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Preface to the Third Edition

Let me begin by thanking the readers of the second edition for their many
helpful comments and suggestions, with special thanks to Joe Kidd and Nam
Trang. For the third edition, I have corrected all known errors, polished and
refined some arguments (such as the discussion of reflexivity, the rational
canonical form, best approximations and the definitions of tensor products) and
upgraded some proofs that were originally done only for finite-dimensional/rank
cases. | have also moved some of the material on projection operators to an
earlier position in the text.

A few new theorems have been added in this edition, including the spectral
mapping theorem and a theorem to the effect that dim(V') < dim(V*), with
equality if and only if V' is finite-dimensional.

I have also added a new chapter on associative algebras that includes the well-
known characterizations of the finite-dimensional division algebras over the real
field (a theorem of Frobenius) and over a finite field (Wedderburn's theorem).
The reference section has been enlarged considerably, with over a hundred
references to books on linear algebra.

Steven Roman Irvine, California, May 2007



Preface to the Second Edition

Let me begin by thanking the readers of the first edition for their many helpful
comments and suggestions. The second edition represents a major change from
the first edition. Indeed, one might say that it is a totally new book, with the
exception of the general range of topics covered.

The text has been completely rewritten. I hope that an additional 12 years and
roughly 20 books worth of experience has enabled me to improve the quality of
my exposition. Also, the exercise sets have been completely rewritten.

The second edition contains two new chapters: a chapter on convexity,
separation and positive solutions to linear systems (Chapter 15) and a chapter on
the QR decomposition, singular values and pseudoinverses (Chapter 17). The
treatments of tensor products and the umbral calculus have been greatly
expanded and I have included discussions of determinants (in the chapter on
tensor products), the complexification of a real vector space, Schur's theorem
and Gersgorin disks.

Steven Roman Irvine, California February 2005



Preface to the First Edition

This book is a thorough introduction to linear algebra, for the graduate or
advanced undergraduate student. Prerequisites are limited to a knowledge of the
basic properties of matrices and determinants. However, since we cover the
basics of vector spaces and linear transformations rather rapidly, a prior course
in linear algebra (even at the sophomore level), along with a certain measure of
“mathematical maturity,” is highly desirable.

Chapter 0 contains a summary of certain topics in modern algebra that are
required for the sequel. This chapter should be skimmed quickly and then used
primarily as a reference. Chapters 1-3 contain a discussion of the basic
properties of vector spaces and linear transformations.

Chapter 4 is devoted to a discussion of modules, emphasizing a comparison
between the properties of modules and those of vector spaces. Chapter 5
provides more on modules. The main goals of this chapter are to prove that any
two bases of a free module have the same cardinality and to introduce
Noectherian modules. However, the instructor may simply skim over this
chapter, omitting all proofs. Chapter 6 is devoted to the theory of modules over
a principal ideal domain, establishing the cyclic decomposition theorem for
finitely generated modules. This theorem is the key to the structure theorems for
finite-dimensional linear operators, discussed in Chapters 7 and 8.

Chapter 9 is devoted to real and complex inner product spaces. The emphasis
here is on the finite-dimensional case, in order to arrive as quickly as possible at
the finite-dimensional spectral theorem for normal operators, in Chapter 10.
However, we have endeavored to state as many results as is convenient for
vector spaces of arbitrary dimension.

The second part of the book consists of a collection of independent topics, with
the one exception that Chapter 13 requires Chapter 12. Chapter 11 is on metric
vector spaces, where we describe the structure of symplectic and orthogonal
geometries over various base fields. Chapter 12 contains enough material on
metric spaces to allow a unified treatment of topological issues for the basic



xii Preface

Hilbert space theory of Chapter 13. The rather lengthy proof that every metric
space can be embedded in its completion may be omitted.

Chapter 14 contains a brief introduction to tensor products. In order to motivate
the universal property of tensor products, without getting too involved in
categorical terminology, we first treat both free vector spaces and the familiar
direct sum, in a universal way. Chapter 15 (Chapter 16 in the second edition) is
on affine geometry, emphasizing algebraic, rather than geometric, concepts.

The final chapter provides an introduction to a relatively new subject, called the
umbral calculus. This is an algebraic theory used to study certain types of
polynomial functions that play an important role in applied mathematics. We
give only a brief introduction to the subject — emphasizing the algebraic
aspects, rather than the applications. This is the first time that this subject has
appeared in a true textbook.

One final comment. Unless otherwise mentioned, omission of a proof in the text
is a tacit suggestion that the reader attempt to supply one.

Steven Roman Irvine, California
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Preliminaries

In this chapter, we briefly discuss some topics that are needed for the sequel.
This chapter should be skimmed quickly and used primarily as a reference.

Part 1 Preliminaries

Multisets

The following simple concept is much more useful than its infrequent
appearance would indicate.

Definition Let S be a nonempty set. A multiset M with underlying set S is a
set of ordered pairs

M = {(si,ni) | si € S,ni € L7, 5; # s for i # j}

where " = {1,2,... }. The number n; is referred to as the multiplicity of the
elements s; in M. If the underlying set of a multiset is finite, we say that the
multiset is finite. The size of a finite multiset M is the sum of the multiplicities
of all of its elements.(]

For example, M = {(a,2),(b,3),(c,1)} is a multiset with underlying set
S ={a,b,c}. The element a has multiplicity 2. One often writes out the
elements of a multiset according to multiplicities, as in M = {a,a,b,b,b,c}.

Of course, two mutlisets are equal if their underlying sets are equal and if the
multiplicity of each element in the common underlying set is the same in both
multisets.

Matrices

The set of m x n matrices with entries in a field F' is denoted by M., ,,(F') or
by M., , when the field does not require mention. The set M,, ,,(F) is denoted
by M, (F) or M,,. If A € M, the (4, j)th entry of A will be denoted by A; ;.
The identity matrix of size n x n is denoted by I,,. The elements of the base
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field F' are called scalars. We expect that the reader is familiar with the basic
properties of matrices, including matrix addition and multiplication.

The main diagonal of an m X n matrix A is the sequence of entries

A1, Asoy o A

where k = min{m, n}.

Definition The transpose of A € M, ,, is the matrix A" defined by
(A"ij = Aj
A matrix A is symmetric if A = A' and skew-symmetric if A' = —A.O0

Theorem 0.1 (Properties of the transpose) Let A, B € M,y ,,. Then
I (A=A

2) (A+B)!=A"+B'

3) (rA)Y =rA'forallreF

4) (AB)! = B'A! provided that the product AB is defined

5) det(A") =det(A).O

Partitioning and Matrix Multiplication

Let M be a matrix of sizem x n. If BC {1,...,m} and C' C {1,...,n}, then
the submatrix M[B,C] is the matrix obtained from M by keeping only the
rows with index in B and the columns with index in C'. Thus, all other rows and
columns are discarded and M [B, C| has size |B| x |C!|.

Suppose that M € M, , and N € M,, ;.. Let

1) P={Bi,...,B,}beapartition of {1,...,m}
2) Q@ ={C,...,C,} beapartition of {1,...,n}
3) R={D,...,D,} beapartition of {1,...,k}

(Partitions are defined formally later in this chapter.) Then it is a very useful fact
that matrix multiplication can be performed at the block level as well as at the
entry level. In particular, we have

[MN][B;, Dj) = Y M[B;,C,]N[Cy, D)}
CheQ

When the partitions in question contain only single-element blocks, this is
precisely the usual formula for matrix multiplication

[MN];;= ZMNLNh,j
h=1
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Block Matrices

It will be convenient to introduce the notational device of a block matrix. If B; ;
are matrices of the appropriate sizes, then by the block matrix

Bii1 Bip -+ By,
M= : : :

Bm,l Bm,? Bm,n, block

we mean the matrix whose upper left submatrix is By, and so on. Thus, the
B, j's are submatrices of M and not entries. A square matrix of the form

B, 0 - 0
0o - .
M=1. 7"y
0 --- 0 B,

block

where each B; is square and 0 is a zero submatrix, is said to be a block
diagonal matrix.

Elementary Row Operations

Recall that there are three types of elementary row operations. Type 1
operations consist of multiplying a row of A by a nonzero scalar. Type 2
operations consist of interchanging two rows of A. Type 3 operations consist of
adding a scalar multiple of one row of A to another row of A.

If we perform an elementary operation of type k to an identity matrix I,,, the
result is called an elementary matrix of type k. It is easy to see that all
elementary matrices are invertible.

In order to perform an elementary row operation on A € M,, ,, we can perform
that operation on the identity I,,,, to obtain an elementary matrix £ and then take
the product F'A. Note that multiplying on the right by E has the effect of
performing column operations.

Definition 4 matrix R is said to be in reduced row echelon form if

1) All rows consisting only of 0's appear at the bottom of the matrix.

2) In any nonzero row, the first nonzero entry is a 1. This entry is called a
leading entry.

3) For any two consecutive rows, the leading entry of the lower row is to the
right of the leading entry of the upper row.

4)  Any column that contains a leading entry has 0's in all other positions.[]

Here are the basic facts concerning reduced row echelon form.
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Theorem 0.2 Matrices A, B € M,, , are row equivalent, denoted by A ~ B,
if either one can be obtained from the other by a series of elementary row

operations.
1) Row equivalence is an equivalence relation. That is,
a) A~A

by A~B=B~A
¢) A~B B~(C=A~C.

2) A matrix A is row equivalent to one and only one matrix R that is in
reduced row echelon form. The matrix R is called the reduced row
echelon form of A. Furthermore,

R=EE,A

where E; are the elementary matrices required to reduce A to reduced row
echelon form.

3) A is invertible if and only if its reduced row echelon form is an identity
matrix. Hence, a matrix is invertible if and only if it is the product of
elementary matrices.[]

The following definition is probably well known to the reader.

Definition A square matrix is upper triangular if all of its entries below the
main diagonal are 0. Similarly, a square matrix is lower triangular if all of its
entries above the main diagonal are 0. A square matrix is diagonal if all of its
entries off the main diagonal are 0.01

Determinants

We assume that the reader is familiar with the following basic properties of
determinants.

Theorem 0.3 Let A € M, ,(F). Then det(A) is an element of F'. Furthermore,
1) Forany B € M, (F),

det(AB) = det(A)det(B)
2) A is nonsingular (invertible) if and only if det(A) # 0.
3) The determinant of an upper triangular or lower triangular matrix is the

product of the entries on its main diagonal.
4) If a square matrix M has the block diagonal form

B, 0 - 0
o . .
M=1" "
0 -~ 0 B,

block

then det(M) = ] det(B;).O
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Polynomials

The set of all polynomials in the variable x with coefficients from a field F' is
denoted by F'[z]. If p(z) € F[x], we say that p(x) is a polynomial over F'. If

p(.’lf) =ay)t+ax+--+ afn-rn

is a polynomial with a,, # 0, then a, is called the leading coefficient of p(x)
and the degree of p(z) is n, written deg p(x) = n. For convenience, the degree
of the zero polynomial is —co. A polynomial is monic if its leading coefficient
is 1.

), g(z) € Flz] where deg g(x) > 0.
x) € F[z] for which

f(@) = q(z)g(2) + ()
where r(x) = 0 or 0 < deg r(x) < deg g(x).0d

Theorem 0.4 (Division algorithm) Let f(x
Then there exist unique polynomials q(x),r(

If p(x) divides ¢(z), that is, if there exists a polynomial f(x) for which
q(z) = f(x)p(x)

then we write p(z) | ¢(x). A nonzero polynomial p(x) € F[z] is said to split
over F'if p(x) can be written as a product of linear factors

p(x) = (2 =r1)--(x =)

where r; € F.

Theorem 0.5 Let f(x), g(x) € F[z]. The greatest common divisor of f(x) and
g(x), denoted by ged(f(x),g(x)), is the unique monic polynomial p(x) over F
for which

1) p(x) | f(x) and p(z) | g(x)

2) ifr(x) | f(z) andr(z) | g(x) then r(x) | p(x).

Furthermore, there exist polynomials a(x) and b(x) over F for which
ged(f(z), 9(x)) = a(x) f(x) + b(z)g(x) O

Definition The polynomials f(x),g(x) € Flz] are relatively prime if
gcd(f(x), g(x)) = 1. In particular, f(x) and g(x) are relatively prime if and
only if there exist polynomials a(x) and b(x) over F for which

a(x)f(x) +b(x)g(x) = O

Definition A nonconstant polynomial f(x) € F[z] is irreducible if whenever
f(z) = p(x)q(x), then one of p(x) and q(x) must be constant.[]

The following two theorems support the view that irreducible polynomials
behave like prime numbers.
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Theorem 0.6 4 nonconstant polynomial f(x) is irreducible if and only if it has
the property that whenever f(x)|p(x)q(x), then either f(x)|p(x) or

f(z) [ q(x).00

Theorem 0.7 Every nonconstant polynomial in F|x] can be written as a product
of irreducible polynomials. Moreover, this expression is unique up to order of
the factors and multiplication by a scalar.[]

Functions

To set our notation, we should make a few comments about functions.
Definition Let f: S — T be a function from a set S to a set T

1) The domain of f is the set S and the range of f is T.

2) Theimage of f is the set im(f) = {f(s) | s € S}.

3) [ is injective (one-to-one), or an injection, if v # y = f(x) # f(y).
4) f is surjective (onto T), or a surjection, if im(f) = T.

5) f is bijective, or a bijection, if it is both injective and surjective.
6) Assuming that 0 € T, the support of f is

supp(f) = {s € S| f(s) # 0} g

If f: S — T is injective, then its inverse f':im(f) — S exists and is well-
defined as a function on im( f).

It will be convenient to apply f to subsets of S and 7. In particular, if X C .S
and if Y C T, we set

f(X)={f(z) |z € X}
and
FlY)={seS|f(s)eY}

Note that the latter is defined even if f is not injective.

Let f: S — T.1If A C S, the restriction of f to A is the function f|4: A — T
defined by

flala) = f(a)

for all a € A. Clearly, the restriction of an injective map is injective.

In the othe£ direction, if f: S - T and if S C U, then an extension of f to U is
a function f: U — T for which f|¢ = f.
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Equivalence Relations

The concept of an equivalence relation plays a major role in the study of
matrices and linear transformations.

Definition Let S be a nonempty set. A binary relation ~ on S is called an
equivalence relation on S if it satisfies the following conditions:
1) (Reflexivity)

foralla € S.
2) (Symmetry)

a~b=b~a
foralla,b € S.
3) (Transitivity)

a~bb~c=a~c

forall a,b,c € 5.0

Definition Let ~ be an equivalence relation on S. For a € S, the set of all
elements equivalent to a is denoted by

[a] ={beS|b~a}

and called the equivalence class of a.O]

Theorem 0.8 Let ~ be an equivalence relation on S. Then
1) belal < acb] < [a] =[]
2) Foranya,b € S, we have either [a] = [b] or [a] N [b] = 0.00

Definition 4 partition of a nonempty set S is a collection {Ay,..., A} of
nonempty subsets of S, called the blocks of the partition, for which

1) A,,;ﬂAjz@foralli;éj

2) S=AU---UA,O

The following theorem sheds considerable light on the concept of an
equivalence relation.

Theorem 0.9

1) Let ~ be an equivalence relation on S. Then the set of distinct equivalence
classes with respect to ~ are the blocks of a partition of S.

2) Conversely, if P is a partition of S, the binary relation ~ defined by

a ~ bifaandb lie in the same block of P
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is an equivalence relation on S, whose equivalence classes are the blocks
of P.
This establishes a one-to-one correspondence between equivalence relations on
S and partitions of S.OJ

The most important problem related to equivalence relations is that of finding an
efficient way to determine when two elements are equivalent. Unfortunately, in
most cases, the definition does not provide an efficient test for equivalence and
so we are led to the following concepts.

Definition Let ~ be an equivalence relation on S. A function f:S — T, where
T is any set, is called an invariant of ~ if it is constant on the equivalence
classes of ~ , that is,

a~b= f(a)=f(b)

and a complete invariant if it is constant and distinct on the equivalence
classes of ~ , that is,

a~b< fla)=f(b)

A collection {fi,...,fn} of invariants is called a complete system of
invariants if’

a~b<s fila)=fi(b) foralli=1,... ,n O

Definition Let ~ be an equivalence relation on S. A subset C' C S is said to be
a set of canonical forms (or just a canonical form) for ~ if for every s € S,
there is exactly one ¢ € C' such that ¢ ~ s. Put another way, each equivalence
class under ~ contains exactly one member of C.[1

Example 0.1 Define a binary relation ~ on F'[z] by letting p(z) ~ ¢(x) if and
only if p(z) = aq(x) for some nonzero constant a € F. This is easily seen to be
an equivalence relation. The function that assigns to each polynomial its degree
is an invariant, since

p(x) ~ gq(x) = deg(p(r)) = deg(q(z))

However, it is not a complete invariant, since there are inequivalent polynomials
with the same degree. The set of all monic polynomials is a set of canonical
forms for this equivalence relation.[]

Example 0.2 We have remarked that row equivalence is an equivalence relation
on M,, ,(F). Moreover, the subset of reduced row echelon form matrices is a
set of canonical forms for row equivalence, since every matrix is row equivalent
to a unique matrix in reduced row echelon form.[]
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Example 0.3 Two matrices A, B € M,,(F) are row equivalent if and only if
there is an invertible matrix P such that A = PB. Similarly, A and B are
column equivalent, that is, A can be reduced to B using elementary column
operations, if and only if there exists an invertible matrix @) such that A = BQ.

Two matrices A and B are said to be equivalent if there exist invertible
matrices P and () for which

A= PBQ

Put another way, A and B are equivalent if A can be reduced to B by
performing a series of elementary row and/or column operations. (The use of the
term equivalent is unfortunate, since it applies to all equivalence relations, not
just this one. However, the terminology is standard, so we use it here.)

It is not hard to see that an m x n matrix R that is in both reduced row echelon
form and reduced column echelon form must have the block form

I Ok n—r

Jp =
Om—k:,k’ Om—k‘,n—k block

We leave it to the reader to show that every matrix A in M, is equivalent to
exactly one matrix of the form .J; and so the set of these matrices is a set of
canonical forms for equivalence. Moreover, the function f defined by
f(A) =k, where A ~ Ji, is a complete invariant for equivalence.

Since the rank of J;, is k and since neither row nor column operations affect the
rank, we deduce that the rank of A is k. Hence, rank is a complete invariant for
equivalence. In other words, two matrices are equivalent if and only if they have
the same rank.[]

Example 0.4 Two matrices A, B € M,,(F) are said to be similar if there exists
an invertible matrix P such that

A=pBp!

Similarity is easily seen to be an equivalence relation on M,,. As we will learn,
two matrices are similar if and only if they represent the same linear operators
on a given n-dimensional vector space V. Hence, similarity is extremely
important for studying the structure of linear operators. One of the main goals of
this book is to develop canonical forms for similarity.

We leave it to the reader to show that the determinant function and the trace
function are invariants for similarity. However, these two invariants do not, in
general, form a complete system of invariants.[]

Example 0.5 Two matrices A, B € M,,(F') are said to be congruent if there
exists an invertible matrix P for which
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A= PBP'

where P! is the transpose of P. This relation is easily seen to be an equivalence
relation and we will devote some effort to finding canonical forms for
congruence. For some base fields F' (such as R, C or a finite field), this is
relatively easy to do, but for other base fields (such as Q), it is extremely
difficult.0c]

Zorn's Lemma
In order to show that any vector space has a basis, we require a result known as

Zorn's lemma. To state this lemma, we need some preliminary definitions.

Definition A partially ordered set is a pair (P, <) where P is a nonempty set
and < is a binary relation called a partial order, read “less than or equal to,”
with the following properties:

1) (Reflexivity) Forall a € P,

a<a
2) (Antisymmetry) For all a,b € P,
a<bandb < aimpliesa=1>b
3) (Transitivity) Forall a,b,c € P,

a<bandb < cimpliesa < c

Partially ordered sets are also called posets.[]

It is customary to use a phrase such as “Let P be a partially ordered set” when
the partial order is understood. Here are some key terms related to partially
ordered sets.

