, a network is more suitably describe d by a directed network in orderto

analyze its reliability. Therefore it is reasonable to study reconfiguration networks by

using directed networks and assuming their directed links are reversible.
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1.1. Previous results

Based on directed networks, extending the results of Robbins [9] and Boesch-

Tindell [10], W. Shi [11] developed a reconfiguration approach by using link reversal to

reconnect a non-strongly connected network. This non-strongly connected network was

created from a strongly connected network through link or node failures. A linear time

algorithm which, when reachability has been destroyed by the removal of a single link,

optimally restores reachability through the reversal of selected links was developed by

[11]. Multi-link failure reconnectability was discussed and an algorithm with polynomial

complexity is given which provides a near optimum solution to reconnect the network.

Shi [11] shows that allowing link reversals improves the reliability of the network by at

least a factor of two. For networks in which reconnection cannot be established through

link reversal, reachability is maximized.

1.2. Reliability of links

In an undirected network, the unit of measurement of reliability is based on an

undirected link. In order to study a degradable network, we represent an undirected link

by two directed links in opposite directions. Each one of these directed links will be

called unit directional link, and its reliability is denoted by R 1/2. In the following sec-

tions, the study of the reliability of degradable networks is based upon the reliablility of

the unit directional links.

2. Degradation of failed networks

When an undirected communication network is operating normally, messages or

data are transmitted back and forth between two nodes, say S and D , along an undirected

path (or channel) in opposite directions, shown in Figure 2.1(a), where S , 1, 2 and D

indicate nodes, R and T indicate receiver and transmitter respectively. A transmitter or

receiver failure of intermediate nodes may destroy the channel in only one direction. Fig-

ure 2.1(b) shows that a transmitter of node 1 has failed. If there is another undirected path

between these two nodes, the transmitted message may be sent via the second channel.

The interchange of messages or data between S and D can still be carried on as normal,

that is, messages can be transmitted along this second undirected path in opposite direc-

tions. We call such an operation a zero order degraded operation. If bi-directional (i.e.

undirected) paths exist between any pair of nodes in a network after failures occur, the

network is referred to as a zero order degraded network.
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Figure 2.1

When transmitter/receiver failures of an intermediate node on the second path
occur, the second channel may also be destroyed in only one direction. If no more
bi-directional paths between D and S exist in the network, then there are only two
uni- directional paths between nodes D and S . Furthermore, if these two uni-
directional paths are in opposite directions, messages or data can still be transmit-
ted between the two nodes along these two opposite uni-directional links. The
operation under this condition is different from normal operation and is called first

order degraded operation, and such networks are referred to as first order

degraded networks. In the first order degraded network, the operations contain
both zero order degraded operation, if two nodes are connected by a bi-directional
path, and first order degraded operation, if two nodes are connected only by two
uni-directional paths in opposite directions. Figure 2.2 shows that a receiver of
node 2 and a transmitter of node 3 are faulty. The messages from S to D can be
transmitted through path S  → 1 → 2 → D , and the messages from D to S through
path D  → 4 → 3 → S .
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Figure 2.2 First order degraded network

First order degraded operation requires that at least two uni- directional paths
exist in opposite directions between two nodes. In some cases two uni-directional
paths exist between two nodes, but are not in opposite directions, as shown in Fig-
ure 2.3(a). Therefore, the network is not strongly connected. In order to reconnect
the network, the direction of links may be reversed to create two directed paths in
opposite directions. A reconnected network can be established by reversing the
links as shown in Figure 2.3(b). Reversing links can be achieved by interchanging
the transmitters and receivers, as shown in Figure 2.4. Figure 2.4(a) shows that a
receiver of node S , a receiver of node 1 and a receiver of node 2 on the path are
failed respectively. The bi-directional path becomes uni-directional (the direction
is from S to D ). Figure 2.4(b) shows that switching the connection from
transmitters to receivers at node S , node 1 and node 2, respectively, can redirect
the path.
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(b) Restored first order degraded network

Figure 2.3
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(b) Redirecting the links by interchanging transmitters and receivers

Figure 2.4

In a directed network, whose underlying graph contains bridges, strong con-
nectivity cannot be achieved through link reversals. At this stage, the messages can
only be transmitted among nodes within the same strongly connected sub-network.
Such a network is called a second order degraded network. In a second order
degraded network, messages among nodes within a component are transmitted in
accordance with either zero order degraded operation or first order degraded
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operation. However, to exchange messages among components, temporary rever-
sals of bridges may be required. This is called second order degraded operation.