Definition Let P be a partially ordered set.

1) The maximum (largest, top) element of P, should it exist, is an element
M € P with the property that all elements of P are less than or equal to
M, that is,

peEP=p<M

Similarly, the mimimum (least, smallest, bottom) element of P, should it
exist, is an element N € P with the property that all elements of P are
greater than or equal to N, that is,

peP=N<p

2) A maximal element is an element m € P with the property that there is no
larger element in P, that is,

peEPm<p=m=p
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Similarly, @ minimal element is an element n € P with the property that
there is no smaller element in P, that is,

peEP,p<n=p=n
3) Leta,b € P.Thenu € P is an upper bound for a and b if

a<uandb <u

The unique smallest upper bound for a and b, if it exists, is called the least
upper bound of a and b and is denoted by lub{a, b}.
4) Leta,b € P.Then! € P is alower bound for a and b if

{<aandl<b

The unique largest lower bound for a and b, if it exists, is called the
greatest lower bound of a and b and is denoted by glb{a,b}.c]

Let S be a subset of a partially ordered set P. We say that an element v € P is
an upper bound for § if s <w for all s €.S. Lower bounds are defined
similarly.

Note that in a partially ordered set, it is possible that not all elements are
comparable. In other words, it is possible to have =,y € P with the property
that z € y and y < .

Definition A partially ordered set in which every pair of elements is
comparable is called a totally ordered set, or a linearly ordered set. Any
totally ordered subset of a partially ordered set P is called a chain in P.[]

Example 0.6

1) The set R of real numbers, with the usual binary relation <, is a partially
ordered set. It is also a totally ordered set. It has no maximal elements.

2) The set N=1{0,1,...} of natural numbers, together with the binary
relation of divides, is a partially ordered set. It is customary to write n | m
to indicate that n divides m. The subset S of N consisting of all powers of 2
is a totally ordered subset of N, that is, it is a chain in N. The set
P ={2,4,8,3,9,27} is a partially ordered set under | . It has two maximal
elements, namely 8 and 27. The subset Q = {2,3,5,7,11} is a partially
ordered set in which every element is both maximal and minimal!

3) Let S be any set and let P(S) be the power set of S, that is, the set of all
subsets of S. Then P(S), together with the subset relation C , is a partially
ordered set.[]

Now we can state Zorn's lemma, which gives a condition under which a
partially ordered set has a maximal element.
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Theorem 0.10 (Zorn's lemma) I P is a partially ordered set in which every
chain has an upper bound, then P has a maximal element.[]

We will use Zorn's lemma to prove that every vector space has a basis. Zorn's
lemma is equivalent to the famous axiom of choice. As such, it is not subject to
proof from the other axioms of ordinary (ZF) set theory. Zorn's lemma has many
important equivalancies, one of which is the well-ordering principle. A well
ordering on a nonempty set X is a total order on X with the property that every
nonempty subset of X has a least element.

Theorem 0.11 (Well-ordering principle) Every nonempty set has a well
ordering..]

Cardinality
Two sets S and 7" have the same cardinality, written
S| = [T

if there is a bijective function (a one-to-one correspondence) between the sets.
The reader is probably aware of the fact that

|Z| = IN| and |Q| = [N]|

where N denotes the natural numbers, 7Z the integers and Q the rational
numbers.

If S is in one-to-one correspondence with a subset of T, we write |S| < |T|. If
S is in one-to-one correspondence with a proper subset of T but not all of T',
then we write |S| < |T'|. The second condition is necessary, since, for instance,
N is in one-to-one correspondence with a proper subset of Z and yet N is also in
one-to-one correspondence with Z itself. Hence, |N| = |Z|.

This is not the place to enter into a detailed discussion of cardinal numbers. The
intention here is that the cardinality of a set, whatever that is, represents the
“size” of the set. It is actually easier to talk about two sets having the same, or
different, size (cardinality) than it is to explicitly define the size (cardinality) of
a given set.

Be that as it may, we associate to each set S a cardinal number, denoted by | S|
or card(S), that is intended to measure the size of the set. Actually, cardinal
numbers are just very special types of sets. However, we can simply think of
them as vague amorphous objects that measure the size of sets.

Definition
1) A set is finite if it can be put in one-to-one correspondence with a set of the
Jorm 7, = {0,1,... ,n — 1}, for some nonnegative integer n. A set that is
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not finite is infinite. The cardinal number (or cardinality) of a finite set is
Just the number of elements in the set.

2) The cardinal number of the set N of natural numbers is W, (read “aleph
nought’’), where X is the first letter of the Hebrew alphabet. Hence,

IN| = |Z] = |Q] = Ro

3) Any set with cardinality W is called a countably infinite set and any finite
or countably infinite set is called a countable set. An infinite set that is not
countable is said to be uncountable.]

Since it can be shown that |R| > |N|, the real numbers are uncountable.

If S and T are finite sets, then it is well known that

S| < [T and |T'| < |S| = |S| =T
The first part of the next theorem tells us that this is also true for infinite sets.
The reader will no doubt recall that the power set P(.S) of a set S is the set of

all subsets of S. For finite sets, the power set of S is always bigger than the set
itself. In fact,

S| =n=[P(S)] =2"

The second part of the next theorem says that the power set of any set S is
bigger (has larger cardinality) than S itself. On the other hand, the third part of
this theorem says that, for infinite sets S, the set of all finite subsets of .S is the
same size as S.

Theorem 0.12
1) (Schréder—Bernstein theorem) For any sets S and T,

S| < |T|and |T| <|S| = |S| = |T|

2) (Cantor's theorem) If P(S) denotes the power set of S, then

S| < [P(S)]
3) IfPo(S) denotes the set of all finite subsets of S and if S is an infinite set,
then
S| = Po(S)]

Proof. We prove only parts 1) and 2). Let f: S — T be an injective function
from S into T and let g: 7' — S be an injective function from 7" into S. We
want to use these functions to create a bijective function from S to 7'. For this
purpose, we make the following definitions. The descendants of an element
s €S are the elements obtained by repeated alternate applications of the
functions f and g, namely
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f(s),9(f (), f(g(f(5))); ---

If t is a descendant of s, then s is an ancestor of ¢. Descendants and ancestors
of elements of 7" are defined similarly.

Now, by tracing an element's ancestry to its beginning, we find that there are
three possibilities: the element may originate in .S, or in 7', or it may have no
point of origin. Accordingly, we can write S as the union of three disjoint sets

Ss = {s € S| s originates in S}
Sy ={s € S| soriginates in T'}
So = {s € S| s has no originator}

Similarly, T is the disjoint union of 7g, 77 and 7.

Now, the restriction
flss:Ss — T

is a bijection. To see this, note that if ¢ € 7g, then ¢ originated in S and
therefore must have the form f(s) for some s € S. But ¢ and its ancestor s have
the same point of origin and so ¢ € Ty implies s € Sg. Thus, f|s, is surjective
and hence bijective. We leave it to the reader to show that the functions

(g9l7) "+ Sr — Trand fls : S — T

are also bijections. Putting these three bijections together gives a bijection
between S and T'. Hence, |S| = |T|, as desired.

We now prove Cantor's theorem. The map ¢: .S — P(S) defined by ¢(s) = {s}
is an injection from S to P(S) and so |S| < |P(S)]. To complete the proof we
must show that no injective map f: S — P(S) can be surjective. To this end, let

X={seS|s¢f(s)}€PS)

We claim that X is not in im(f). For suppose that X = f(x) for some = € S.
Then if € X, we have by the definition of X that z ¢ X. On the other hand, if
x ¢ X, we have again by the definition of X that x € X. This contradiction
implies that X ¢ im(f) and so f is not surjective..cI

Cardinal Arithmetic

Now let us define addition, multiplication and exponentiation of cardinal
numbers. If S and T are sets, the cartesian product S x 7' is the set of all
ordered pairs

SxT={(st)|s€S,teT}

The set of all functions from 7" to S is denoted by S”.



Preliminaries 15

Definition Let k and )\ denote cardinal numbers. Let S and T be disjoint sets
for which |S| = k and |T| = \.

1) The sum k + A is the cardinal number of S U T.

2) The product s\ is the cardinal number of S x T.

3) The power r* is the cardinal number of S*.01

We will not go into the details of why these definitions make sense. (For
instance, they seem to depend on the sets S and 7', but in fact they do not.) It
can be shown, using these definitions, that cardinal addition and multiplication
are associative and commutative and that multiplication distributes over
addition.

Theorem 0.13 Let x, A and u be cardinal numbers. Then the following
properties hold:
1) (Associativity)

k+A+p)=(k+ X))+ pand c(Ap) = (kA)p
2) (Commutativity)
K+ A=A+ kKand kA =k
3) (Distributivity)
KA+ 1) = kA + Kk

4) (Properties of Exponents)
a) K//\er, — H)\K//l
b) (FLA)“ — K./A/L

¢) (kA =riAO

On the other hand, the arithmetic of cardinal numbers can seem a bit strange, as
the next theorem shows.

Theorem 0.14 Let x and \ be cardinal numbers, at least one of which is
infinite. Then

K+ A =kA =max{r, \} O

It is not hard to see that there is a one-to-one correspondence between the power
set P(S) of a set S and the set of all functions from S to {0, 1}. This leads to
the following theorem.

Theorem 0.15 For any cardinal k
) If|S| =k, then |P(S)| = 2"
2) k<20
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We have already observed that [N| = R. It can be shown that X, is the smallest
infinite cardinal, that is,

Kk < Ny = k is a natural number

It can also be shown that the set R of real numbers is in one-to-one
correspondence with the power set P(N) of the natural numbers. Therefore,

B| = 2%
The set of all points on the real line is sometimes called the continuum and so

2% is sometimes called the power of the continuum and denoted by c.

Theorem 0.14 shows that cardinal addition and multiplication have a kind of
“absorption” quality, which makes it hard to produce larger cardinals from
smaller ones. The next theorem demonstrates this more dramatically.

Theorem 0.16

1) Addition applied a countable number of times or multiplication applied a
finite number of times to the cardinal number N, does not yield anything
more than N. Specifically, for any nonzeron € N, we have

N0~N0:Noanng:No

2) Addition and multiplication applied a countable number of times to the
cardinal number 2% does not yield more than 2. Specifically, we have

Rg - 2% = 2% gnd (2%)% = 2% O
Using this theorem, we can establish other relationships, such as
M < (Ry)N < (2M)N = 2
which, by the Schroder—Bernstein theorem, implies that
(Rg)™ = 2%

We mention that the problem of evaluating £ in general is a very difficult one
and would take us far beyond the scope of this book.

We will have use for the following reasonable-sounding result, whose proof is
omitted.

Theorem 0.17 Let {Ay. | k € K} be a collection of sets, indexed by the set K,
with |K| = k. If |Ax| < A forall k € K, then

U A

keK

< Ak O

Let us conclude by describing the cardinality of some famous sets.
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Theorem 0.18
1) The following sets have cardinality N.
a) The rational numbers Q.
b) The set of all finite subsets of N.
¢) The union of a countable number of countable sets.
d) The set " of all ordered n-tuples of integers.
2) The following sets have cardinality 2™.
a) The set of all points in R™.
b) The set of all infinite sequences of natural numbers.
¢) The set of all infinite sequences of real numbers.
d) The set of all finite subsets of R.
e) The set of all irrational numbers.[]

Part 2 Algebraic Structures

We now turn to a discussion of some of the many algebraic structures that play a
role in the study of linear algebra.

Groups

Definition A group is a nonempty set G, together with a binary operation
denoted by *, that satisfies the following properties:
1) (Associativity) For all a,b,c € G,

(axb)xc = ax(bxc)
2) (Identity) There exists an element e € G for which
exa = axe = a
foralla € G.
3) (Inverses) For each a € G, there is an element a~' € G for which
axa ' =a'va=e O
Definition 4 group G is abelian, or commutative, if’
axb = bxa

for all a,b € G. When a group is abelian, it is customary to denote the
operation x by +, thus writing axb as a + b. It is also customary to refer to the
identity as the zero element and to denote the inverse a=' by —a, referred to as
the negative of a.O]

Example 0.7 The set F of all bijective functions from a set S to .S is a group
under composition of functions. However, in general, it is not abelian.[]

Example 0.8 The set M,, ,(F') is an abelian group under addition of matrices.
The identity is the zero matrix 0,,, of size m x n. The set M,,(F') is not a
group under multiplication of matrices, since not all matrices have multiplicative
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inverses. However, the set of invertible matrices of size n X n is a (nonabelian)
group under multiplication.[]

A group G is finite if it contains only a finite number of elements. The
cardinality of a finite group G is called its order and is denoted by o(G) or
simply |G|. Thus, for example, Z,, = {0,1,...,n — 1} is a finite group under
addition modulo n, but M, ,(R) is not finite.

Definition 4 subgroup of a group G is a nonempty subset S of G that is a
group in its own right, using the same operations as defined on G.[J
Cyclic Groups

If a is a formal symbol, we can define a group G to be the set of all integral
powers of a:

G={d|icZ}
where the product is defined by the formal rules of exponents:
ala) = a't

This group is denoted by (a) and called the cyclic group generated by a. The
identity of (a) is 1 = a’. In general, a group G is cyclic if it has the form
G = (a) forsome a € G.

We can also create a finite group C),(a) of arbitrary positive order n by
declaring that " = 1. Thus,

Cula)={1=4d"a,d*...,a" '}
where the product is defined by the formal rules of exponents, followed by
reduction modulo n:

aiaj _ a(iJrj) modn

This defines a group of order n, called a cyclic group of order n. The inverse
ofak is a<’k> modn.
Rings
Definition A4 ring is a nonempty set R, together with two binary operations,
called addition (denoted by + ) and multiplication (denoted by juxtaposition),
for which the following hold:

1) R is an abelian group under addition
2) (Associativity) For all a,b,c € R,

(ab)c = a(be)
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3) (Distributivity) Forall a,b,c € R,
(a+b)c=ac+bcandc(a+b) =ca+cb

A ring R is said to be commutative if ab = ba for all a,b € R. If a ring R
contains an element e with the property that

ae = ea = a

for all a € R, we say that R is a ring with identity. The identity e is usually
denoted by 1.0

A field F' is a commutative ring with identity in which each nonzero element
has a multiplicative inverse, that is, if @ € F' is nonzero, then there is a b € F
for which ab = 1.

Example 0.9 The set Z, = {0,1,... ,n—1} is a commutative ring under
addition and multiplication modulo n

a®b=(a+b)modn, a®b=abmodn

The element 1 € Z,, is the identity.[]

Example 0.10 The set E' of even integers is a commutative ring under the usual
operations on Z, but it has no identity.[]

Example 0.11 The set M,,(F') is a noncommutative ring under matrix addition
and multiplication. The identity matrix I,, is the identity for M,, (F').Od

Example 0.12 Let F be a field. The set F[z] of all polynomials in a single
variable xz, with coefficients in F, is a commutative ring under the usual
operations of polynomial addition and multiplication. What is the identity for
F[z]? Similarly, the set F[z,...,2,] of polynomials in n variables is a
commutative ring under the usual addition and multiplication of polynomials.[]

Definition If R and S are rings, then a function o:R — S is a ring
homomorphism if

o(la+b)=0ca+ob
o(ab) = o(a)o(b)
cl=1

forall a,b € R.OI

Definition A subring of a ring R is a subset S of R that is a ring in its own
right, using the same operations as defined on R and having the same
multiplicative identity as R.C]
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The condition that a subring S have the same multiplicative identity as R is
required. For example, the set S of all 2 x 2 matrices of the form

a 0
el

for a € F' is a ring under addition and multiplication of matrices (isomorphic to
F). The multiplicative identity in S is the matrix A;, which is not the identity I,
of My o(F). Hence, S is a ring under the same operations as My o(F') but it is
not a subring of My o(F).

Applying the definition is not generally the easiest way to show that a subset of
aring is a subring. The following characterization is usually easier to apply.

Theorem 0.19 4 nonempty subset S of a ring R is a subring if and only if
1) The multiplicative identity 1 of R is in S
2) S is closed under subtraction, that is,

a,beS=a-0bef

3) S is closed under multiplication, that is,

a,beS=abesS O

Ideals
Rings have another important substructure besides subrings.

Definition Let R be a ring. A nonempty subset I of R is called an ideal if
1) T is a subgroup of the abelian group R, that is, I is closed under
subtraction:

a,bel=a—-b€el
2) T is closed under multiplication by any ring element, that is,
a€Z,reR=arc€ZTandracl O
Note that if an ideal Z contains the unit element 1, then 7 = R.
Example 0.13 Let p(z) be a polynomial in F[z]. The set of all multiples of
p(x),
(p(x)) = {q(x)p(z) | q(x) € Flz]}

is an ideal in F'[x], called the ideal generated by p(x).0

Definition Let S be a subset of a ring R with identity. The set
(SYy={risi+---+rus,|ri€R,s;,€S5,n>1}
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of all finite linear combinations of elements of S, with coefficients in R, is an
ideal in R, called the ideal generated by S. It is the smallest (in the sense of set
inclusion) ideal of R containing S. If S = {s1,... ,s,} is a finite set, we write

(S1y-ee s Sn) ={rs1+ - +rpsy |1 € R,s; €S} O

Note that in the previous definition, we require that R have an identity. This is
to ensure that S C (S5).

Theorem 0.20 Let R be a ring.

1) The intersection of any collection {Z}. | k € K} of ideals is an ideal.

2) If17y C I, C --- is an ascending sequence of ideals, each one contained in
the next, then the union \JI), is also an ideal.

3) More generally, if

C=1{T|iel}

is a chain of ideals in R, then the union J = Uie]L is also an ideal in R.
Proof. To prove 1), let 7 = (\Z;. Then if a,b € J, we have a,b € T, for all
k€ K.Hence,a—b e Z, forall k € K and so a — b € J. Hence, 7 is closed
under subtraction. Also, if r € R, thenra € 7 forallk € K andsora € J. Of
course, part 2) is a special case of part 3). To prove 3), if a,b € J, thena € I;
and b € Z; for some 7, j € I. Since one of Z; and Z; is contained in the other, we
may assume that Z; C Z;. It follows that a,b € Z; and soa — b € Z; C J and if
r € R,thenra € Z; C J. Thus J is an ideal.[]

Note that in general, the union of ideals is not an ideal. However, as we have
just proved, the union of any chain of ideals is an ideal.

Quotient Rings and Maximal Ideals

Let S be a subset of a commutative ring R with identity. Let = be the binary
relation on R defined by

a=b s a—-bes

It is easy to see that = is an equivalence relation. When a = b, we say that a
and b are congruent modulo S. The term “mod” is used as a colloquialism for
modulo and a = b is often written

a=bmodS

As shorthand, we write a = b.
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To see what the equivalence classes look like, observe that
[al|={reR|r=a}
={reR|r—aesS}
={reR|r=a+sforsomese S}
={a+s|seS}
=a+S

The set

a+S={a+s|seS}
is called a coset of S in R. The element a is called a coset representative for
a+S.
Thus, the equivalence classes for congruence mod S are the cosets a + .S of S
in R. The set of all cosets is denoted by

R/S={a+S]|acR}

This is read “R mod S.” We would like to place a ring structure on R/S.
Indeed, if S is a subgroup of the abelian group R, then R/S is easily seen to be
an abelian group as well under coset addition defined by

(a+8)+b+S)=(a+bd)+S
In order for the product
(a+S)b+S)=ab+ S
to be well-defined, we must have
b+S=b+S=ab+S=ab+S5
or, equivalently,
b—beS=ab-b)es

But b — 0’ may be any element of S and a may be any element of R and so this
condition implies that S must be an ideal. Conversely, if S is an ideal, then
coset multiplication is well defined.

Theorem 0.21 Let R be a commutative ring with identity. Then the quotient
R/T is a ring under coset addition and multiplication if and only if T is an
ideal of R. In this case, R/T is called the quotient ring of R modulo Z, where
addition and multiplication are defined by

(a+S)+b+S)=(a+b)+ S5 a
(a+S)b+S)=ab+ S
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Definition An ideal T in a ring R is a maximal ideal if 7 # R and if whenever
J is an ideal satisfying T C J C R, then either 7 =T or J = R.O

Here is one reason why maximal ideals are important.

Theorem 0.22 Let R be a commutative ring with identity. Then the quotient
ring R/ T is a field if and only if T is a maximal ideal.

Proof. First, note that for any ideal Z of R, the ideals of R/Z are precisely the
quotients 7 /Z where J is an ideal for which Z C J C R. It is clear that 7 /7
is an ideal of R/Z. Conversely, if K’ is an ideal of R/Z, then let

K={reR|r+TIeck}

It is easy to see that /C is an ideal of R for whichZ C K C R.

Next, observe that a commutative ring .S with identity is a field if and only if S
has no nonzero proper ideals. For if S is a field and Z is an ideal of S
containing a nonzero element r, then 1 = r~!r € Z and so Z = S. Conversely,
if S has no nonzero proper ideals and 0 # s € S, then the ideal (s) must be S
and so there is an r € S for which rs = 1. Hence, S is a field.

Putting these two facts together proves the theorem.[]
The following result says that maximal ideals always exist.

Theorem 0.23 Any nonzero commutative ring R with identity contains a
maximal ideal.

Proof. Since R is not the zero ring, the ideal {0} is a proper ideal of R. Hence,
the set S of all proper ideals of R is nonempty. If

C=1{T|iel}

is a chain of proper ideals in R, then the union J = J,.;Z; is also an ideal.
Furthermore, if 7 = R is not proper, then 1 € 7 and so 1 € Z;, for some ¢ € I,
which implies that Z; = R is not proper. Hence, J € S. Thus, any chain in §
has an upper bound in S and so Zorn's lemma implies that S has a maximal
element. This shows that R has a maximal ideal.[]

Integral Domains

Definition Let R be a ring. A nonzero element r € R is called a zero divisor if
there exists a nonzero s € R for which rs =0. A commutative ring R with
identity is called an integral domain if it contains no zero divisors..]

Example 0.14 If n is not a prime number, then the ring Z,, has zero divisors and
so is not an integral domain. To see this, observe that if n is not prime, then
n = ab in Z, where a,b > 2. But in Z,,, we have
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a®b=abmodn =20
and so a and b are both zero divisors. As we will see later, if n is a prime, then

Z, is a field (which is an integral domain, of course).[]

Example 0.15 The ring F'[x] is an integral domain, since p(z)q(z) = 0 implies
that p(z) = 0 or g(x) = 0.00

If R is a ring and rz = ry where 7, z,y € R, then we cannot in general cancel
the r's and conclude that x = y. For instance, in Z,, we have 2-3 =2 -1, but
canceling the 2's gives 3 = 1. However, it is precisely the integral domains in
which we can cancel. The simple proof is left to the reader.

Theorem 0.24 Let R be a commutative ring with identity. Then R is an integral
domain if and only if the cancellation law
re=ry,r20=x=y
holds.(0
The Field of Quotients of an Integral Domain

Any integral domain R can be embedded in a field. The quotient field (or field
of quotients) of R is a field that is constructed from R just as the field of
rational numbers is constructed from the ring of integers. In particular, we set

R™ ={(p,q) | p,q € R,q # 0}

where (p,q) = (p/,¢’) if and only if p¢’ = p'q. Addition and multiplication of
fractions is defined by

(p,q) + (r,8) = (ps +qr,qs)
and
(P, q) - (r,s) = (pr,qs)

It is customary to write (p, ¢) in the form p/q. Note that if R has zero divisors,
then these definitions do not make sense, because ¢gs may be 0 even if ¢ and s
are not. This is why we require that R be an integral domain.

Principal Ideal Domains

Definition Let R be a ring with identity and let a € R. The principal ideal
generated by a is the ideal

(a) ={ra|r € R}

An integral domain R in which every ideal is a principal ideal is called a
principal ideal domain. ]
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Theorem 0.25 The integers form a principal ideal domain. In fact, any ideal T
in 7 is generated by the smallest positive integer a that is contained in 7.0]

Theorem 0.26 The ring F|x] is a principal ideal domain. In fact, any ideal T is
generated by the unique monic polynomial of smallest degree contained in I.
Moreover, for polynomials pr(z), ... , pn(x),

(p1(2), - pale)) = (ged{pr(2), ..., pu(@)})

Proof. Let Z be an ideal in F[z] and let m(z) be a monic polynomial of
smallest degree in Z. First, we observe that there is only one such polynomial in
Z.Forifn(x) € T is monic and deg(n(x)) = deg(m(z)), then

b(z) =m(x) —n(x) €T
and since deg(b(z)) < deg(m(z)), we must have b(x)=0 and so
n(x) = m(x).
We show that Z = (m(z)). Since m(z) € Z, we have (m(z)) C Z. To establish
the reverse inclusion, if p(x) € Z, then dividing p(z) by m(x) gives
p(x) = q(z)m(z) + r(z)
where r(x) = 0 or 0 < deg r(z) < deg m(x). But since Z is an ideal,
r(z) = p(z) —q(z)m(z) € T
and so 0 < degr(x) < deg m(x) is impossible. Hence, r(x) = 0 and
p(x) = q(z)m(z) € (m(z))
This shows that Z C (m(x)) and so Z = (m(x)).

To prove the second statement, let Z = (pi(x), ... , p,(x)). Then, by what we
have just shown,

= (p(x),... ,pu(2)) = (M(2))

where m(x) is the unique monic polynomial m(x) in Z of smallest degree. In
particular, since p;(x) € (m(z)), we have m(z) | p;(xz) for each i =1,... ,n.
In other words, m(x) is a common divisor of the p;(z)'s.

Moreover, if g(x) | p;(x) for all 4, then p;(z) € (g(x)) for all 7, which implies
that

m(z) € (m(z)) = (p1(2), ., pa(@)) € (q(2))

and so q(z) | m(x). This shows that m(z) is the greatest common divisor of the
pi(x)'s and completes the proof.
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Example 0.16 The ring R = F[x, y] of polynomials in two variables = and y is
not a principal ideal domain. To see this, observe that the set Z of all
polynomials with zero constant term is an ideal in R. Now, suppose that Z is the
principal ideal Z = (p(x,y)). Since =,y € Z, there exist polynomials a(zx,y)
and b(z, y) for which

r = a(x,y)p(x,y) and y = b(x,y)p(x,y) (0.1)

But p(z,y) cannot be a constant, for then we would have Z = R. Hence,
deg(p(z,y)) > 1 and so a(z,y) and b(z,y) must both be constants, which
implies that (0.1) cannot hold.[J

Theorem 0.27 Any principal ideal domain R satisfies the ascending chain
condition, that is, R cannot have a strictly increasing sequence of ideals

I, CIy C -

where each ideal is properly contained in the next one.
Proof. Suppose to the contrary that there is such an increasing sequence of
ideals. Consider the ideal

U=z

which must have the form U = (a) for some a € U. Since a € Z;; for some k,
we have 7j, = Z; for all j > k, contradicting the fact that the inclusions are
proper.[]

Prime and Irreducible Elements

We can define the notion of a prime element in any integral domain. For
r,s € R, we say that r divides s (written r | s) if there exists an x € R for
which s = zr.

Definition Let R be an integral domain.

1) An invertible element of R is called a unit. Thus, v € R is a unit if uv =1
for some v € R.

2) Two elements a,b € R are said to be associates if there exists a unit u for
which a = ub. We denote this by writing a ~ b.

3) A nonzero nonunit p € R is said to be prime if

plab=plaorp|b
4) A nonzero nonunit r € R is said to be irreducible if
r=ab = aorb is a unit O

Note that if p is prime or irreducible, then so is up for any unit u.

The property of being associate is clearly an equivalence relation.
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Definition We will refer to the equivalence classes under the relation of being
associate as the associate classes of R.[J

Theorem 0.28 Let R be a ring.

1) Anelement u € R is a unit if and only if (u) = R.

2) r~ sifandonlyif (ry = (s).

3) rdivides s if and only if (s) C (r).

4) r properly divides s, that is, s = xr where x is not a unit, if and only if

(s) C (r).0d

In the case of the integers, an integer is prime if and only if it is irreducible. In
any integral domain, prime elements are irreducible, but the converse need not
hold. (In the ring Z[\/—5] = {a + b\/—=5 | a,b € Z} the irreducible element 2
divides the product (14 +/—=5)(1—+/=5) =6 but does not divide either
factor.)

However, in principal ideal domains, the two concepts are equivalent.

Theorem 0.29 Let R be a principal ideal domain.

1) Anr € Ris irreducible if and only if the ideal (r) is maximal.

2) An element in R is prime if and only if it is irreducible.

3) The elements a,b € R are relatively prime, that is, have no common
nonunit factors, if and only if there exist v, s € R for which

ra+sb=1

This is denoted by writing (a,b) = 1.

Proof. To prove 1), suppose that r is irreducible and that (r) C (a) C R. Then
r € (a) and so r = za for some x € R. The irreducibility of  implies that a or
x is a unit. If a is a unit, then (@) = R and if x is a unit, then (a) = (xa) = (r).
This shows that (r) is maximal. (We have (r) # R, since r is not a unit.)
Conversely, suppose that 7 is not irreducible, that is, 7 = ab where neither a nor
b is a unit. Then (r) C (a) C R. Butif (a) = (r), then r ~ a, which implies that
b is a unit. Hence (r) # (a). Also, if (a) = R, then a must be a unit. So we
conclude that (r) is not maximal, as desired.

To prove 2), assume first that p is prime and p = ab. Then p | a or p | b. We
may assume that p | a. Therefore, a = xp = xab. Canceling a's gives 1 = xb
and so b is a unit. Hence, p is irreducible. (Note that this argument applies in
any integral domain.)

Conversely, suppose that r is irreducible and let r | ab. We wish to prove that
r | a or r | b. The ideal (r) is maximal and so (r,a) = (r) or (r,a) = R. In the
former case, r | a and we are done. In the latter case, we have

1l=xa+yr
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for some z,y € R. Thus,
b= xab+ yrb

and since r divides both terms on the right, we have r | b.

To prove 3), it is clear that if ra + sb = 1, then @ and b are relatively prime. For
the converse, consider the ideal (a,b), which must be principal, say
(a,b) = (x). Then = | @ and = | b and so = must be a unit, which implies that
(a,b) = R. Hence, there exist r, s € R for which ra + sb = 1.00

Unique Factorization Domains

Definition An integral domain R is said to be a unique factorization domain

if it has the following factorization properties:

1) Every nonzero nonunit element r € R can be written as a product of a finite
number of irreducible elements r = p;- - -py,.

2) The factorization into irreducible elements is unique in the sense that if
r=mpi--pp, and v = q1---qy, are two such factorizations, then m = n and
after a suitable reindexing of the factors, p; ~ ¢;.11

Unique factorization is clearly a desirable property. Fortunately, principal ideal
domains have this property.

Theorem 0.30 Every principal ideal domain R is a unique factorization
domain.

Proof. Let r € R be a nonzero nonunit. If r is irreducible, then we are done. If
not, then » = ryry, where neither factor is a unit. If ; and r, are irreducible, we
are done. If not, suppose that r, is not irreducible. Then ry = r3ry, where
neither r3 nor r4 is a unit. Continuing in this way, we obtain a factorization of
the form (after renumbering if necessary)

r=riry = r1(r3ry) = (r173)(rsre) = (rir3rs)(rers) = -+

Each step is a factorization of r into a product of nonunits. However, this
process must stop after a finite number of steps, for otherwise it will produce an
infinite sequence sy, Sz, ... of nonunits of R for which s;;; properly divides s;.
But this gives the ascending chain of ideals

(s1) C (s9) C (s3) C (s4) C -

where the inclusions are proper. But this contradicts the fact that a principal
ideal domain satisfies the ascending chain condition. Thus, we conclude that
every nonzero nonunit has a factorization into irreducible elements.

As to uniqueness, if r = p;---p, and r = q;---q,, are two such factorizations,
then because R is an integral domain, we may equate them and cancel like
factors, so let us assume this has been done. Thus, p; # ¢; for all 4, j. If there are
no factors on either side, we are done. If exactly one side has no factors left,
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then we have expressed 1 as a product of irreducible elements, which is not
possible since irreducible elements are nonunits.

Suppose that both sides have factors left, that is,
P1Pn =41 qm

where p; # ¢;. Then ¢y, | p1---p,, which implies that g, | p; for some 7. We can
assume by reindexing if necessary that p, = a,q,,. Since p, is irreducible a,
must be a unit. Replacing p,, by a,q,, and canceling g,, gives

AnP1Pn—1 = 41" "dm—1

This process can be repeated until we run out of ¢'s or p's. If we run out of ¢'s
first, then we have an equation of the form up;---p, = 1 where w is a unit,
which is not possible since the p;'s are not units. By the same reasoning, we
cannot run out of ¢'s first and so n = m and the p's and ¢'s can be paired off as
associates.[]

Fields

For the record, let us give the definition of a field (a concept that we have been
using).

Definition A field is a set F', containing at least two elements, together with two

binary operations, called addition (denoted by +) and multiplication

(denoted by juxtaposition), for which the following hold.:

1) Fis an abelian group under addition.

2) The set F* of all nonzero elements in F is an abelian group under
multiplication.

3) (Distributivity) Forall a,b,c € F,

(a4 b)c =ac+bcandcla+b) =ca+cb |

We require that F' have at least two elements to avoid the pathological case in
which 0 = 1.

Example 0.17 The sets Q, R and C, of all rational, real and complex numbers,
respectively, are fields, under the usual operations of addition and multiplication
of numbers.[]

Example 0.18 The ring Z, is a field if and only if n is a prime number. We
have already seen that Z,, is not a field if n is not prime, since a field is also an
integral domain. Now suppose that n = p is a prime.

We have seen that Z,, is an integral domain and so it remains to show that every
nonzero element in Z, has a multiplicative inverse. Let 0 # a € Z,. Since
a < p, we know that a and p are relatively prime. It follows that there exist
integers u and v for which
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ua +vp =1
Hence,
ua = (1 —vp) = 1mod p

and so v ® a = 1 in Z,, that is, u is the multiplicative inverse of a.[J

The previous example shows that not all fields are infinite sets. In fact, finite
fields play an extremely important role in many areas of abstract and applied
mathematics.

A field F is said to be algebraically closed if every nonconstant polynomial
over F' has a root in F'. This is equivalent to saying that every nonconstant
polynomial splits over F. For example, the complex field C is algebraically
closed but the real field R is not. We mention without proof that every field F' is
contained in an algebraically closed field F', called the algebraic closure of F.
For example, the algebraic closure of the real field is the complex field.

The Characteristic of a Ring

Let R be a ring with identity. If n is a positive integer, then by n - r, we simply
mean

n-r=r e
+ -+
n terms
Now, it may happen that there is a positive integer n for which
n-1=0

For instance, in Z,, we have n-1=mn = 0. On the other hand, in Z, the
equation n - 1 = 0 implies n = 0 and so no such positive integer exists.

Notice that in any finite ring, there must exist such a positive integer n, since the
members of the infinite sequence of numbers

1-1,2-1,3-1,...
cannot be distinct and so i -1 = j- 1 for some i < j, whence (j —14) -1 = 0.
Definition Let R be a ring with identity. The smallest positive integer c for

which ¢ - 1 = 0 is called the characteristic of R. If no such number c exists, we
say that R has characteristic 0. The characteristic of R is denoted by

char(R).O0
If char(R) = ¢, then for any r € R, we have

cor=r4+--4+r =(1+--+1)r=0-r=0
¢ terms ¢ terms
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Theorem 0.31 Any finite ring has nonzero characteristic. Any finite integral
domain has prime characteristic.

Proof. We have already seen that a finite ring has nonzero characteristic. Let F’
be a finite integral domain and suppose that char(F') = ¢ > 0. If ¢ = pq, where
p,q < ¢, then pg-1=0. Hence, (p-1)(¢-1) =0, implying that p-1 =0 or
q - 1 = 0. In either case, we have a contradiction to the fact that ¢ is the smallest
positive integer such that ¢ - 1 = 0. Hence, ¢ must be prime.[J

Notice that in any field F' of characteristic 2, we have 2a = 0 for all a € F.
Thus, in F',

a= —aforalla €

This property takes a bit of getting used to and makes fields of characteristic 2
quite exceptional. (As it happens, there are many important uses for fields of
characteristic 2.) It can be shown that all finite fields have size equal to a
positive integral power p" of a prime p and for each prime power p", there is a
finite field of size p”. In fact, up to isomorphism, there is exactly one finite field
of size p".

Algebras

The final algebraic structure of which we will have use is a combination of a
vector space and a ring. (We have not yet officially defined vector spaces, but
we will do so before needing the following definition, which is placed here for
easy reference.)

Definition An algebra A over a field F' is a nonempty set A, together with
three operations, called addition (denoted by + ), multiplication (denoted by
Juxtaposition) and scalar multiplication (also denoted by juxtaposition), for
which the following properties hold:

1) Ais a vector space over F under addition and scalar multiplication.

2) Ais aring under addition and multiplication.

3) Ifr € Fanda,b € A, then

r(ab) = (ra)b = a(rb) O
Thus, an algebra is a vector space in which we can take the product of vectors,

or a ring in which we can multiply each element by a scalar (subject, of course,
to additional requirements as given in the definition).
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Chapter 1
Vector Spaces

Vector Spaces

Let us begin with the definition of one of our principal objects of study.

Definition Let F be a field, whose elements are referred to as scalars. A vector
space over I is a nonempty set V, whose elements are referred to as vectors,
together with two operations. The first operation, called addition and denoted
by +, assigns to each pair (u,v) of vectors in V a vector w+ v in V. The
second operation, called scalar multiplication and denoted by juxtaposition,
assigns to each pair (r,u) € F xV a vector ru in V. Furthermore, the
following properties must be satisfied:

1) (Associativity of addition) For all vectors u,v,w € V,

ut (v+w)=(u+v)+w
2) (Commutativity of addition) For all vectors u,v € V,
Uut+tv=v+u
3) (Existence of a zero) There is a vector 0 € V' with the property that
O+u=u+0=u

for all vectors u € V.
4) (Existence of additive inverses) For each vector w € V, there is a vector
in 'V, denoted by —u, with the property that

u+ (—u)=(-u)+u=0
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5) (Properties of scalar multiplication) For all scalars a,b € F and for all
vectors u,v € V,

alu+v) = au+ av |
(a+b)u = au+ bu
(ab)u = a(bu)

lu=u

Note that the first four properties in the definition of vector space can be
summarized by saying that V' is an abelian group under addition.

A vector space over a field F' is sometimes called an F'-space. A vector space
over the real field is called a real vector space and a vector space over the
complex field is called a complex vector space.

Definition Let S be a nonempty subset of a vector space V. A linear
combination of vectors in S is an expression of the form

a1v; + -+ + a,vy,
where vy,...,v, €S and ay,...,a, € F. The scalars a; are called the

coefficients of the linear combination. A linear combination is trivial if every
coefficient a; is zero. Otherwise, it is nontrivial.[]

Examples of Vector Spaces

Here are a few examples of vector spaces.

Example 1.1

1) Let F be a field. The set ¥ of all functions from F' to I is a vector space
over F', under the operations of ordinary addition and scalar multiplication
of functions:

(f+9)(z) = f(z) + g(z)
and
(af)(z) = a(f(x))

2) The set M,, ,(F) of all m x n matrices with entries in a field F is a vector
space over F, under the operations of matrix addition and scalar
multiplication.

3) The set F" of all ordered n-tuples whose components lie in a field F', is a
vector space over F', with addition and scalar multiplication defined
componentwise:

(ah... ,an)—l—(bh... ,bn) = (a1+b1,... 7G,n—f—bn)

and



Vector Spaces 37

clag,... ,a,) = (cay,... ,cay)

When convenient, we will also write the elements of F" in column form.
When F is a finite field F;, with q elements, we write V' (n, q) for F}".