A special case of a second order degraded network is a tree structured network,
each component of the network consists of a signal node only and the underlying
network is connected.

A network is referred to as a third order degraded network if the network is
disconnected. In other words, a third order degraded network consists of a number
of separated sub-networks without link connections among them. These sub-
networks are either zero order, or first order, or second order degraded sub- net-
works. In a third order degraded network, messages can be transmitted within a
sub-network in accordance with either zero , or first order, or second order
degraded operation.

3. State probability of degradable networks

Assume that in a given network N , l unit directional links fail. We denote the
resulting network by N' . According to the above description N' may be a zero,
first, second, or third order degraded network. Let Pi (l ) be the probability that N'

is an i th order degraded network. To investigate the state probability Pi (l ), two

important concepts have to be defined.

Given an undirected network, two nodes ni and nj are K link connected, if

there are K undirected paths without common links between ni and nj . A network

is called minimum K link connected if there does not exist a pair of nodes less than
K link connected in the network.

An undirected network is called maximum U link removable if there exist U

links that can be removed without disconnecting the network, but any removal of
U +1 links creates disconnection.

These two concepts are easily adapted to directed networks: A directed net-
work is called maximum D unit directional link removable if D unit directional
links can be removed without generating bridges or disconnecting the network, but
any removals of D +1 unit directional links creates bridges or disconnection.

Suppose an undirected network N has L undirected links and N is maximum
U link removable. If N' is created by removing one unit directional link from each
undirected link in N , and N is connected and has no bridges,a total of L unit direc-
tional links can be removed without creating bridges or disconnection. Further-
more, U −1 unit directional links can be removed from N' without creating bridges
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or disconnection, since N is maximum U links removable. Therefore, the
undirected network N , viewed as a directed network by replacing each of its links
by unit directional links in opposite directions, is maximum L +U −1 unit direc-
tional link removable.

Based on the two parameters defined above, we can investigate state probabil-
ity and reliability of degradable networks.

Suppose a network N is a minimum K link connected and maximum U link
removable. Let V and L denote the number of nodes and links in the network,
respectively. Let Ci (l ) denote the number of ways that a network under considera-

tion can operate at i th order degraded network state Ni when l failed links occur

in a network. Let C (l ) denote the total number of ways that l links fail in the net-
work. We have:

C (l ) = 
i =0

Σ
3

Ci (l ) = 

� �
�
l
 
L

 

� �
�  = 

(L −l )!l !

L !________

If the number of failed unit directional links is less than K (that is 0 ≤ l  ≤ K −1),
N' remains in state N 0 (zero order degraded), since N is assumed to be minimum

K link connected. Therefore, the state probability P 0(l ) = 1 for 0 ≤ l  ≤ K −1. As

soon as more than 2U failures of unit directional links occur, N' cannot remain in
state N 0, since N is assumed to be maximum U link removable and P 0(l ) = 0 in

this case. When the number of failed unit directional links is more than K −1 and
less than 2U (K  ≤ l  ≤ 2U ), N' could operate either in state N 0 or state N 1 or state

N 2 or state N 3 depending on the topology of the network, and we obtain the fol-

lowing formula for P 0(l ):

P 0(l ) =

����
� ���

�
0

C (l )

C 0(l )
______

1

2U +1 ≤ l ≤ 2L

K ≤ l ≤ 2U

0 ≤ l ≤K −1

3.1

Similarly, we calculate Pi (l ) for i =1,2,3:
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P 1(l ) =

��
��

� �
��
�

0

C (l )

C 1(l )
______

0

L +U ≤ l ≤ 2L

K ≤ l ≤ L +U −1

0 ≤ l ≤K −1

3.2

P 2(l ) =

����
� ���

�
0

C (l )

C 2(l )
______

0

L +U +1 ≤ l ≤ 2L

2K −1 ≤ l ≤ L +U

0 ≤ l ≤ 2(K −1)

3.3

P 3(l ) =

����
� ���

�
1

C (l )