4) Many sequence spaces are vector spaces. The set Seq(F') of all infinite
sequences with members from a field F' is a vector space under the
componentwise operations

(Sn) + (tn) = (Sn + tn)
and
a(s,) = (asy)

In a similar way, the set ¢y of all sequences of complex numbers that
converge to 0 is a vector space, as is the set £*° of all bounded complex
sequences. Also, if p is a positive integer, then the set /7 of all complex
sequences (s,,) for which

o0

Z [s0]7 < 00

n=1

is a vector space under componentwise operations. To see that addition is a
binary operation on ¢7, one verifies Minkowski's inequality

s 1/p o 1/p o 1/p
<Z|sn+tn|”> §<Z|sn|p> +<Ztn|p>

n=1 n=1 n=1
which we will not do here.[J

Subspaces

Most algebraic structures contain substructures, and vector spaces are no
exception.

Definition 4 subspace of a vector space V' is a subset S of V that is a vector
space in its own right under the operations obtained by restricting the
operations of V to S. We use the notation S <V to indicate that S is a
subspace of V and S <V to indicate that S is a proper subspace of 'V, that is,
S <V but S # V. The zero subspace of V is {0}.00

Since many of the properties of addition and scalar multiplication hold a fortiori
in a nonempty subset S, we can establish that S is a subspace merely by
checking that S is closed under the operations of V.

Theorem 1.1 A4 nonempty subset S of a vector space V' is a subspace of V' if
and only if S is closed under addition and scalar multiplication or, equivalently,
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S is closed under linear combinations, that is,
a,be F,u,ve S =au+bvesS O

Example 1.2 Consider the vector space V' (n,2) of all binary n-tuples, that is,
n-tuples of 0's and 1's. The weight WW(v) of a vector v € V (n, 2) is the number
of nonzero coordinates in v. For instance, W(101010) = 3. Let E,, be the set of
all vectors in V' of even weight. Then E,, is a subspace of V'(n, 2).

To see this, note that
W(u+v) = W(u) + W(v) —2W(uNo)

where u N v is the vector in V' (n, 2) whose ith component is the product of the
1th components of u and v, that is,

(uno); =u; - v

Hence, if W(u) and W(v) are both even, so is W(u + v). Finally, scalar
multiplication over F; is trivial and so E,, is a subspace of V' (n,2), known as
the even weight subspace of V(n,2).0

Example 1.3 Any subspace of the vector space V (n, q) is called a linear code.
Linear codes are among the most important and most studied types of codes,
because their structure allows for efficient encoding and decoding of
information.]

The Lattice of Subspaces

The set S(V') of all subspaces of a vector space V is partially ordered by set
inclusion. The zero subspace {0} is the smallest element in S(V') and the entire
space V' is the largest element.

If S,T € S(V), then SNT is the largest subspace of V' that is contained in
both S and T'. In terms of set inclusion, S N T is the greatest lower bound of S
and T

SNT = glb{S, T}

Similarly, if {S; |7 € K} is any collection of subspaces of V, then their
intersection is the greatest lower bound of the subspaces:

(S: = glb{S; | i € K}

€K

On the other hand, if S,T € S(V) (and F is infinite), then SUT € S(V) if
and only if S CT or T C S. Thus, the union of two subspaces is never a
subspace in any “interesting” case. We also have the following.
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Theorem 1.2 A nontrivial vector space V' over an infinite field F' is not the
union of a finite number of proper subspaces.
Proof. Suppose that V' = S; U --- U 5),, where we may assume that

S1Z SyU---US,
Letw e S\ (SqU---US,) and let v ¢ Si. Consider the infinite set
A={rw+v|reF}

which is the “line” through v, parallel to w. We want to show that each S,
contains at most one vector from the infinite set A, which is contrary to the fact
that V' =57 U--- U S,,. This will prove the theorem.

If rw+ v € Sy for r #£ 0, then w € S; implies v € Sy, contrary to assumption.
Next, suppose that riw +v € S; and row + v € S, for i > 2, where ry # 9.
Then

S; 3 (rmw+v) — (row+v) = (r; — ro)w
and so w € S;, which is also contrary to assumption.[]
To determine the smallest subspace of V' containing the subspaces S and 7', we
make the following definition.

Definition Let S and T be subspaces of V. The sum S + T is defined by
S+T={ut+v|ueS,veT}

More generally, the sum of any collection {S; | i € K} of subspaces is the set
of all finite sums of vectors from the union | JS;:

ZSi:{sl—k---—i—sn‘sjEUSi} O

€K €K

It is not hard to show that the sum of any collection of subspaces of V' is a
subspace of V" and that the sum is the least upper bound under set inclusion:

S+ T =1ub{S, T}
More generally,
> S =lub{S; | i€ K}
ieK

If a partially ordered set P has the property that every pair of elements has a
least upper bound and greatest lower bound, then P is called a lattice. If P has
a smallest element and a largest element and has the property that every
collection of elements has a least upper bound and greatest lower bound, then P
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is called a complete lattice. The least upper bound of a collection is also called
the join of the collection and the greatest lower bound is called the meet.

Theorem 1.3 The set S(V') of all subspaces of a vector space V' is a complete
lattice under set inclusion, with smallest element {0}, largest element V', meet

ghb{S; |[ie K} =[S

ieK
and join
lub{S; i€ K} =S, O
ieK
Direct Sums

As we will see, there are many ways to construct new vector spaces from old
ones.

External Direct Sums

Definition Let V1, ..., V, be vector spaces over a field F'. The external direct
sum of Vi, ..., V,, denoted by

V=V8 -8V,

is the vector space V' whose elements are ordered n-tuples:
V=A(v,...,v) |v; €Vji=1,... ,n}
with componentwise operations
(Upy oo yupn) 4 (V1,0 0n) = (U V1,000 Uy + 0p)
and
r(v1, ... ,0) = (rog, ... ,T0,)

forallr € F.OI
Example 1.4 The vector space F™ is the external direct sum of n copies of F,
that is,

F'"=F@®.--BF
where there are n summands on the right-hand side.[]
This construction can be generalized to any collection of vector spaces by
generalizing the idea that an ordered n-tuple (vi,...,v,) is just a function

f:{1,... ,n} = JV; from the index set {1,...,n} to the union of the spaces
with the property that f (i) € V;.
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Definition Let F = {V; | i € K} be any family of vector spaces over F. The
direct product of F is the vector space

Hviz{f:KaUvi

ieK ieK

f(i)ew}

thought of as a subspace of the vector space of all functions from K to | JV;.OI

It will prove more useful to restrict the set of functions to those with finite
support.

Definition Let F = {V;|i € K} be a family of vector spaces over F. The
support of a function f: K — |JV; is the set
supp(f) = {i € K'| f(i) # 0}

Thus, a function f has finite support if f (i) = 0 for all but a finite number of
i € K. The external direct sum of the family F is the vector space

ext‘/i: {fK—)U‘/;
€K

€K

f(@) € V,, f has finite support}

thought of as a subspace of the vector space of all functions from K to | JV;.00

An important special case occurs when V; =V for all i € K. If we let VE
denote the set of all functions from K to V and (VX), denote the set of all
functions in VX that have finite support, then

[TV =v" and @™V = (vE)
€K ieK

Note that the direct product and the external direct sum are the same for a finite
family of vector spaces.

Internal Direct Sums

An internal version of the direct sum construction is often more relevant.

Definition A4 vector space V is the (internal) direct sum of a family
F ={S; | i€ I} of subspaces of V, written

V=F o V=S

el

if the following hold:
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1) (Join of the family) V' is the sum (join) of the family F:
V=>S
iel

2) (Independence of the family) For each i € I,

Sin | S| = {0}

i

In this case, each S; is called a direct summand of V. If F = {Sy,...,S,}isa
finite family, the direct sum is often written

V=5Sa& &S,
Finally, if V.= S & T, then T is called a complement of S in V.0

Note that the condition in part 2) of the previous definition is stronger than
saying simply that the members of F are pairwise disjoint:

SinsS;=10
foralli # je I.

A word of caution is in order here: If S and T are subspaces of V', then we may
always say that the sum S + T exists. However, to say that the direct sum of .S
and 7T exists or to write S @ 7T is to imply that S N7 = {0}. Thus, while the
sum of two subspaces always exists, the direct sum of two subspaces does not
always exist. Similar statements apply to families of subspaces of V.

The reader will be asked in a later chapter to show that the concepts of internal
and external direct sum are essentially equivalent (isomorphic). For this reason,
the term “direct sum” is often used without qualification.

Once we have discussed the concept of a basis, the following theorem can be
easily proved.

Theorem 1.4 Any subspace of a vector space has a complement, that is, if S is a
subspace of V', then there exists a subspace T for which V =S & T.00

It should be emphasized that a subspace generally has many complements
(although they are isomorphic). The reader can easily find examples of this in
R2.

We can characterize the uniqueness part of the definition of direct sum in other
useful ways. First a remark. If S and 7" are distinct subspaces of V' and if
x,y € S NT,then the sum x + y can be thought of as a sum of vectors from the
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same subspace (say S) or from different subspaces—one from S and one from
T. When we say that a vector v cannot be written as a sum of vectors from the
distinct subspaces S and 7', we mean that v cannot be written as a sum = + y
where x and y can be interpreted as coming from different subspaces, even if
they can also be interpreted as coming from the same subspace. Thus, if
x,y € SNT, then v = x + y does express v as a sum of vectors from distinct
subspaces.

Theorem 1.5 Let F = {S; | i € I} be a family of distinct subspaces of V. The
following are equivalent:
1) (Independence of the family) For each i € I,

Sin | 8| =10}

J#i

2) (Uniqueness of expression for 0) The zero vector O cannot be written as a
sum of nonzero vectors from distinct subspaces of F.

3) (Uniqueness of expression) Every nonzero v € V has a unique, except for
order of terms, expression as a sum

v=5+--+5,

of nonzero vectors from distinct subspaces in F.

Hence, a sum
V=>S

iel

is direct if and only if any one of 1)-3) holds.
Proof. Suppose that 2) fails, that is,

0=sj+-+s
where the nonzero s,'s are from distinct subspaces Sj,. Then n > 1 and so
—Si =Sjp t o+,
which violates 1). Hence, 1) implies 2). If 2) holds and
v=8+--+s, and v=1t1+ -+t

where the terms are nonzero and the s;'s belong to distinct subspaces in F and
similarily for the ¢;'s, then

0281+"'+871—t1—"'—tm
By collecting terms from the same subspaces, we may write

0= (5171 _ti1)+"'+(5ik_tik>+8ik+1+"'+8in_tik+1 -

m



44 Advanced Linear Algebra

Then 2) implies that n = m =k and s;, = ¢;, for all u=1,..., k. Hence, 2)
implies 3).

Finally, suppose that 3) holds. If

0£veSin(>.S
i
then v = s; € S; and
$i = Sj 0+ 8,

where s;, € S, are nonzero. But this violates 3).C1
Example 1.5 Any matrix A € M,, can be written in the form

1 1
A:§(A+At)+§(A—At):B+C (1.1)
where A' is the transpose of A. It is easy to verify that B is symmetric and C is
skew-symmetric and so (1.1) is a decomposition of A as the sum of a symmetric
matrix and a skew-symmetric matrix.

Since the sets Sym and SkewSym of all symmetric and skew-symmetric
matrices in M,, are subspaces of M,,, we have
M,, = Sym + SkewSym

Furthermore, if S + T = S’ + 1", where S and S’ are symmetric and 7" and T”
are skew-symmetric, then the matrix

U=S-8=T-T

is both symmetric and skew-symmetric. Hence, provided that char(F') # 2, we
must have U = 0andso S =S and T = T". Thus,

M,, = Sym & SkewSym O

Spanning Sets and Linear Independence

A set of vectors spans a vector space if every vector can be written as a linear
combination of some of the vectors in that set. Here is the formal definition.
Definition 77e subspace spanned (or subspace generated) by a nonempty set

S of vectors in'V is the set of all linear combinations of vectors from S:

(S)y =span(S) = {rvy + -+ rpv, | 7 € Fyu; € S}
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When S = {v1,...,v,} is a finite set, we use the notation (vi,...,v,) or
span(vy, ..., v,). 4 set S of vectors in 'V is said to span V, or generate V, if
V = span(S).O

It is clear that any superset of a spanning set is also a spanning set. Note also
that all vector spaces have spanning sets, since V' spans itself.

Linear Independence

Linear independence is a fundamental concept.

Definition Let V' be a vector space. A nonempty set S of vectors in V is
linearly independent if for any distinct vectors sy, ..., s, in S,

ars1+--+aps, =0 = a; =0 foralli

In words, S is linearly independent if the only linear combination of vectors
from S that is equal to 0 is the trivial linear combination, all of whose
coefficients are 0. If S is not linearly independent, it is said to be linearly
dependent.[]

It is immediate that a linearly independent set of vectors cannot contain the zero
vector, since then 1 - 0 = 0 violates the condition of linear independence.

Another way to phrase the definition of linear independence is to say that S' is
linearly independent if the zero vector has an “as unique as possible” expression
as a linear combination of vectors from S. We can never prevent the zero vector
from being written in the form 0 = 0s; + -+ + Os,,, but we can prevent 0 from
being written in any other way as a linear combination of the vectors in S

For the introspective reader, the expression 0= s; + (— 1s;) has two
interpretations. One is 0 = as; + bs; where a = 1 and b = —1, but this does
not involve distinct vectors so is not relevant to the question of linear
independence. The other interpretation is 0 = sy +¢; where ¢, = —s1 # 51
(assuming that s; # 0). Thus, if S is linearly independent, then S cannot
contain both s; and —s;.

Definition Let S be a nonempty set of vectors in V. To say that a nonzero
vector v € V is an essentially unique linear combination of the vectors in S is
to say that, up to order of terms, there is one and only one way to express v as a
linear combination

V=a181 + -+ apsp

where the s;'s are distinct vectors in S and the coefficients a; are nonzero. More
explicitly, v # 0 is an essentially unique linear combination of the vectors in S
ifv € (S) and if whenever
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v=a181 + -+ a,s, and v="bit;+ -+ buty

where the s;'s are distinct, the t;'s are distinct and all coefficients are nonzero,
then m = n and after a reindexing of the b;t;'s if necessary, we have a; = b; and
s; =1t; for all 1v=1,...,n. (Note that this is stronger than saying that
a;S; = biti.)D

We may characterize linear independence as follows.

Theorem 1.6 Let S # {0} be a nonempty set of vectors in V. The following are

equivalent:

1) S is linearly independent.

2) Every nonzero vector v € span(S) is an essentially unique linear
combination of the vectors in S.

3) No vectorin S is a linear combination of other vectors in S.

Proof. Suppose that 1) holds and that

0Fv=a1s1 4+ +apsy =bit1 + - + bty

where the s;'s are distinct, the ¢;'s are distinct and the coefficients are nonzero.
By subtracting and grouping s's and t's that are equal, we can write

0= (ai, = bi,)si, + -+ (ai, — bi,)si,
T Qi Sigyy T 000 Q4,85
P,

Ue+1 7 Ue+1 tm Ylm

and so 1) implies thatn =m =k anda;, = b;, and s;, =¢; foralli=1,... k.
Thus, 1) implies 2).
If 2) holds and s € S can be written as

S=a181 + -+ ays,

where s; € S are different from s, then we may collect like terms on the right
and then remove all terms with O coefficient. The resulting expression violates
2). Hence, 2) implies 3). If 3) holds and

181+ -+ apSp = 0

where the s;'s are distinct and a; # 0, then n > 1 and we may write

1
s1=——/(azs9 + -+ + ansn)
a

which violates 3).[0

The following key theorem relates the notions of spanning set and linear
independence.
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Theorem 1.7 Let S be a set of vectors in V. The following are equivalent:

1) S is linearly independent and spans V.

2) Every nonzero vector v € V' is an essentially unique linear combination of
vectors in S.

3) S is a minimal spanning set, that is, S spans V' but any proper subset of S
does not span'V'.

4) S is a maximal linearly independent set, that is, S is linearly independent,
but any proper superset of S is not linearly independent.

A set of vectors in 'V that satisfies any (and hence all) of these conditions is

called a basis for V.

Proof. We have seen that 1) and 2) are equivalent. Now suppose 1) holds. Then

S is a spanning set. If some proper subset S’ of S also spanned V, then any

vector in S — 5’ would be a linear combination of the vectors in S’,

contradicting the fact that the vectors in S are linearly independent. Hence 1)

implies 3).

Conversely, if S is a minimal spanning set, then it must be linearly independent.
For if not, some vector s € S would be a linear combination of the other vectors
in S and so S — {s} would be a proper spanning subset of S, which is not
possible. Hence 3) implies 1).

Suppose again that 1) holds. If S were not maximal, there would be a vector
v €V — S for which the set S U {v} is linearly independent. But then v is not
in the span of S, contradicting the fact that S is a spanning set. Hence, S is a
maximal linearly independent set and so 1) implies 4).

Conversely, if S is a maximal linearly independent set, then S must span V, for
if not, we could find a vector v € V' — S that is not a linear combination of the
vectors in S. Hence, S U {v} would be a linearly independent proper superset of
S, which is a contradiction. Thus, 4) implies 1).01

Theorem 1.8 4 finite set S = {v1,...,v,} of vectors in V is a basis for V if
and only if

V={_v)® @ (vy) O

Example 1.6 The ith standard vector in F" is the vector e; that has 0's in all
coordinate positions except the ith, where it has a 1. Thus,

er=(1,0,...,0), e =(0,1,...,0) ,..., e,=1(0,...,0,1)

The set {ey, ..., e,} is called the standard basis for F".[0

The proof that every nontrivial vector space has a basis is a classic example of
the use of Zorn's lemma.
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Theorem 1.9 Let V' be a nonzero vector space. Let I be a linearly independent
set in'V and let S be a spanning set in' V' containing I. Then there is a basis B
for'V for which I C B C S. In particular,

1) Any vector space, except the zero space {0}, has a basis.

2) Any linearly independent set in V is contained in a basis.

3) Any spanning set in V contains a basis.

Proof. Consider the collection A of all linearly independent subsets of V'
containing / and contained in S. This collection is not empty, since I € A.
Now, if

C={I|keK}

is a chain in A, then the union

U=Jr5

keK

is linearly independent and satisfies I C U C S, that is, U € A. Hence, every
chain in A has an upper bound in A and according to Zorn's lemma, A must
contain a maximal element B, which is linearly independent.

Now, B is a basis for the vector space (S) =V, for if any s € S is not a linear
combination of the elements of B, then BU {s} C S is linearly independent,
contradicting the maximality of B. Hence S C (B) and so V' = (S) C (5).00

The reader can now show, using Theorem 1.9, that any subspace of a vector
space has a complement.

The Dimension of a Vector Space

The next result, with its classical elegant proof, says that if a vector space V' has
a finite spanning set .S, then the size of any linearly independent set cannot
exceed the size of S.

Theorem 1.10 Let V' be a vector space and assume that the vectors vy, ..., v,
are linearly independent and the vectors s, ..., Sy, span V. Then n < m.
Proof. First, we list the two sets of vectors: the spanning set followed by the
linearly independent set:

SlyeeeySmyUlyevy, Uy

Then we move the first vector v; to the front of the first list:
U1y 81y -3 Sm3 V2, ..., Un
Since s1, ..., S, span V, vy is a linear combination of the s;'s. This implies that

we may remove one of the s;'s, which by reindexing if necessary can be s,
from the first list and still have a spanning set

V1,82 0.y Sm;V2,y...,Up
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Note that the first set of vectors still spans V' and the second set is still linearly
independent.

Now we repeat the process, moving vs from the second list to the first list

V1,0V2,82,.++,8m;V3,...,Upn

As before, the vectors in the first list are linearly dependent, since they spanned
V' before the inclusion of vs. However, since the v;'s are linearly independent,
any nontrivial linear combination of the vectors in the first list that equals 0O
must involve at least one of the s;'s. Hence, we may remove that vector, which
again by reindexing if necessary may be taken to be s, and still have a spanning
set

V1,V2,83, .+ ,8m;V3,...,Un

Once again, the first set of vectors spans V' and the second set is still linearly
independent.