C 3(l )
______

0

2L −V +2 ≤ l ≤ 2L

2K ≤ l ≤ 2L −V +1

0 ≤ l ≤ 2K −1

3.4

State probabilities P 0(l ), P 1(l ), P 2(l ) and P 3(l ) of network N is plotted

below:
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Figure 3.1.
State probability P 0(l ), P 1(l ), P 2(l ) and P 3(l )

As an example, the network in Figure 3.2 is minimum 2 undirected link con-
nected, and maximum 2 undirected link removable. L  = 5 and V  = 4, respectively.

n 1 n 2

n 3 n 4

Figure 3.2

The number of ways that the network in Figure 3.2 can operate as i th order
degraded network, C 0(l ), C 1(l ), C 2(l ) and C 3(l ), is calculated in Table 3.1.
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Table 3.1. Number of ways Fig.3.2 operates as i th order
degraded network after failure of l links
___________________________________________________________________

State l =0 l =1 l =2 l =3 l =4 l =5 l =6 l =7 l =8 l =9 l =10___________________________________________________________________
C 0(l ) 1 10 35 31 8 0 0 0 0 0 0___________________________________________________________________
C 1(l ) 0 0 10 80 158 96 32 0 0 0 0___________________________________________________________________
C 2(l ) 0 0 0 9 42 150 160 32 0 0 0___________________________________________________________________
C 3(l ) 0 0 0 0 2 6 18 88 45 10 1___________________________________________________________________
C (l ) 1 10 45 120 210 252 210 120 45 10 1___________________________________________________________________
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The state probabilities of this network were computed from Equations 3.1, 3.2, 3.3
and 3.4 and are shown in Table 3.2:

Table 3.2. State probability Pi (l )

___________________________________________________________________
State l =0 l =1 l =2 l =3 l =4 l =5 l =6 l =7 l =8 l =9 l =10___________________________________________________________________
P 0(l ) 1 1 0.777 0.258 0.038 0.000 0.000 0.000 0 0 0___________________________________________________________________
P 1(l ) 0 0 0.222 0.666 0.752 0.38 0.152 0.000 0 0 0___________________________________________________________________
P 2(l ) 0 0 0.000 0.075 0.2 0.586 0.762 0.267 0 0 0___________________________________________________________________
P 3(l ) 0 0 0.000 0.000 0.0095 0.0238 0.0857 0.733 1 1 1___________________________________________________________________
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The state probabilities P 0(l ), P 1(l ), P 2(l ) and P 3(l ) of the network in Figure 3.2

are plotted in Figure 3.3.
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Figure 3.3. State probabilities of Figure 3.2

In a network with reversal strategy, the probability of proper operation is
P 0(l ) + P 1(l ) + P 2(l ), since up to second order degraded operation every node can

communicate with every other node and proper network operation comes to a halt
only when third order degradation is reached. If link reversals are not allowed, the
probability for proper operation of the network is only P 0(l ), and we see that a

degradable network is much more reliable. For our example in Figure 3.2 we have:

Number of failed links
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1

0 1=(K −1) 2=(2K −2) 3=(2K −1) 4 5=(2U +1) 6 7=(L +U ) 8=(L +U +1) 9 10

functional failed

Figure 3.4. State probability of Figure 3.2 as a degradable network
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Figure 3.5. State probability of Figure 3.2 as network without

reconfiguration

4. The reliability of degradable networks

Given the reliability, R 1/2, of a unit directional link, we can now easily com-
pute the state probability Pi (l ), which is defined to be the probability that the net-

work is i th order degraded. The probability that l links are failed in network N is
R 1/2

L −l (1 − R 1/2)
l .

>From equations 3.1 to 3.4 we obtain:

R 0 = 
l =0

Σ
K −1

[C (l ) R 1/2
L −l (1 − R 1/2)

l ] + 
l =K

Σ
2U

[C 0(l ) R 1/2
L −l (1 − R 1/2)

l ] 4.1

R 1 = 
l =K

Σ
L +U −1

[C 1(l ) R 1/2
L −l (1 − R 1/2)

l ] 4.2

R 2 = 
l =2K −1

Σ
L +U

[C 2(l ) R 1/2
L −l (1 − R 1/2)

l ] 4.3

R 3 = 
l =2K

Σ
2L −V +1

[C 3(l ) R 1/2
L −l (1 − R 1/2)

l ] + 

l =2L −V +2

Σ
2L

[C (l ) R 1/2
L −l (1 − R 1/2)

l ] 4.4

We define that network N is functional, if N remains in zero, first or second
order degraded state. when l failed links occur. Therefore, the reliability of a
degraded network is R  = R 0 + R 1 + R 2 = 1 − R 3, that is:

R  = 
l =0

Σ
2K −1

[C (l ) R 1/2
L −l (1 − R 1/2)

l ] + 
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l =2K

Σ
2U

[C 0(l )+C 1(l )+C 2(l )] R 1/2
L −l (1 − R 1/2)

l  + 

l =2U +1

Σ
L +U −1

[C 1(l )+C 2(l )] R 1/2
L −l (1 − R 1/2)

l  + [C 2(L +U )] R 1/2
L −l (1 − R 1/2)

l

As an example, consider again the network in Figure 3.2 . Suppose the relia-

bility of a unit directional link is R 1/2 = 
2

1__
. Therefore,

R 1/2
L −l (1 − R 1/2)

l  = (
2

1__)
L

 = (
2

1__)
10

 = 
210

1____
. A table listed below shows

Ci (l )R 1/2
L (1 − R 1/2)

l and Ri :

___________________________________________________________________
State l =0 l =1 l =2 l =3 l =4 l =5 l =6 l =7 l =8 l =9 l =10 Ri___________________________________________________________________

C 0(l )/210 0.001 0.01 0.034 0.03 0.008 0 0 0 0 0 0 0.083___________________________________________________________________
C 1(l )/210 0 0 0.01 0.078 0.154 0.094 0.031 0 0 0 0 0.367___________________________________________________________________
C 2(l )/210 0 0 0 0.009 0.041 0.146 0.156 0.031 0 0 0 0.384___________________________________________________________________
C 3(l )/210 0 0 0 0 0.002 0.006 0.018 0.086 0.044 0.01 0.001 0.166___________________________________________________________________
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For the reliability of the network in Figure 3.2 we get:

R  = 
1024

85 + 376 + 393_____________
 = 

1024

854_____
 = 0.83. This is the reliability of the network with

degradation.

Now to evaluate the improvement of degradable networks, over networks that
do not allow link reversals, we compute the reliability of this network considered
as undirected network. To this end we first have to link the reliability of the
undirected without degradation. Assuming the reliability of receiver, transmitter

and bi- directional link are r  = rl  = (R 1/2)
3

1__

 = 0.79 (see Figure 1.1), the reliability

of undirected link is Rl  = r 4rl  = r 5 = (
2

1__) 3

5__

 = 0.314. The reliability of the

undirected network becomes:

R  = 1 − 
l =0

Σ
5

C (l )Rl
5−l(1 − Rl )

l
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where C (l ) denotes the number of ways that the network under consideration can
be retained functional when l links are failed. Substituting our numerical values
we obtain: R  =Rl

5 + 5Rl
4(1 − Rl ) + 8Rl

3(1 − Rl )
2 = 0.154

5. Degradable networks with repair

In the above discussion we do not consider that the failed links can be
repaired. To study the reliability of a network with repair, queuing theory can be
adapted.

5.1. Networks with single repair man

First, consider a degradable network with single repair man, containing L

links. Suppose the unit directional link failure rate is λ = 1 − R 1/2 and the repair
rate is µ for a single repair man. The failure-repair state diagram is shown in Fig-
ure 5.1.1

0
L λ

µ

1
(L −1)λ

µ

2
(L −2)λ

µ

l −1

(L −l +1)λ

µ

l

(L −l )λ

µ

l +1

(L −l −1)λ

µ

2λ

µ

L-1

λ

µ

L

Figure 5.1.1 m repair men failure-repair state diagram

The probability ql that exactly l links are failed, can be derived from above
diagram:

L λq 0 = µq 1

(L −1)λq 1 = µq 2

(L −2)λq 2 = µq 3

......

(L −l )λql  = µql +1

......

(L −1)λqL −1 = µqL

>From above expressions we have:

ql  = 
(L −l )!

L !_______(
µ

λ__)
l

q 0 = 
(L −l )!

L !_______ρl q 0 5.1.1
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Where ρ = 
µ

λ__
 < 1. The normalization condition summed over all links gives:

l =0

Σ
L

ql  = 1 5.1.2

Substitute Equation 5.1.1 into Equation 5.1.2

q 0[
i =0

Σ
L

(L −i )!