Now, if m < n, then this process will eventually exhaust the s;'s and lead to the
list

V1,02, -y Ums Umt1, - -+, Un
where vy, v, ..., v, span V, which is clearly not possible since v,, is not in the
span of vy, vs, ..., vy. Hence, n < m.O

Corollary 1.11 If'V has a finite spanning set, then any two bases of V have the
same size.[]

Now let us prove the analogue of Corollary 1.11 for arbitrary vector spaces.

Theorem 1.12 If'V is a vector space, then any two bases for V have the same
cardinality.

Proof. We may assume that all bases for V' are infinite sets, for if any basis is
finite, then V' has a finite spanning set and so Corollary 1.11 applies.

Let B ={b; | i € I} be a basis for V and let C be another basis for V. Then any
vector ¢ € C can be written as a finite linear combination of the vectors in 3,
where all of the coefficients are nonzero, say

Cc = erbj

icU,

But because C is a basis, we must have

Ju.=1

ceC
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for if the vectors in C can be expressed as finite linear combinations of the
vectors in a proper subset B’ of B, then B spans V', which is not the case.
Since |U.| < N for all ¢ € C, Theorem 0.17 implies that

|B] = 1] < Ro[C| = [C]|
But we may also reverse the roles of 5 and C, to conclude that |C| < |B| and so
the Schréder-Bernstein theorem implies that |5 = |C|.0

Theorem 1.12 allows us to make the following definition.

Definition A vector space V is finite-dimensional if it is the zero space {0}, or
if it has a finite basis. All other vector spaces are infinite-dimensional. The
dimension of the zero space is 0 and the dimension of any nonzero vector
space V' is the cardinality of any basis for V. If a vector space V' has a basis of
cardinality k, we say that V is k-dimensional and write dim(V') = .0

It is easy to see that if S is a subspace of V, then dim(S) < dim(V'). If in
addition, dim(S) = dim(V') < oo, then S = V.

Theorem 1.13 Let V' be a vector space.
1) IfBis abasis for V and if B = By U By and By N By = 0, then
V = (B1) @ (By)

2) Let V=S&T. If By is a basis for S and By is a basis for T, then

BiNBy=0and B =By U DBy is a basis for V.OO
Theorem 1.14 Let S and T be subspaces of a vector space V. Then

dim(S) + dim(7T") = dim(S + T') + dim(SNT)
In particular, if T is any complement of S in'V, then
dim(S) + dim(7T") = dim(V)
that is,
dim(S & T) = dim(S) + dim(7T")

Proof. Suppose that B = {b; | i € I} is a basis for S N T. Extend this to a basis
AU B for S where A= {a;|je€ J} is disjoint from B. Also, extend B to a
basis BUC for T where C = {¢;, | k € K} is disjoint from B. We claim that
AUBUC isabasis for S + T.Itis clear that (AUBUC) = S+ T.

To see that A U B U C is linearly independent, suppose to the contrary that
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vy + -+ o, =0

where v; € AUBUC and «; # 0 for all 4. There must be vectors v; in this
expression from both A and C, since .A U B and B U C are linearly independent.
Isolating the terms involving the vectors from 4 on one side of the equality
shows that there is a nonzero vector in « € (A) N (BUC). Butthenz € SNT
and so = € (A) N (B), which implies that © =0, a contradiction. Hence,
A U B UC is linearly independent and a basis for S + 7.

Now,
dim(S) + dim(T) = AU B| + |[BUC(]|
= [A| + |B| + |B] + [C|
= |A|+ |B| +|C| + dim(SNT)
=dim(S +7T) + dim(SNT)
as desired.[]

It is worth emphasizing that while the equation

dim(S) 4+ dim(T") = dim(S + T) + dim(S N7T)
holds for all vector spaces, we cannot write

dim(S 4+ T') = dim(S) + dim(7") — dim(S N 7T
unless S + 7' is finite-dimensional.
Ordered Bases and Coordinate Matrices

It will be convenient to consider bases that have an order imposed on their
members.

Definition Let V' be a vector space of dimension n. An ordered basis for V is
an ordered n-tuple (v1,...,v,) of vectors for which the set {vi,...,v,} is a
basis for V.OO

If B=(vy,...,v,) is an ordered basis for V, then for each v € V there is a
unique ordered n-tuple (rq,...,r,) of scalars for which

v=rvy+ -+,

Accordingly, we can define the coordinate map ¢5: V' — F" by

¢p(v) = [vlp = | : (1.3)
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where the column matrix [v]g is known as the coordinate matrix of v with
respect to the ordered basis B. Clearly, knowing [v]z is equivalent to knowing v
(assuming knowledge of B).

Furthermore, it is easy to see that the coordinate map ¢z is bijective and
preserves the vector space operations, that is,

¢B(T1U1 + -+ Tnvn) = rl(bB(vl) +- rnd)B(vn)
or equivalently
[7"1111 + o+ Tnvn}B =T [UI]B + oty [IUH}B

Functions from one vector space to another that preserve the vector space
operations are called linear transformations and form the objects of study in the
next chapter.

The Row and Column Spaces of a Matrix

Let A be an m x n matrix over F'. The rows of A span a subspace of F""" known
as the row space of A and the columns of A span a subspace of F"" known as
the column space of A. The dimensions of these spaces are called the row rank
and column rank, respectively. We denote the row space and row rank by
rs(A) and rrk(A) and the column space and column rank by cs(A) and crk(A).

It is a remarkable and useful fact that the row rank of a matrix is always equal to
its column rank, despite the fact that if m # n, the row space and column space
are not even in the same vector space!

Our proof of this fact hinges on the following simple observation about
matrices.

Lemma 1.15 Let A be an m x n matrix. Then elementary column operations do
not affect the row rank of A. Similarly, elementary row operations do not affect
the column rank of A.

Proof. The second statement follows from the first by taking transposes. As to
the first, the row space of A is

1s(A) = (e14,...,e,A)

where e; are the standard basis vectors in F"™. Performing an elementary
column operation on A is equivalent to multiplying A on the right by an
elementary matrix F. Hence the row space of AF is

1s(AE) = (e1AE, ..., e, AE)

and since F is invertible,
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rk(A) = dim(rs(A4)) = dim(1s(AE)) = rrk(AFE)
as desired.[d

Theorem 1.16 If A € M,, ,,, then rrk(A) = ctk(A). This number is called the
rank of A and is denoted by tk(A).

Proof. According to the previous lemma, we may reduce A to reduced column
echelon form without affecting the row rank. But this reduction does not affect
the column rank either. Then we may further reduce A to reduced row echelon
form without affecting either rank. The resulting matrix M has the same row
and column ranks as A. But M is a matrix with 1's followed by 0's on the main
diagonal (entries M 1, Ms o, ...) and 0's elsewhere. Hence,

rrk(A) = rrk(M) = erk(M) = crk(A)
as desired.Od
The Complexification of a Real Vector Space

If W is a complex vector space (that is, a vector space over C), then we can
think of W as a real vector space simply by restricting all scalars to the field R.
Let us denote this real vector space by Wx and call it the real version of .

On the other hand, to each real vector space V, we can associate a complex
vector space V. This “complexification” process will play a useful role when
we discuss the structure of linear operators on a real vector space. (Throughout
our discussion V' will denote a real vector space.)

Definition I V is a real vector space, then the set VC =V x V of ordered
pairs, with componentwise addition

(u,v) + (2,y) = (u+z,0+y)
and scalar multiplication over C defined by
(a + bi)(u,v) = (au — bv,av + bu)

for a,b € R is a complex vector space, called the complexification of V' .[]

It is convenient to introduce a notation for vectors in VC that resembles the
notation for complex numbers. In particular, we denote (u,v) € V€ by u + vi
and so

VE = {u+vi|uveV}
Addition now looks like ordinary addition of complex numbers,
(u i) + (z+yi) = (u+2) + (v+y)i

and scalar multiplication looks like ordinary multiplication of complex numbers,
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(a+ bi)(u + vi) = (au — bv) + (av + bu)i
Thus, for example, we immediately have for a,b € R,

a(u + vi) = au + avi
bi(u + vi) = —bv + bui
(a 4+ bi)u = au + bui
(a+ bi)vi = —bv + avi

The real part of z = v+ vi is uw € V' and the imaginary part of z is v € V.
The essence of the fact that z = u + vi € VC is really an ordered pair is that z is
0 if and only if its real and imaginary parts are both 0.

We can define the complexification map cpx: V — VC by

cpx(v) = v+ 0i

Let us refer to v + 07 as the complexification, or complex version of v € V.
Note that this map is a group homomorphism, that is,

cpx(0) =0+ 0¢ and cpx(uxv) = cpx(u) £ cpx(v)
and it is injective:
cpx(u) = cpx(v) S u=w
Also, it preserves multiplication by real scalars:
cpx(au) = au + 0¢ = a(u + 07) = acpx(u)
for a € R. However, the complexification map is not surjective, since it gives

only “real” vectors in VC,

The complexification map is an injective linear transformation (defined in the
next chapter) from the real vector space V to the real version (VC)g of the
complexification VC, that is, to the complex vector space VC provided that
scalars are restricted to real numbers. In this way, we see that V' contains an
embedded copy of V.

The Dimension of VC

The vector-space dimensions of V and VC are the same. This should not
necessarily come as a surprise because although V¢ may seem “bigger” than V/,
the field of scalars is also “bigger.”

Theorem 1.17 If B={v;|je€ I} is a basis for V over R, then the
complexification of 53,

cpx(B) = {v; + 0i | v; € B}
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is a basis for the vector space V' over C. Hence,
dim(VC) = dim(V)

Proof. To see that cpx(B) spans VC over C, let  + iy € VC. Then z,y € V
and so there exist real numbers a; and b; (some of which may be 0) for which

J J
T+ yi= Z Z bjv;
=1

(ajvj + bjvji)

i

I
'Ma u

J=1

[
M)~

(aj + b}Z) (’Uj + Oi)

<.
Il
_

To see that cpx(B) is linearly independent, if

J
Z (a;+ bji)(v;+ 0i) =04 0i

J=1

then the previous computations show that

J J
Zajvj = (0 and Z bjv; =0
=1 =1

The independence of B then implies that a; = 0 and b; = 0 for all 4.J

Ifve Vand B={v;|i€ I} isabasis for V, then we may write

n
v = E a;V;
i=1

for a; € R. Since the coefficients are real, we have

n

v+ 0i =Y ai(v; + 0i)

=1
and so the coordinate matrices are equal:

[v + Oi]cpx(B) = ['U]B

Exercises

1. Let V be a vector space over F'. Prove that 0ov =0 and r0 = 0 forallv € V'
and r € F. Describe the different 0's in these equations. Prove that if
rv =0, then r = 0 or v = 0. Prove that rv = v implies that v = 0 or r = 1.
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Prove Theorem 1.3.

a) Find an abelian group V and a field F' for which V' is a vector space
over F' in at least two different ways, that is, there are two different
definitions of scalar multiplication making V' a vector space over F'.

b) Find a vector space V over F' and a subset S of V that is (1) a
subspace of V' and (2) a vector space using operations that differ from
those of V.

Suppose that V' is a vector space with basis B={b; |i € I} and S is a

subspace of V. Let { By, ..., By} be a partition of 5. Then is it true that

k
S = @SN (B
i=1
What if S N (B;) # {0} for all i?

Prove Theorem 1.8.
Let S,T,U € S(V). Show that if U C S, then

SA(T+U)=(SNT)+U

This is called the modular law for the lattice S(V/).
For what vector spaces does the distributive law of subspaces

SN(T+U)=(SNT)+(SNU)

hold?

A vector v = (aq,...,a,) € R" is called strongly positive if a; > 0 for all

1=1,...,n.

a) Suppose that v is strongly positive. Show that any vector that is “close
enough” to v is also strongly positive. (Formulate carefully what “close
enough” should mean.)

b) Prove that if a subspace S of R" contains a strongly positive vector,
then S has a basis of strongly positive vectors.

Let M be an m x n matrix whose rows are linearly independent. Suppose

that the k& columns ¢, ..., ¢;, of M span the column space of M. Let C' be

the matrix obtained from A by deleting all columns except ¢;,...,¢,.

Show that the rows of C' are also linearly independent.

Prove that the first two statements in Theorem 1.7 are equivalent.

Show that if S is a subspace of a vector space V, then dim(S) < dim(V).

Furthermore, if dim(S) = dim(V') < oo then S = V. Give an example to

show that the finiteness is required in the second statement.

Let dim(V') < oo and suppose that V =U @ S; = U @ Sy. What can you

say about the relationship between S; and S9? What can you say if

S1 € 5y?

What is the relationship between S @71 and T'@® S? Is the direct sum

operation commutative? Formulate and prove a similar statement

concerning associativity. Is there an “identity” for direct sum? What about

“negatives”?
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Let V be a finite-dimensional vector space over an infinite field F'. Prove

that if S1,...,S) are subspaces of V' of equal dimension, then there is a

subspace T of V for which V = S; @ T forall: = 1, ... k. In other words,

T is a common complement of the subspaces 5;.

Prove that the vector space C of all continuous functions from R to R is

infinite-dimensional.

Show that Theorem 1.2 need not hold if the base field F is finite.

Let S be a subspace of V. The set v+ .S ={v+s|s e S} is called an

affine subspace of V.

a) Under what conditions is an affine subspace of V' a subspace of V'?

b) Show that any two affine subspaces of the form v + S and w + .S are
either equal or disjoint.

If V and W are vector spaces over F' for which |V| = |W/|, then does it

follow that dim(V') = dim(WW)?

Let V be an n-dimensional real vector space and suppose that S is a

subspace of V' with dim(S) = n — 1. Define an equivalence relation = on

the set V' \ S by v = w if the “line segment”

Liv,w)y={rv+(1—-rw|0<r<1}

has the property that L(v,w) NS = (). Prove that =is an equivalence

relation and that it has exactly two equivalence classes.

Let F' be a field. A subfield of F' is a subset K of F that is a field in its

own right using the same operations as defined on F.

a) Show that F' is a vector space over any subfield K of F'.

b) Suppose that F' is an m-dimensional vector space over a subfield K of
F.If V is an n-dimensional vector space over I, show that V' is also a
vector space over K. What is the dimension of V' as a vector space
over K?

Let F' be a finite field of size ¢ and let V' be an n-dimensional vector space

over F. The purpose of this exercise is to show that the number of

subspaces of V' of dimension k is

(¢" =1)+(g—1)(g" " =1)+(¢—1)

The expressions (), are called Gaussian coefficients and have properties

similar to those of the binomial coefficients. Let S(n, k) be the number of

k-dimensional subspaces of V.

a) Let N(n,k) be the number of k-tuples of linearly independent vectors
(v1,...,v;) in V. Show that

N(n,k)=(¢"-1)(@" —q)(¢"—d")

b) Now, each of the k-tuples in a) can be obtained by first choosing a
subspace of V' of dimension k and then selecting the vectors from this
subspace. Show that for any k-dimensional subspace of V, the number

(n) _ (¢"—1)--(¢g—1)
k/q
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of k-tuples of independent vectors in this subspace is
(@" = 1" = a)-(d" = d" )
¢) Show that
N(n,k) = S(n,k)(¢" = 1)(q" — q)---(¢" = ")

How does this complete the proof?
Prove that any subspace S of R" is a closed set or, equivalently, that its set
complement S = R™ \ S is open, that is, for any x € S° there is an open
ball B(x, €) centered at « with radius ¢ > 0 for which B(xz,¢) C S°.
Let B={by,...,b,} and C = {cy,...,¢,} be bases for a vector space V.
Let 1 < m < n — 1. Show that there is a permutation o of {1,...,n} such
that

b17 sy brm Co(m+1)s -+ Co(n)
and
Co(1)s -+ Ca(m)> bm+1a ERE) by,

are both bases for V. Hint: You may use the fact that if M is an invertible
n x n matrix and if 1 < k < n, then it is possible to reorder the rows so
that the upper left k& x & submatrix and the lower right (n — k) x (n — k)
submatrix are both invertible. (This follows, for example, from the general
Laplace expansion theorem for determinants.)

Let V be an n-dimensional vector space over an infinite field ' and
suppose that Sy, ..., Sy, are subspaces of V' with dim(S;) < m < n. Prove
that there is a subspace 7" of V of dimension n —m for which
TNS; = {0} forall .

What is the dimension of the complexification VC thought of as a real
vector space?

(When is a subspace of a complex vector space a complexification?) Let V
be a real vector space with complexification V€ and let U be a subspace of
VC. Prove that there is a subspace S of V' for which

U=S8={s+ti|steS}

if and only if U is closed under complex conjugation y: VC — V' defined
by x(u + iv) = u — iv.



Chapter 2
Linear Transformations

Linear Transformations

Loosely speaking, a linear transformation is a function from one vector space to
another that preserves the vector space operations. Let us be more precise.

Definition Let V' and W be vector spaces over a field F. A function 7:V — W
is a linear transformation if

T(ru + sv) = rr(u) + s7(v)

for all scalars r,s € F and vectors wv €V. The set of all linear

transformations from V to W is denoted by L(V ,W).

1) A linear transformation from V to V is called a linear operator on V. The
set of all linear operators on V is denoted by L(V'). A linear operator on a
real vector space is called a real operator and a linear operator on a
complex vector space is called a complex operator.

2) A linear transformation from V to the base field F' (thought of as a vector
space over itself) is called a linear functional on V. The set of all linear
Sfunctionals on 'V is denoted by V* and called the dual space of V.

We should mention that some authors use the term linear operator for any linear
transformation from V' to W. Also, the application of a linear transformation 7
on a vector v is denoted by 7(v) or by Tv, parentheses being used when
necessary, as in 7(u + v), or to improve readability, as in u(7u) rather than

p(T(w).

Definition The following terms are also employed:

1) 'homomorphism for linear transformation

2) endomorphism for linear operator

3) monomorphism (or embedding) for injective linear transformation
4) epimorphism for surjective linear transformation

5) isomorphism for bijective linear transformation.
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6) automorphism for bijective linear operator..c]

Example 2.1

1) The derivative D:V — V is a linear operator on the vector space V' of all
infinitely differentiable functions on R.

2) The integral operator 7: F'[x] — F'[z] defined by

Tf:/owf(t)dt

is a linear operator on F'[z].

3) Let A be an m x n matrix over F'. The function 74: " — F" defined by
T4v = Av, where all vectors are written as column vectors, is a linear
transformation from £ to F". This function is just multiplication by A.

4) The coordinate map ¢:V — F" of an m-dimensional vector space is a
linear transformation from V' to £".[0

The set L(V, W) is a vector space in its own right and £(V) has the structure of
an algebra, as defined in Chapter 0.

Theorem 2.1

1) The set L(V,W) is a vector space under ordinary addition of functions
and scalar multiplication of functions by elements of F'.

2) Ifoe L(U,V)andT e L(V,W), then the composition Tc is in LU, W).

3) IfT € L(V,W)is bijective then T+ € LW, V).

4) The vector space L(V') is an algebra, where multiplication is composition
of functions. The identity map v € L(V') is the multiplicative identity and
the zero map 0 € L(V') is the additive identity.

Proof. We prove only part 3). Let 7:V — W be a bijective linear

transformation. Then 7=1: W — V is a well-defined function and since any two

vectors wy and wy in W have the form w; = 7v; and wy = Tv9, we have

7 Y aw; + bwy) = 7 (aTvy + bTwy)
=7 Y1(avy + buy))
= avy + bvy
=ar Ywy) + bt (wy)

which shows that 7~ ! is linear.(]

One of the easiest ways to define a linear transformation is to give its values on
a basis. The following theorem says that we may assign these values arbitrarily
and obtain a unique linear transformation by linear extension to the entire
domain.

Theorem 2.2 Let V and W be vector spaces and let B = {v; | i € I} be a
basis for V. Then we can define a linear transformation T € L(V , W) by
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specifying the values of Tv; arbitrarily for all v; € B and extending T to V' by
linearity, that is,

T(avr + -+ apvy) = a17o1 + -+ apTU,

This process defines a unique linear transformation, that is, if 7,0 € L(V, W)
satisfy Tv; = ov; for all v; € B then T = o.

Proof. The crucial point is that the extension by linearity is well-defined, since
each vector in V' has an essentially unique representation as a linear
combination of a finite number of vectors in B. We leave the details to the
reader.[]

Note that if 7 € L(V, W) and if S is a subspace of V, then the restriction 7|g of
7 to S is a linear transformation from .S to W.

The Kernel and Image of a Linear Transformation

There are two very important vector spaces associated with a linear
transformation 7 from V' to W.

Definition Let 7 € L(V,W). The subspace
ker(t) ={ve V| rv=0}
is called the kernel of T and the subspace
im(7) ={rv|veV}

is called the image of 7. The dimension of ker(7) is called the nullity of T and is
denoted by null(t). The dimension of im(7) is called the rank of T and is
denoted by tk(7).00

It is routine to show that ker(7) is a subspace of V' and im(7) is a subspace of
W . Moreover, we have the following.

Theorem 2.3 Let 7 € L(V,W). Then

1) 7 is surjective if and only if im(17) = W

2) 7 isinjective if and only if ker(7) = {0}

Proof. The first statement is merely a restatement of the definition of
surjectivity. To see the validity of the second statement, observe that

Tu=T10 T(u—"0v)=0% u—vE ker(r)

Hence, if ker(7) = {0}, then 7u = 7v < w = v, which shows that 7 is injective.
Conversely, if 7 is injective and u € ker(7), then 7u = 70 and so v = 0. This
shows that ker(7) = {0}.00
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Isomorphisms

Definition A4 bijective linear transformation 7V — W is called an
isomorphism from V to W. When an isomorphism from V to W exists, we say
that V and W are isomorphic and write V ~ W.O1

Example 2.2 Let dim(V') = n. For any ordered basis B of V, the coordinate
map ¢p:V — F" that sends each vector v € V to its coordinate matrix
[v]g € F™ is an isomorphism. Hence, any n-dimensional vector space over F is
isomorphic to F".J

Isomorphic vector spaces share many properties, as the next theorem shows. If
7€ L(V,W)and S CV we write

TS ={rs|seS}

Theorem 2.4 Let T € L(V , W) be an isomorphism. Let S C V. Then

1) S spans'V ifand only if TS spans W.

2) S is linearly independent in V if and only if 7S is linearly independent in
wW.

3) S isa basis for V if and only if 7S is a basis for W.[1

An isomorphism can be characterized as a linear transformation 7: V' — W that
maps a basis for V' to a basis for W.

Theorem 2.5 A linear transformation T € L(V, W) is an isomorphism if and
only if there is a basis B for V for which 7B is a basis for W. In this case, T
maps any basis of 'V to a basis of W.OO

The following theorem says that, up to isomorphism, there is only one vector
space of any given dimension over a given field.

Theorem 2.6 Let V and W be vector spaces over F. Then V.~ W if and only
if dim(V') = dim(W).O

In Example 2.2, we saw that any n-dimensional vector space is isomorphic to
F". Now suppose that B is a set of cardinality x and let (F'?), be the vector
space of all functions from B to F’ with finite support. We leave it to the reader
to show that the functions &, € (F'%), defined for all b € B by

1 ifz=5>
‘5”(”“"){0 ifa #b

form a basis for (F'?),, called the standard basis. Hence, dim((F?),) = | B).

It follows that for any cardinal number &, there is a vector space of dimension .
Also, any vector space of dimension # is isomorphic to (FZ),.
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Theorem 2.7 If n is a natural number, then any n-dimensional vector space
over F is isomorphic to F". If k is any cardinal number and if B is a set of
cardinality K, then any k-dimensional vector space over F' is isomorphic to the
vector space (FB)y of all functions from B to F with finite support.C]

The Rank Plus Nullity Theorem
Let 7 € L(V,W). Since any subspace of V' has a complement, we can write
V = ker(7) & ker(7)*
where ker(7)¢ is a complement of ker(7) in V. Tt follows that
dim(V') = dim(ker(7)) + dim(ker(7))
Now, the restriction of 7 to ker(7)°¢,
¢ ker(T) — W
is injective, since
ker(7¢) = ker(7) Nker(7)¢ = {0}

Also, im(7¢) C im(7). For the reverse inclusion, if 7v € im(7), then since
v=u+ w for u € ker(7) and w € ker(7)¢, we have

TV =TU + TW = TW = T W € IM(7°)
Thus im(7¢) = im(7). It follows that
ker(7)¢ &~ im(1)

From this, we deduce the following theorem.

Theorem 2.8 Let 7 € L(V,W).
1) Any complement of ker(T) is isomorphic to im(T)
2) (The rank plus nullity theorem)

dim(ker(7)) 4+ dim(im(7)) = dim(V)
or, in other notation,
tk(7) + null(7) = dim(V') O

Theorem 2.8 has an important corollary.

Corollary 2.9 Let 7 € L(V, W), where dim(V) = dim(W) < co. Then T is
injective if and only if it is surjective.]

Note that this result fails if the vector spaces are not finite-dimensional. The
reader is encouraged to find an example to support this statement.
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Linear Transformations from £ to F'™

Recall that for any m x n matrix A over F' the multiplication map
TA(v) = Av

is a linear transformation. In fact, any linear transformation 7 € L(F", F'") has
this form, that is, 7 is just multiplication by a matrix, for we have

(’7’61 |- | Ten)ei _ (7_61 | o | Ten)(i) = 1e;
and so 7 = 74, where
A= (rer || 7e,)

Theorem 2.10
1) If Ais an m x n matrix over F then T4 € L(F",F™).
2) IfT e L(F", F™) then T = T4, where

A=(rer || Ten)

The matrix A is called the matrix of .00

Example 2.3 Consider the linear transformation 7: F3 — I defined by
T(.’E,y,Z) = (QL’— 2y,Z,£E+y+Z)

Then we have, in column form,

T r—2y 1 -2 0 x
Tyl = z =10 0 1 Y
z T4y+z 1 1 1 z
and so the standard matrix of 7 is
1 -2 0
A=10 0 1 O
1 1 1

If A € M,, ,, then since the image of 74 is the column space of A, we have
dim(ker(74)) + tk(A) = dim(F")

This gives the following useful result.

Theorem 2.11 Let A be an m x n matrix over F.
1) 74: F" — F™ is injective if and only if tk(A) = n.
2) Ta: F™ — F™ is surjective if and only if tk(A) = m. O
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Change of Basis Matrices

Suppose that B = (by,...,b,) and C = (¢y,...,¢,) are ordered bases for a
vector space V. It is natural to ask how the coordinate matrices [v]s and [v]¢ are
related. Referring to Figure 2.1,

/ ‘¢c(¢3

oy Y
Fn

Figure 2.1

the map that takes [v]g to [v]¢ is ppc = gbcq&gl and is called the change of basis
operator (or change of coordinates operator). Since ¢ is an operator on
F™, it has the form 74, where

A= (¢pcler) |-+ | pselen))
= (¢eds' ([b1]B) | -~ | ¢edg' ([bulB))
= ([]e | -+ | [bnle))

We denote A by Mpc and call it the change of basis matrix from 5 to C.
Theorem 2.12 Let B = (by,...,b,) and C be ordered bases for a vector space

V. Then the change of basis operator ¢pc = ¢C¢l§1 is an automorphism of F",
whose standard matrix is

Mge = ([bile |-+ | [bulc))
Hence
[vle = Mpc[v]s
and Mc g = Mg’é.D

Consider the equation
A= Mgg
or equivalently,
A= ([bale [+ | [bnle))

Then given any two of A (an invertible n x n matrix), 5 (an ordered basis for
F™) and C (an ordered basis for F™), the third component is uniquely
determined by this equation. This is clear if B and C are given or if A and C are
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given. If A and B are given, then there is a unique C for which A~! = M 5 and
so there is a unique C for which A = Mp_.

Theorem 2.13 If we are given any two of the following:
1) an invertible n x n matrix A

2) an ordered basis B for I

3) an ordered basis C for F™.

then the third is uniquely determined by the equation

A= Mg O

The Matrix of a Linear Transformation

Let :V — W be a linear transformation, where dim(V)=mn and
dim(W) =m and let B = (by,...,b,) be an ordered basis for V' and C an
ordered basis for WW. Then the map

0: [vlg — [Tv]¢

is a representation of T as a linear transformation from F” to F', in the sense
that knowing 6 (along with B and C, of course) is equivalent to knowing 7. Of
course, this representation depends on the choice of ordered bases 5 and C.

Since 6 is a linear transformation from F™ to F'™, it is just multiplication by an
m X n matrix A, that is,

[Tvle = Alv]s
Indeed, since [b;]p = e;, we get the columns of A as follows:
A(t) = Aei = A[Uz’]B = [Tbi]c

Theorem 2.14 Let 7 € L(V, W) and let B = (by,...,b,) and C be ordered
bases for V- and W, respectively. Then T can be represented with respect to B
and C as matrix multiplication, that is,

[Tvle = [7]sc[v]B
where
[Tlse = ([tbilc | -+ | [Thule)

is called the matrix of 7 with respect to the bases B and C. When V. =W and
B = C, we denote [T]|p by [T]s and so

[Tv]s = [7]B[v]B o

Example 2.4 Let D: P, — P, be the derivative operator, defined on the vector
space of all polynomials of degree at most 2. Let B = C = (1, x, 2%). Then
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0 1 0
[DMW)]e=[0lc= | 0|, [D(@)]e == |0],[D(@*)]c=[2z]c = |2
0 0 0
and so
0 1 0
D=0 0 2
0 0 0
Hence, for example, if p(z) = 5 + = + 227, then
0 1 0|15 1
[Dp(x)le = [Ds [p(x)ls= |0 0 2| 1] = |4
0 0 0]]2 0

and so Dp(z) =1+ 42.00

The following result shows that we may work equally well with linear
transformations or with the matrices that represent them (with respect to fixed
ordered bases B and C). This applies not only to addition and scalar
multiplication, but also to matrix multiplication.

Theorem 2.15 Let V and W be finite-dimensional vector spaces over F, with
ordered bases B = (by,...,b,) and C = (c1,...,cp), respectively.
1) Themap p: LV, W) — M,,,(F) defined by

p(7) = [lsc
is an isomorphism and so L(V, W) ~ M,,, ,(F'). Hence,
dim(L(V,W)) = dim(M,,,(F)) =m xn

2) Ifoe LU,V)and T € LIV, W) and if B, C and D are ordered bases for
U, V and W, respectively, then

[rolsp = [T]eplo]se

Thus, the matrix of the product (composition) To is the product of the
matrices of T and o. In fact, this is the primary motivation for the definition
of matrix multiplication.

Proof. To see that y is linear, observe that for all 7,

[so + t7]gclbils = [(so + t7)(bi)]e

= [so(bi) +t7(bi)lc
s[o(bi)]e + t[r(bi)]e
= slolpclbils + t[7]sclbils
= (s[o]pc + tlT]sc)[bils
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and since [b;]5 = e; is a standard basis vector, we conclude that
[so +tT|pc = s[o]sc + t[T]Bc

and so p is linear. If A € M,,,,, we define 7 by the condition [rb;]¢ = AW
whence u(7) = A and g is surjective. Also, ker(u) = {0} since [r]g =0
implies that 7 = 0. Hence, the map p is an isomorphism. To prove part 2), we
have

[rolsp[v]s = [T(ov)]p = [Tleplov]e = [T]eplolselv]s m|

Change of Bases for Linear Transformations

Since the matrix [7]p ¢ that represents 7 depends on the ordered bases B and C, it
is natural to wonder how to choose these bases in order to make this matrix as
simple as possible. For instance, can we always choose the bases so that 7 is
represented by a diagonal matrix?

As we will see in Chapter 7, the answer to this question is no. In that chapter,
we will take up the general question of how best to represent a linear operator
by a matrix. For now, let us take the first step and describe the relationship
between the matrices [7]g¢ and [7]p ¢ of 7 with respect to two different pairs
(B,C) and (B',C’) of ordered bases. Multiplication by [7]z ¢ sends [v]p to
[Tv]e. This can be reproduced by first switching from 5’ to B, then applying
[7]B,c and finally switching from C to C’, that is,

[Tlg.c = MeclTlseMp s = Mce [T]B,CML;IB/

Theorem 2.16 Let 7 € L(V,W) and let (B,C) and (B',C') be pairs of ordered
bases of V' and W, respectively. Then

[Tl = McclTlsecMs s (2.n0O

When 7 € L(V) is a linear operator on V, it is generally more convenient to
represent 7 by matrices of the form [r]g, where the ordered bases used to
represent vectors in the domain and image are the same. When B = C, Theorem
2.16 takes the following important form.

Corollary 2.17 Let 7 € L(V') and let B and C be ordered bases for V. Then the
matrix of T with respect to C can be expressed in terms of the matrix of T with
respect to B as follows:

[7)e = Mpc[r]s Mg (220

i

Equivalence of Matrices

Since the change of basis matrices are precisely the invertible matrices, (2.1) has
the form



Linear Transformations 69

[Tlg.c = PlrlpcQ "

where P and @ are invertible matrices. This motivates the following definition.

Definition 7Two matrices A and B are equivalent if there exist invertible
matrices P and Q) for which

B=PAQ! O

We have remarked that B is equivalent to A if and only if B can be obtained
from A by a series of elementary row and column operations. Performing the
row operations is equivalent to multiplying the matrix A on the left by P and
performing the column operations is equivalent to multiplying A on the right by

Q.

In terms of (2.1), we see that performing row operations (premultiplying by P)
is equivalent to changing the basis used to represent vectors in the image and
performing column operations (postmultiplying by Q') is equivalent to
changing the basis used to represent vectors in the domain.

According to Theorem 2.16, if A and B are matrices that represent T with
respect to possibly different ordered bases, then A and B are equivalent. The
converse of this also holds.

Theorem 2.18 Let V and W be vector spaces with dim(V)=n and
dim(W') = m. Then two m x n matrices A and B are equivalent if and only if
they represent the same linear transformation T € L(V , W), but possibly with
respect to different ordered bases. In this case, A and B represent exactly the
same set of linear transformations in L(V ,W).

Proof. If A and B represent 7, that is, if

A= [T]B,C and B = [T]B/,g

for ordered bases B,C, B’ and C', then Theorem 2.16 shows that A and B are
equivalent. Now suppose that A and B are equivalent, say

B=PAQ!

where P and () are invertible. Suppose also that A represents a linear
transformation 7 € L(V', W) for some ordered bases 3 and C, that is,

A = [T]Bp

Theorem 2.9 implies that there is a unique ordered basis B’ for V' for which
() = Mg and a unique ordered basis C’ for W for which P = M. Hence

B = Mce[tlscMp s = [T|pc
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Hence, B also represents 7. By symmetry, we see that A and B represent the
same set of linear transformations. This completes the proof..]

We remarked in Example 0.3 that every matrix is equivalent to exactly one
matrix of the block form

Ik Ok,nfk

I =
Omfk,k' Omfk,nfk block

Hence, the set of these matrices is a set of canonical forms for equivalence.
Moreover, the rank is a complete invariant for equivalence. In other words, two
matrices are equivalent if and only if they have the same rank.

Similarity of Matrices

When a linear operator 7 € £(V) is represented by a matrix of the form [7]g,
equation (2.2) has the form

[7ls = P[r]sP™
where P is an invertible matrix. This motivates the following definition.
Definition 7wo matrices A and B are similar, denoted by A ~ B, if there
exists an invertible matrix P for which
B=PAP™!
The equivalence classes associated with similarity are called similarity
classes.[]

The analog of Theorem 2.18 for square matrices is the following.

Theorem 2.19 Let V be a vector space of dimension n. Then two n X n
matrices A and B are similar if and only if they represent the same linear
operator 7 € L(V), but possibly with respect to different ordered bases. In this
case, A and B represent exactly the same set of linear operators in L(V').
Proof. If A and B represent 7 € L£(V), that is, if

A= [T}B and B = [T]C

for ordered bases B and C, then Corollary 2.17 shows that A and B are similar.
Now suppose that A and B are similar, say

B=PAP!

Suppose also that A represents a linear operator 7 € L(V') for some ordered
basis B, that is,

A: [T}B

Theorem 2.9 implies that there is a unique ordered basis C for V' for which
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P = Mpc. Hence
B = Mgc[rlsMge = [7]c

Hence, B also represents 7. By symmetry, we see that A and B represent the
same set of linear operators. This completes the proof..]

We will devote much effort in Chapter 7 to finding a canonical form for
similarity.

Similarity of Operators

We can also define similarity of operators.

Definition Two linear operators T,0 € L(V') are similar, denoted by T ~ o, if
there exists an automorphism ¢ € L(V') for which

o= ¢T¢71

The equivalence classes associated with similarity are called similarity
classes.[]

Note that if B = (by,...,b,) and C = (cy, ..., ¢,) are ordered bases for V', then
Meg = ([eag | -+ | [en]B)
Now, the map defined by ¢(b;) = ¢; is an automorphism of V' and
Me = ([0(01)]s | - | [6(bn)]5) = [9]8

Conversely, if : V' — V is an automorphism and B = (b, ..., b,) is an ordered
basis for V, then C = (¢; = ¢(by), ..., ¢, = ¢(by,)) is also a basis:

[¢]s = ([0(b1)]5 | -+ | [@(bn)]B) = Mcs
The analog of Theorem 2.19 for linear operators is the following.
Theorem 2.20 Let V be a vector space of dimension n. Then two linear
operators T and o on 'V are similar if and only if there is a matrix A € M,, that
represents both operators, but with respect to possibly different ordered bases.

In this case, T and o are represented by exactly the same set of matrices in M,,.
Proof. If 7 and o are represented by A € M,,, that is, if

(7] = A =[o]c
for ordered bases BB and C, then
[o]e = [7]s = Mc[T]cMpc

As remarked above, if ¢: V' — V is defined by ¢(c;) = b;, then
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[¢lc = Mg
and so
[o]e = [9lc' [Tleldle = [ ' Tdle

from which it follows that o and 7 are similar. Conversely, suppose that 7 and o
are similar, say

o= d)Tdfl

where ¢ is an automorphism of V. Suppose also that 7 is represented by the
matrix A € M,,, that is,

A=Irls
for some ordered basis B. Then [¢]z = M¢ 3 and so
o] = (976715 = [¢]5[7]5[¢l5" = Meslr]sMe g
It follows that
A = [r]g = Mgc[o]sMg = [o]c

and so A also represents 0. By symmetry, we see that 7 and o are represented
by the same set of matrices. This completes the proof.[]

We can summarize the sitiation with respect to similarity in Figure 2.2. Each
similarity class S in L£(V') corresponds to a similarity class 7 in M,,(F'): 7 is
the set of all matrices that represent any 7 € S and S is the set of all operators
in L(V') that are represented by any M € 7.

T, o similarity classes
s T o, of L(V)
A
(
[tls |[os Similarity classes
7 [ty [o.ld of matrices
Figure 2.2

Invariant Subspaces and Reducing Pairs

The restriction of a linear operator 7 € £L(V') to a subspace S of Vis not
necessarily a linear operator on S. This prompts the following definition.
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Definition Let 7 € L(V'). A subspace S of V' is said to be invariant under 7 or
T-invariant if 7S C S, that is, if s € S for all s € S. Put another way, S is
invariant under T if the restriction 7|g is a linear operator on S.]

If
V=SeT

then the fact that S is 7-invariant does not imply that the complement 7" is also
T-invariant. (The reader may wish to supply a simple example with V' = R2))

Definition Let 7 € L(V). If V. =S ® T and if both S and T are T-invariant,
we say that the pair (S,T) reduces 7.0J

A reducing pair can be used to decompose a linear operator into a direct sum as
follows.