L !_______ρi ] = 1

q 0 = 1 / L ![
i =0

Σ
L

(L −i )!

ρi
_______] 5.1.3

Therefore, the probability of exactly l failed links in a reparable network is

ql  = 

(L −l )![
i =0

Σ
L

(L −i )!

L !_______ρi ]

L !ρl
___________________

 = 

(L −l )![
i =0

Σ
L

(L −i )!

ρi
_______]

ρl
_________________

5.1.4

5.2. Networks with m repair men

Let L , λ and µ be as above. For a network with m repair men we have the fol-
lowing failure-repair state diagram (Figure 5.2.1.).

0
L λ

µ

1
(L −1)λ

2µ

2
(L −2)λ

3µ

m-2

(L −m +2)λ

(m −1)µ

m-1

(L −m +1)λ

m µ

m

(L −m )λ

m µ

m+1

(L −m −1)λ

m µ

L-1

λ

m µ

L

Figure 5.2.1. m repair men failure-repair state diagram

ql , as derived from above diagram:

��
� �

�
(L −l )λql  = m µql +1

 

(L −l )λql  = (l +1)µql +1

           

m  ≤ l  ≤ L

 

0 ≤ l  ≤ m

���
� ��

� ql  = 
m !m l −m

l !________
CL

l ρl q 0

 

ql  = 
(L −l )!l !

L !________ρl q 0 = CL
l ρl q 0

           

 
m  ≤ l  ≤ L

 

 

 
0 ≤ l  ≤ m

 

5.2.1
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Where ρ = 
µ

λ__
 < 1. The normalization condition summed over all links gives:

l =0

Σ
L

ql  = 1 5.2.2

Substituting Equation 5.1.4 into Equation 5.2.1 we obtain:

q 0[
i =0

Σ
m

CL
i ρi  + 

i =m +1

Σ
L

m !m i −m

i !________
CL

i ρi ] = 1

q 0 = [
i =0

Σ
m

CL
i ρi  + 

i =m +1

Σ
L

m !m i −m

i !________
CL

i ρi ]
−1

5.2.3

5.3. The reliability of reparable degradable networks

Once we have the probability, ql , of l failed links in a network, we can substi-
tute R 1/2

L −l (1 − R 1/2)
l for ql in Equation 4.1, 4.2, 4.3 and 4.4, respectively, where ql

is given by Equation 5.1.3 for single repair man, or given by Equation 5.2.2 for m

repair men, to compute the reliability of a degradable network with repair.

>From Equation 4.1, the reliability R 0 of a zero order degraded network with
repair is:

R 0 = 
l =0

Σ
2U

[
c (l )

C 0(l )
______

 ql ] = 
l =0

Σ
K −1

[ql ] + 
l =K −1

Σ
2U

[
C (l )

C 0(l )
______

 ql ]

>From Equation 4.2, the reliability R 1 of a first order degraded network with
repair is:

R 1 = 
l =K

Σ
L +U −1

[
C (l )

C 1(l )
______

 ql ]

>From Equation 4.3, the reliability R 2 of a second order degraded network with
repair is:

R 2 = 
l =2K −1

Σ
L +U

[
C (l )

C 2(l )
______

 ql ]

>From Equation 4.4, the reliability R 3 of a third order degraded network with
repair is:
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R 3 = 
l =2K

Σ
2L

[
C (l )

C 3(l )
______

 ql ] = 
l =2K

Σ
2L −V +1

[
C (l )

C 3(l )
______

 ql ] + 
l =2L −V +2

Σ
2L

[C (l ) ql ]

6. Conlusions

Based on results of [11], The concept of degradable networks was proposed.
In our model, directed networks are used, and redirection of directed links is
achieved through exchange of transmitters and receivers in the network. As links
are failing in the network, operation may remain normal, (zero order degradation),
require redirection of links in order to maintain strong connectivity of the network,
(first order degradation), require temporary redirection of bridges, (second order
degradation), or come to a halt (third order degradation). Given the reliability of a
directed link, the reliability of degradable networks is computed, by computing the
probabilities for each of the possible states of the network. Numerical examples
are discussed, which show the improvement obtained by the reversal strategy.
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