Definition Let 7 € L(V). If (S, T) reduces T we write
T="Tlg ®T|r
and call T the direct sum of 7|s and 7|r. Thus, the expression
p=0dT
means that there exist subspaces S and T of V' for which (S, T) reduces p and
o =plsand T = p|p O

The concept of the direct sum of linear operators will play a key role in the
study of the structure of a linear operator.

Projection Operators

We will have several uses for a special type of linear operator that is related to
direct sums.

Definition Let V' = S © T'. The linear operator psr:V — V defined by
psr(s+1)=s

where s € S and t € T is called projection onto S along T.[]
Whenever we say that the operator pgr is a projection, it is with the
understanding that V' =S @ T'. The following theorem describes a few basic

properties of projection operators. We leave proof as an exercise.

Theorem 2.21 Let V' be a vector space and let p € L(V).
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1) IfV=S&T then
psT +prs =t
2) Ifp = psr then
im(p) =S5 and ker(p)=T
and so
V =im(p) @ ker(p)
In other words, p is projection onto its image along its kernel. Moreover,
veim(p) & pv=v
3) Ifo € L(V) has the property that
V =im(c) @ ker(o) and 0limy) =t

then o is projection onto im(o) along ker(c).O

Projection operators are easy to characterize.

Definition A4 linear operator T € L(V) is idempotent if 7> = 7.0

Theorem 2.22 A4 linear operator p € L(V') is a projection if and only if it is
idempotent.
Proof. If p = pg r, then forany s € Sand ¢t € T,

P(s+t)=ps=s=p(s+t)

and so p? = p. Conversely, suppose that p is idempotent. If v € im(p) N ker(p),
then v = pz and so

0:pU:p2x:pw=v
Hence im(p) Nker(p) = {0}. Also, if v € V, then
v = (v—pv) + pv € ker(p) & im(p)

and so V =ker(p) ®im(p). Finally, p(pz) = p’z = pz and S0 plim(,) = ¢
Hence, p is projection onto im(p) along ker(p).O

Projections and Invariance

Projections can be used to characterize invariant subspaces. Let 7 € £(V') and
let S be a subspace of V. Let p = pg r for any complement 7" of S. The key is
that the elements of S can be characterized as those vectors fixed by p, that is,
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s € S if and only if ps = s. Hence, the following are equivalent:

TS CS
Ts € Sforalls € §
p(rs) =r1sforalls € S
p(tps) =Tpsforalls € S

Thus, S is T-invariant if and only if p7p = 7p for all vectors s € S. But this is
also true for all vectors in T, since both sides are equal to O on 7T'. This proves
the following theorem.

Theorem 2.23 Let 7 € L(V). Then a subspace S of 'V is T-invariant if and only
if there is a projection p = pg r for which

pTP =TP
in which case this holds for all projections of the form p = pg .11

We also have the following relationship between projections and reducing pairs.

Theorem 2.24 Let V =S ® T. Then (S,T) reduces 7 € L(V) if and only if T
commutes with pg .
Proof. Theorem 2.23 implies that S and 1" are T-invariant if and only if

psrTpsr = psoT and (¢ — ps7)T(L — psr) = (L — ps)T

and a little algebra shows that this is equivalent to

psrTps;y = psaT and  pgrT =Tpsr
which is equivalent to pg 7 = Tpg 7.0
Orthogonal Projections and Resolutions of the Identity
Observe that if p is a projection, then

plb=p)=@—pp=0
Definition Two projections p,o € L(V') are orthogonal, written p L o, if
po=o0p=0 O
Note that p L o if and only if
im(p) C ker(o) and im(o) C ker(p)

The following example shows that it is not enough to have po =0 in the
definition of orthogonality. In fact, it is possible for po = 0 and yet op is not
even a projection.
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Example 2.5 Let V = F? and consider the X- and Y -axes and the diagonal:

X ={(2,0)| z € F}

Y ={(0y)|yerF}
D={(z,z) |z € F}

Then
PD.XPDY = PDY 7 PD.X = PD,YPD.X

From this we deduce that if p and o are projections, it may happen that both
products po and op are projections, but that they are not equal. We leave it to
the reader to show that py xpx p = 0 (which is a projection), but that px ppy x
is not a projection.[]

Since a projection p is idempotent, we can write the identity operator ¢ as s sum
of two orthogonal projections:

p+—=p)=t, pL(t—0p)

Let us generalize this to more than two projections.

Definition 4 resolution of the identity on V' is a sum of the form
prtotpp=t

where the p;'s are pairwise orthogonal projections, that is, p; L p; for i # 5.0

There is a connection between the resolutions of the identity on V' and direct
sum decompositions of V. In general terms, if

o+t or=1
for any linear operators o; € L(V'), then forallv € V,
v=010+ -+ opv € im(o1) + -+ + im(oy)
and so
V =im(oy) + -+ + im(oy)
However, the sum need not be direct.
Theorem 2.25 Let V be a vector space. Resolutions of the identity on V

correspond to direct sum decompositions of V as follows:
1) Ifp1+ -+ pr = v is a resolution of the identity, then

V =im(p;) & --- & im(p;)
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and p; is projection onto im(p;) along

ker(p;) = €D im(p;)

i
2) Conversely, if
V — Sl @ e @ Sk‘

and if p; is projection onto S; along the direct sum @#iSj,, then
p1+ -+ pr = L is a resolution of the identity.
Proof. To prove 1), if p; + --- + pr = ¢ is a resolution of the identity, then

V = im(py) + - + im(p)
Moreover, if
p1r1+ -+ ppry, =0

then applying p; gives p;z; = 0 and so the sum is direct. As to the kernel of p;,
we have

im(p;) ® ker(p;) =V = im(p;) & @ im(p;)
i

and since p;p; = 0, it follows that

@ im(p;) C ker(p;)

J#i
and so equality must hold. For part 2), suppose that
V=5 &S5
and p; is projection onto .S; along @j#Sj. If i # j, then
im(p;) = S € ker(p;)
and so p; L pj. Also, if v =51 + --- + 54, for s; € S, then
v=s1+-+sp=pv+-+pv=_(01+ -+ pp)v
and so ¢« = py + -+ + pg is a resolution of the identity.[]
The Algebra of Projections

If p and o are projections, it does not necessarily follow that p + o, p — o or po
is a projection. For example, the sum p + o is a projection if and only if

(p+o)=p+o
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which is equivalent to
po = —op

Of course, this holds if po = op = 0, that is, if p L o. But the converse is also
true, provided that char(F') # 2. To see this, we simply evaluate pop in two
ways:

(po)p = —(op)p = —op
and

p(op) = —p(po) = —po
Hence, op = po = —op and so op = 0. It follows that poc = —op = 0 and so
p L o. Thus, for char(F') # 2, we have p + o is a projection if and only if
pLlo.
Now suppose that p + o is a projection. For the kernel of p + o, note that

(p+o)v=0 = plp+ov=0 = pv=0

and similarly, ov = 0. Hence, ker(p + o) C ker(p) Nker(c). But the reverse
inclusion is obvious and so

ker(p + o) = ker(p) Nker(o)
As to the image of p + o, we have
veim(p+o) = v=(p+o0)v=pv+oveim(p)+ im(o)

and so im(p 4+ o) C im(p) + im(o). For the reverse inclusion, if v = px + oy,
then

(pt+ojv=_(p+o)(pz+oy) =px+oy=v

and so v €im(p+ o). Thus, im(p + o) = im(p) + im(c). Finally, po =0
implies that im(o) C ker(p) and so the sum is direct and

im(p + o) = im(p) & im(0)
The following theorem also describes the situation for the difference and

product. Proof in these cases is left for the exercises.

Theorem 2.26 Let V' be a vector space over a field F of characteristic # 2 and
let p and o be projections.
1) The sum p + o is a projection if and only if p L o, in which case

im(p + o) = im(p) @ im(c) and ker(p+ o) = ker(p) Nker(o)

2) The difference p — o is a projection if and only if

po=0p=o0
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in which case
im(p — o) = im(p) Nker(c) and ker(p — o) = ker(p) ® im(o)
3) If p and o commute, then po is a projection, in which case
im(po) =im(p) Nim(c) and ker(po) = ker(p) + ker(o)

(Example 2.5 shows that the converse may be false.)(
Topological Vector Spaces
This section is for readers with some familiarity with point-set topology.
The Definition

A pair (V,7T) where V is a real vector space V and 7 is a topology on the set
V is called a topological vector space if the operations of addition

AV xV =V, Alww)=v+w
and scalar multiplication
M:RxV =V, M(rv)=rv
are continuous functions.
The Standard Topology on R™

The vector space R" is a topological vector space under the standard topology,
which is the topology for which the set of open rectangles

B ={I x --- x I, | I;'s are open intervals in R}

is a base, that is, a subset of R" is open if and only if it is a union of open
rectangles. The standard topology is also the topology induced by the Euclidean
metric on R", since an open rectangle is the union of Euclidean open balls and
an open ball is the union of open rectangles.
The standard topology on R" has the property that the addition function

A:R" x R" — R": (v,w) > v+ w
and the scalar multiplication function

MR xR" = R": (r,v) — v

are continuous and so R” is a topological vector space under this topology.
Also, the linear functionals f: R" — R are continuous maps.
For example, to see that addition is continuous, if

(u1y ... un) + (v1,...,0,) € (a1,b1) X -+ X (ap,b,) € B
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then u; + v; € (a;, b;) and so there is an € > 0 for which
(u; — €,u; +€) + (v —e,v; + €) C (a;,b;)

for all ¢. It follows that if

(upy ... up) € 1= (u; — e, ug +€) X+ X (u, —€,u, +€) €B
and

(vi,...,v) €J = (1 —€,v1+€) X - X (v, —€,v, +€) €B
then

(U1, ooy tin) + (V1,...,0,) € AL, J) C (a1,b1) X -+ X (ay, by)

The Natural Topology on V'

Now let V' be a real vector space of dimension n and fix an ordered basis
B = (vy,...,v,) for V. We wish to show that there is precisely one topology 7°
on V for which (V,7) is a topological vector space and all linear functionals
are continuous. This topology is called the natural topology on V.

Our plan is to show that if (V,7) is a topological vector space and if all linear
functionals on V' are continuous, then the coordinate map ¢p:V ~ R, is a
homeomorphism. This implies that if 7 does exist, it must be unique. Then we
use Y = qﬁgl to move the standard topology from R" to V, thus giving V a
topology 7 for which ¢ is a homeomorphism. Finally, we show that (V,7) is
a topological vector space and that all linear functionals on V' are continuous.

The first step is to show that if (V,7) is a topological vector space, then 1) is
continuous. Since 1 = > 1b; where 1b;: R™ — V is defined by

Yi(ar, ..., a,) = av;

it is sufficient to show that these maps are continuous. (The sum of continuous
maps is continuous.) Let O be an open set in 7. Then

MYO)={(r,z) eRxV | rz € O}

is open in R x V. This implies that if 7z € O, then there is an open interval
I C R containing r for which

Iz ={sx|sel}CO
We need to show that the set 1; 1(O) is open. But

;1 (0) ={(a1,...,a,) € R" | av; € O}
=Rx-xRx{a;eR|aquv; €0} xRx--xR

In words, an n-tuple (ay, ..., a,) is in ¢; '(O) if the ith coordinate a; times v; is
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in O. But if a;v; € O, then there is an open interval I C R for which a; € I and
ITv; C O. Hence, the entire open set

U=Rx---xRxIxRx--xR
where the factor I is in the ith position is in ¢ *(O), that is,

(a1,...,a,) € U C ;1 (O)

Thus, ¥; 1(0) is open and v;, and therefore also ), is continuous.

Next we show that if every linear functional on V is continuous under a
topology 7 on V, then the coordinate map ¢ is continuous. If v € V' denote by
[v]g; the ith coordinate of [v]z. The map p: V' — R defined by pv = [v]p; is a
linear functional and so is continuous by assumption. Hence, for any open
interval I; € R the set

A = {U eV | [U]B,i S IL}
is open. Now, if I; are open intervals in R, then
¢ (Lix e x L) ={veV g€l x- x I} =[A

is open. Thus, ¢ is continuous.

We have shown that if a topology 7 has the property that (V,7) is a
topological vector space under which every linear functional is continuous, then
¢ and ¢ = ¢! are homeomorphisms. This means that if 7 exists, its open sets
must be the images under ¢ of the open sets in the standard topology of R". It
remains to prove that the topology 7 on V that makes ¢ a homeomorphism
makes (V,7) a topological vector space for which any linear functional f on V'
is continuous.

The addition map on V' is a composition
A=¢ oMo (§x9)
where A:R™ x R" — R" is addition in R" and since each of the maps on the
right is continuous, so is A.
Similarly, scalar multiplication in V' is
M=¢"oMo(ux0)

where M":R x R" — R™ is scalar multiplication in R". Hence, M is
continuous.

Now let f be a linear functional. Since ¢ is continuous if and only if f o ¢! is
continuous, we can confine attention to V' = R". In this case, if ey, ..., e, is the
standard basis for R" and |f(e;)] <M for all 4, then for any
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z = (ay,...,a,) € R", we have

Dl =Y afen] < 3 lallfe)) < MY lai

Now, if |z| < €¢/Mn, then |a;| < ¢/Mn and so |f(z)| < €, which implies that f
is continuous at z = 0.

According to the Riesz representation theorem (Theorem 9.18) and the Cauchy—
Schwarz inequality, we have

If @) < [IR¢Illl]

where R; € R". Hence, x,, — 0 implies f (z,) — 0 and so by linearity, 2, — z
implies f(z,) — « and so f is continuous at all x.

Theorem 2.27 Let V' be a real vector space of dimension n. There is a unique
topology on V, called the natural topology, for which V' is a topological vector
space and for which all linear functionals on V' are continuous. This topology is
determined by the fact that the coordinate map ¢:V — R" is a
homeomorphism, where R" has the standard topology induced by the Euclidean
metric.c]

Linear Operators on V'C

A linear operator 7 on a real vector space /' can be extended to a linear operator
7C on the complexification V' by defining

TC(U + i) =7(u) + 7(v)i

Here are the basic properties of this complexification of 7.

Theorem 2.28 IfT, o€ L(V), then
D (ar)® = ar® aER

2) (t+ U) =7C45C

3) (TO') = 7CoC

4 [r)¢ =7C0%).0

Let us recall that for any ordered basis B for V' and any vector v € V' we have
[v + Oilepe(s) = [v]B
Now, if B is an ordered basis for V, then the ith column of [7]p is
[Tbi]s = [Tbi + 0i]cpx(5) = [7€(b; + 07)]epx(B)

which is the ith column of the coordinate matrix of 7* with respect to the basis
cpx(B). Thus we have the following theorem.



Linear Transformations 83

Theorem 2.29 Let 7 € L(V') where V is a real vector space. The matrix of ¢
with respect to the ordered basis cpx(B) is equal to the matrix of T with respect
to the ordered basis B:

[TC]CpX(B) = [T]B

Hence, if a real matrix A represents a linear operator T on 'V, then A also
represents the complexification € of T on VC.01

Exercises

1.

10.

11.

Let A € M,,,, have rank k. Prove that there are matrices X € M, and
Y € My, both of rank k, for which A = XY Prove that A has rank 1 if
and only if it has the form A = x!'y where = and y are row matrices.

Prove Corollary 2.9 and find an example to show that the corollary does not
hold without the finiteness condition.

Let 7 € £L(V,W). Prove that 7 is an isomorphism if and only if it carries a
basis for V' to a basis for .

If 7€ L(V1,W)) and o € L(V,, W,) we define the external direct sum
THo e L(Vy BV, W, BW,) by

(’TEE‘U)((’Ul,’UQ)) = (’7”01,0"[)2)

Show that 7 B ¢ is a linear transformation.

Let V=S @®T. Prove that S @ T ~ S HT. Thus, internal and external
direct sums are equivalent up to isomorphism.

Let V = A + B and consider the external direct sum E = A H B. Define a
map 7: AB B — V by 7(v,w) = v+ w. Show that 7 is linear. What is the
kernel of 7? When is 7 an isomorphism?

Let 7 € Lp(V) where dim(V) =n < co. Let A € M,,(F). Suppose that
there is an isomorphism o: V' & F" with the property that o(7v) = A(ov).
Prove that there is an ordered basis B for which A = [7].

Let 7 be a subset of £(V'). A subspace S of V' is T -invariant if S is 7-
invariant for every 7 € 7. Also, V is 7 -irreducible if the only 7 -invariant
subspaces of V are {0} and V. Prove the following form of Schur's lemma.
Suppose that 7y, C £(V') and Ty € L(W) and V is Ty -irreducible and W
is Ty -irreducible. Let o € L(V, W) satisfy aZy = Ty a, that is, for any
1 € Ty there is a A € Ty such that oy = Ao and for any \ € 7y there is a
i € Ty such that app = Aav. Prove that o = 0 or « is an isomorphism.

Let 7€ L(V) where dim(V) < oco. If rk(r?) =rk(r) show that
im(7) Nker(7) = {0}.

LetT € L(U,V)and o € L(V,W). Show that

tk(o7) < min{rk(7),rk(c)}
LetT € L(U,V)and o € L(V,W). Show that
null(o7) < null(7) + null(o)
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Let 7,0 € L(V) where T is invertible. Show that
tk(ro) = 1k(o7) = 1k(0)
Let 7,0 € L(V,W). Show that
k(7 + o) < 1k(7) + k(o)

Let S be a subspace of V. Show that there is a 7 € £(V) for which
ker(7) = S. Show also that there exists a 0 € L(V') for which im(c) = S.
Suppose that 7,0 € L(V).

a) Show that o = 7y for some p € L(V) if and only if im(o) C im(7).

b) Show that ¢ = p7 for some o € L£(V') if and only if ker(7) C ker(o).
Let dim(V') < co and suppose that 7 € £(V) satisfies 72 = 0. Show that
2rk(7) < dim(V).

Let A be an m x n matrix over F'. What is the relationship between the
linear transformation 74: " — F" and the system of equations AX = B?
Use your knowledge of linear transformations to state and prove various
results concerning the system AX = B, especially when B = 0.

Let V have basis B = {v1,...,v,} and assume that the base field F' for V'
has characteristic 0. Suppose that for each 1 <4, <n we define
Tij € ,C(V) by

- ) Vg ifk;éi
7ig(vk) = {v tu; ifk=i

Prove that the 7; ; are invertible and form a basis for £(V/).

Let 7 € £(V). If S is a T-invariant subspace of V' must there be a subspace
T of V for which (S, T') reduces 7?2

Find an example of a vector space V' and a proper subspace S of V for
which V = S.

Let dim(V') < oo. If 7, 0 € L(V') prove that o7 = ¢ implies that 7 and o
are invertible and that o = p(7) for some polynomial p(z) € F[z].

Let 7 € L(V). If 70 = o7 for all 0 € L(V) show that 7 = a¢, for some
a € F, where ¢ is the identity map.

Let V' be a vector space over a field F’ of characteristic # 2 and let p and o
be projections. Prove the following:

a) The difference p — o is a projection if and only if

po=op=o
in which case
im(p — o) = im(p) Nker(c) and ker(p — o) = ker(p) @ im(o)

Hint: p is a projection if and only if « — p is a projection and so p — o
is a projection if and only if
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0=1—-(p-0)=@—p)+o

is a projection.
b) If p and 0 commute, then po is a projection, in which case

im(po) = im(p) Nim(c) and ker(po) = ker(p) + ker(o)
Let f: R" — R be a continuous function with the property that
fle+y)=f(=)+ f(y)

Prove that f is a linear functional on R".

Prove that any linear functional f: R" — R is a continuous map.

Prove that any subspace S of R™ is a closed set or, equivalently, that

S¢=TR"\ S is open, that is, for any = € S° there is an open ball B(z,¢)

centered at 2 with radius € > 0 for which B(xz,¢) C S°.

Prove that any linear transformation 7: V — W is continuous under the

natural topologies of V' and W.

Prove that any surjective linear transformation 7 from V' to W (both finite-

dimensional topological vector spaces under the natural topology) is an

open map, that is, 7 maps open sets to open sets.

Prove that any subspace S of a finite-dimensional vector space V' is a

closed set or, equivalently, that S¢ is open, that is, for any = € S¢ there is

an open ball B(z,e¢) centered at z with radius ¢ >0 for which

B(xz,e) C S°.

Let S be a subspace of V' with dim(V') < oc.

a) Show that the subspace topology on S inherited from V' is the natural
topology.

b) Show that the natural topology on V' /S is the topology for which the
natural projection map 7: V' — V' /S continuous and open.

If V is a real vector space, then VC is a complex vector space. Thinking of

V€ as a vector space (VC)g over R, show that (VC)g is isomorphic to the

external direct product V V.

(When is a complex linear map a complexification?) Let ' be a real vector

space with complexification V¢ and let o € £L(VC). Prove that ¢ is a

complexification, that is, o has the form 7€ for some 7 € £(V') if and only

if o commutes with the conjugate map x:V® — VC defined by

x(u+iv) = u — dv.

Let W be a complex vector space.

a) Consider replacing the scalar multiplication on W by the operation

(z,w) — Zw

where z € C and w € W. Show that the resulting set with the addition
defined for the vector space W and with this scalar multiplication is a
complex vector space, which we denote by W.

b) Show, without using dimension arguments, that (Wg)® ~ W BW.



Chapter 3
The Isomorphism Theorems

Quotient Spaces

Let S be a subspace of a vector space V. It is easy to see that the binary relation
on V defined by

u=v & u—veSsS

is an equivalence relation. When u = v, we say that « and v are congruent
modulo S. The term mod is used as a colloquialism for modulo and u = v is
often written

u = vmod S

When the subspace in question is clear, we will simply write u = v.

To see what the equivalence classes look like, observe that
[ ={ueV|u=v}
={ueVi]ju—-ves}
={ueV]|u=v+sforsomes e S}
={v+s|seS}
=v+S
The set
v =v+S={v+s|seS}
is called a coset of S in V and v is called a coset representative for v + S.
(Thus, any member of a coset is a coset representative.)
The set of all cosets of S in V' is denoted by
V/S={v+S|veV}

This is read “V mod S and is called the quotient space of IV modulo S. Of
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course, the term space is a hint that we intend to define vector space operations
onV/S.

The natural choice for these vector space operations is
(u+S)+w+9S)=(ut+v)+S
and
r(u+S) = (ru) + S

but we must check that these operations are well-defined, that is,

1) U1+S:’UQ+S,’U1—|-S=’UQ+S=>(U1+’U1)+S=(u2+1}2>+5
2) i+S=uw+S=ruu+S=rus+5

Equivalently, the equivalence relation = must be consistent with the vector
space operations on V/, that is,

3) up =ug,v1 =ve = (ug +v1) = (w2 + v9)
4) Uy = ug = rul = rus

This senario is a recurring one in algebra. An equivalence relation on an
algebraic structure, such as a group, ring, module or vector space is called a
congruence relation if it preserves the algebraic operations. In the case of a
vector space, these are conditions 3) and 4) above.

These conditions follow easily from the fact that S is a subspace, for if u; = us
and v; = v, then

up —ug € S,v1 —ve €8 = r(u; —ug) +s(vy —wvy) €8
= (ru; + svy) — (rug + svg) € S
= TU] + SV = rus + svs

which verifies both conditions at once. We leave it to the reader to verify that
V' /S is indeed a vector space over F' under these well-defined operations.

Actually, we are lucky here: For any subspace S of V, the quotient V' /S is a
vector space under the natural operations. In the case of groups, not all
subgroups have this property. Indeed, it is precisely the normal subgroups N of
G that have the property that the quotient G /N is a group. Also, for rings, it is
precisely the ideals (not the subrings) that have the property that the quotient is
aring.

Let us summarize.
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Theorem 3.1 Let S be a subspace of V. The binary relation
U=v < u—vES

is an equivalence relation on V', whose equivalence classes are the cosets
v+S={v+s|seS}

of S'in'V. The set V /S of all cosets of S in 'V, called the quotient space of V'
modulo S, is a vector space under the well-defined operations

rlu+S)=ru+S
(u+S)+@W+S)=(u+v)+S

The zero vector in V' /S is the coset 0 + S = S.00
The Natural Projection and the Correspondence Theorem

If S is a subspace of V, then we can define a map 7g: V — V' /S by sending
each vector to the coset containing it:

ms(v) =v+ S

This map is called the canonical projection or natural projection of V' onto
V' /S, or simply projection modulo S. (Not to be confused with the projection
operators pg r.) It is easily seen to be linear, for we have (writing 7 for 7g)

m(ru+ sv) = (ru+sv) + S =r(u+9) + s(v+S5) = rr(u) + sm(v)

The canonical projection is clearly surjective. To determine the kernel of 7, note
that

veker(n) & n(v) =0 v+S=S<ves
and so
ker(m) =S
Theorem 3.2 The canonical projection 7s:V — V' /S defined by
s (U) =v+ S
is a surjective linear transformation with ker(ng) = S.OJ
If S is a subspace of V/, then the subspaces of the quotient space V' /.S have the
form T'/S for some intermediate subspace T satisfying S C T C V. In fact, as
shown in Figure 3.1, the projection map mg provides a one-to-one
correspondence between intermediate subspaces S C T C V' and subspaces of

the quotient space V' /S. The proof of the following theorem is left as an
exercise.
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\Y%

T VIS
S T/S
{0} {0}

Figure 3.1: The correspondence theorem

Theorem 3.3 (The correspondence theorem) Let S be a subspace of V. Then
the function that assigns to each intermediate subspace S CT CV the
subspace T /S of V' /S is an order-preserving (with respect to set inclusion)
one-to-one correspondence between the set of all subspaces of V' containing S
and the set of all subspaces of V' /S.

Proof. We prove only that the correspondence is surjective. Let

X={u+S|ueU}
be a subspace of V'/S and let T' be the union of all cosets in X:

T:U(u—i-S)

uelU

We show that S <T <V and that T/S = X. If 2,y € T, then x + S and
y+ S are in X and since X < V' /S, we have

re+S,(x+y)+S5SeX

which implies that rz,z +y € T. Hence, T is a subspace of V' containing S
Moreover, if ¢+ S €T/S, then t €T and so ¢+ S5 € X. Conversely, if
u+ S € X, then u € T and therefore u + S € T'/S. Thus, X = 7'/5.00

The Universal Property of Quotients and the First
Isomorphism Theorem
Let S be a subspace of V. The pair (V /S, ms) has a very special property,

known as the universal property—a term that comes from the world of category
theory.

Figure 3.2 shows a linear transformation 7€ L£(V,W), along with the
canonical projection 7g from V' to the quotient space V'/S.
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vV ——>WwW

Figure 3.2: The universal property

The universal property states that if ker(r) O S, then there is a unique
7.V /S — W for which

Tomg =1

Another way to say this is that any such 7 € £(V, W) can be factored through
the canonical projection 7g.

Theorem 3.4 Let S be a subspace of V and let 7€ L(V,W) satisfy
S C ker(r). Then, as pictured in Figure 3.2, there is a unique linear
transformation 7': V' | S — W with the property that

Tomg =1

Moreover, ker(7') = ker(7)/S and im(7") = im(7).
Proof. We have no other choice but to define 7’ by the condition 7/ o 75 = T,
that is,

v+ 8)=1v
This function is well-defined if and only if
v+S=u+S=7w+S)=7(u+S9)
which is equivalent to each of the following statements:

v+S=u+S=>T1v="TU
v—u€eS=1lv—u)=0
reS=1r=0
S C ker(7)

Thus, 7:V /S — W is well-defined. Also,
im(7") = {7'(v+8) |veV}={rv|veV}=im(r)

and
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ker(7) = {v+ S| 7 (v+S) =0}

={v+S|1Tv=0}
={v+S|veker(r)}
= ker(1)/S

The uniqueness of 7’ is evident.[J

Theorem 3.4 has a very important corollary, which is often called the first
isomorphism theorem and is obtained by taking S = ker(7).

Theorem 3.5 (The first isomorphism theorem) Let 7:V — W be a linear

transformation. Then the linear transformation 7':V [ker(t) — W defined by
7' (v +ker(7)) = Tv

is injective and

Vv
ker(7)

~ im(7) O

According to Theorem 3.5, the image of any linear transformation on V' is
isomorphic to a quotient space of V. Conversely, any quotient space V' /S of V
is the image of a linear transformation on V': the canonical projection 7g. Thus,
up to isomorphism, quotient spaces are equivalent to homomorphic images.

Quotient Spaces, Complements and Codimension

The first isomorphism theorem gives some insight into the relationship between
complements and quotient spaces. Let S be a subspace of V and let T be a
complement of S, that is,

V=Sa&T
Applying the first isomorphism theorem to the projection operator pr g: V' — T'
gives

T~V/S

Theorem 3.6 Let S be a subspace of V. All complements of S in V are
isomorphic to V' | S and hence to each other.x]

The previous theorem can be rephrased by writing
ApB=A¢C=B=C

On the other hand, quotients and complements do not behave as nicely with
respect to isomorphisms as one might casually think. We leave it to the reader to
show the following:
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1) Itis possible that
ApB=C®D

with A = C but B % D. Hence, A ~ C does not imply that a complement
of A is isomorphic to a complement of C'.
2) [Itis possible that V' ~ W and

V=S®BandW =S®D
but B % D. Hence, V ~ W does not imply that V' /S ~ W /S. (However,
according to the previous theorem, if V' equals W then B ~ D.)
Corollary 3.7 Let S be a subspace of a vector space V. Then
dim(V') = dim(S) + dim(V'/S) O
Definition [f'S is a subspace of V, then dim(V'/S) is called the codimension of
S in'V and is denoted by codim(S) or codimy (S5).O
Thus, the codimension of S in V' is the dimension of any complement of .S in V'
and when V' is finite-dimensional, we have
codimy (S) = dim(V') — dim(S)

(This makes no sense, in general, if V' is not finite-dimensional, since infinite
cardinal numbers cannot be subtracted.)

Additional Isomorphism Theorems

There are other isomorphism theorems that are direct consequences of the first
isomorphism theorem. As we have seen, if V = S & T then V /T ~ S. This can
be written

SeT S
T T SnT
This applies to nondirect sums as well.
Theorem 3.7 (The second isomorphism theorem) Let V' be a vector space
and let S and T be subspaces of V. Then
S+T 5
T ~SNT
Proof. Let 7: (S +T) — S/(S NT) be defined by
T(s+t)=s+(SNT)
We leave it to the reader to show that 7 is a well-defined surjective linear

transformation, with kernel 7. An application of the first isomorphism theorem
then completes the proof.[]
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The following theorem demonstrates one way in which the expression V' /S
behaves like a fraction.

Theorem 3.8 (The third isomorphism theorem) Let V' be a vector space and
suppose that S C T C 'V are subspaces of V. Then
VS VvV

T/S ™~ T

Proof. Let 7:V /S — V /T be defined by 7(v + S) = v+ T. We leave it to the
reader to show that 7 is a well-defined surjective linear transformation whose
kernel is T'/S. The rest follows from the first isomorphism theorem.[]

The following theorem demonstrates one way in which the expression V' /S
does not behave like a fraction.

Theorem 3.9 Let V' be a vector space and let S be a subspace of V. Suppose
thatV.=Vi @& Voand S = S1 ® Sy with S; C V;. Then
V_helh W0

S S1 &Sy - ST Sy
Proof. Let 7: V' — (V1 /Sy) B (V2/Ss) be defined by
7'(1)1 + Ug) = ('Ul + Sl,’UQ + S2)

This map is well-defined, since the sum V =V} & V5 is direct. We leave it to
the reader to show that 7 is a surjective linear transformation, whose kernel is
S1 @ Ss. The rest follows from the first isomorphism theorem.[]

Linear Functionals

Linear transformations from V' to the base field F' (thought of as a vector space
over itself) are extremely important.

Definition Let V' be a vector space over F. A linear transformation
f € L(V, F) whose values lie in the base field F is called a linear functional
(or simply functional) on V. (Some authors use the term linear function.) The
vector space of all linear functionals on 'V is denoted by V" and is called the
algebraic dual space of V.[OJ

The adjective algebraic is needed here, since there is another type of dual space
that is defined on general normed vector spaces, where continuity of linear
transformations makes sense. We will discuss the so-called continuous dual
space briefly in Chapter 13. However, until then, the term “dual space” will
refer to the algebraic dual space.
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To help distinguish linear functionals from other types of linear transformations,
we will usually denote linear functionals by lowercase italic letters, such as f, g
and h.

Example3.1 The map f: F[z] — F defined by f(p(z)) =p(0) is a linear
functional, known as evaluation at 0.[]

Example 3.2 Let Ca, b] denote the vector space of all continuous functions on
[a,b] CR. Let f:C[a,b] — R be defined by

b
fla(x)) = / o(z) do
Then f € Cla, b]*.0

For any f € V", the rank plus nullity theorem is
dim(ker(f)) + dim(im(f)) = dim(V)

But since im(f) C F', we have either im(f) = {0}, in which case f is the zero
linear functional, or im(f) = F, in which case f is surjective. In other words, a
nonzero linear functional is surjective. Moreover, if f # 0, then

codim(ker(f)) = dim<kez/<f>> _

and if dim(V") < oo, then
dim(ker(f)) = dim(V') — 1

Thus, in dimensional terms, the kernel of a linear functional is a very “large”
subspace of the domain V.

The following theorem will prove very useful.

Theorem 3.10

1) For any nonzero vector v € V, there exists a linear functional f € V" for
which f(v) # 0.

2) Avectorv €V is zero if and only if f(v) = 0 forall f € V.

3) Let f € V. If f(x) #0, then

V = (x) @ ker(f)

4) Two nonzero linear functionals f,g € V* have the same kernel if and only
if there is a nonzero scalar X\ such that f = \g.

Proof. For part 3), if 0# v e (z) Nker(f), then f(v) =0 and v = az for

0# a € F, whence f(z) =0, which is false. Hence, (x) Nker(f) = {0} and

the direct sum S = (z) @ ker(f) exists. Also, for any v € V' we have
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—Mx U—Mﬂf x T
i) *( @) >E”“‘e(f)

and so V = (z) @ ker(f).
For part 4), if f=MAg for A #0, then ker(f)=ker(g). Conversely, if
K = ker(f) = ker(g), then for x ¢ K we have by part 3),

V={(x)oK

Of course, f|x = Ag|x for any A. Therefore, if A = f(z)/g(x), it follows that
Ag(z) = f(z) and hence f = \g.0

Dual Bases

Let V be a vector space with basis B = {v; | i € I'}. For each i € I, we can
define a linear functional v} € V" by the orthogonality condition

v; (v) = bij

where ¢; ; is the Kronecker delta function, defined by

s _f1 iti=j
WTN0 0 ifi#£ g

Then the set B* = {v! |i € I} is linearly independent, since applying the
equation

f— . * ... . *
0= aiv; +--- +a;,v;,

to the basis vector v;, gives

n n
0= E :al‘yvij (v%k) - E aljél‘jﬂk =
J=1 J=1

for all ij,.

Theorem 3.11 Let V' be a vector space with basis B = {v; | i € I'}.

1) Theset B* = {v} | i € I} is linearly independent.

2) If'V is finite-dimensional, then B* is a basis for V*, called the dual basis of
B

Proof. For part 2), for any f € V*, we have

Z fvj)vj(vi) = Z f(v;)6i;= f(vi)

and so f = ) f(v;)v] is in the span of B*. Hence, B’ is a basis for V*.00
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It follows from the previous theorem that if dim(V') < oo, then
dim(V*) =dim(V)

since the dual vectors also form a basis for I*. Our goal now is to show that the
converse of this also holds. But first, let us consider an example.

Example3.3 Let V be an infinite-dimensional vector space over the field
F =7, = {0, 1}, with basis B. Since the only coefficients in F" are 0 and 1, a
finite linear combination over F' is just a finite sum. Hence, V' is the set of all
finite sums of vectors in B and so according to Theorem 0.12,

VI < |Po(B)| = |B

On the other hand, each linear functional f € V* is uniquely defined by
specifying its values on the basis 5. Since these values must be either 0 or 1,
specifying a linear functional is equivalent to specifying the subset of 5 on
which f takes the value 1. In other words, there is a one-to-one correspondence
between linear functionals on V' and all subsets of 3. Hence,

Vi =IP(B)| > |B| = V|
This shows that V* cannot be isomorphic to V', nor to any proper subset of V.
Hence, dim(V*) > dim(V").0
We wish to show that the behavior in the previous example is typical, in
particular, that
dim(V) < dim(V™)
with equality if and only if V' is finite-dimensional. The proof uses the concept

of the prime subfield of a field K, which is defined as the smallest subfield of
the field K. Since 0,1 € K, it follows that K contains a copy of the integers

0,1,2=1+1,3=1+1+1,...
If K has prime characteristic p, then p = 0 and so K contains the elements
Z,=10,1,2,,...,p—1}
which form a subfield of K. Since any subfield F' of K contains 0 and 1, we see
that Z,, C F' and so Z,, is the prime subfield of K. On the other hand, if K has
characteristic 0, then K contains a “copy” of the integers Z and therefore also
the rational numbers Q, which is the prime subfield of K. Our main interest in
the prime subfield is that in either case, the prime subfield is countable.
Theorem 3.12 Let V' be a vector space. Then
dim(V') < dim(V'™)

with equality if and only if 'V is finite-dimensional.
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Proof. For any vector space V', we have
dim(V) < dim(V'™)

since the dual vectors to a basis B for V' are linearly independent in V*. We
have already seen that if V' is finite-dimensional, then dim(V') = dim(V*). We
wish to show that if V' is infinite-dimensional, then dim(V') < dim(V*). (The
author is indebted to Professor Richard Foote for suggesting this line of proof.)

If B is a basis for V' and if K is the base field for V, then Theorem 2.7 implies
that

V &~ (KP),
where (K5)j is the set of all functions with finite support from B to K and
V* ~ KB

where KZ is the set of all functions from B to K. Thus, we can work with the
vector spaces (K5), and K5.

The plan is to show that if F' is a countable subfield of K and if B is infinite,
then

dimg ((K%)o) = dimp ((FP)g) < dimp(FP) < dimy (K°)
Since we may take F' to be the prime subfield of K, this will prove the theorem.

The first equality follows from the fact that the K -space (%), and the F-space

(F B )o each have a basis consisting of the “standard” linear functionals
{fi |i € B} defined by

fivi=bi;

for all v; € B, where ¢; ; is the Kronecker delta function.

For the final inequality, suppose that { f;} C F% is linearly independent over F'

and that
> aifi=0

where o; € K. If {k;} is a basis for K over F, then o; = Zj a; k; fora; ; € F

and so
0= Z aifi = Z Z ai,jmjfl-
i i

Evaluating at any v € B gives
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O—ZZa“n,fz _Z <Zawf1 )

and since the inner sums are in F' and {x;} is F-independent, the inner sums

must be zero:
Z aiv]-f,- (’U) = O

Since this holds for all v € B, we have
Z a;jfi=0

which implies that a; ; = 0 for all ¢, j. Hence, {f;} is linearly independent over
K. This proves that dimp(F5) < dimy (K5).

For the center inequality, it is clear that
dimp ((F%)) < dimp(F")

We will show that the inequality must be strict by showing that the cardinality
of (FB)y is |B| whereas the cardinality of FZ is greater than |B|. To this end, the
set (F'8), can be partitioned into blocks based on the support of the function. In
particular, for each finite subset S of B, if we let

As ={f € (F®)o | supp(f) = S}

then

(F5) = | As

SCB
S finite
where the union is disjoint. Moreover, if S| = n, then
As] < |FI" < Ry

and so

[(F®)o] = > [As| < B] - Ro = max(|B|, %) = |B]
S o
But since the reverse inequality is easy to establish, we have
[(F®)o| = |B]

As to the cardinality of F'5, for each subset 7" of B, there is a function f; € F®
that sends every element of 7" to 1 and every element of 5\ T to 0. Clearly,
each distinct subset 7' gives rise to a distinct function fr and so Cantor's
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theorem implies that
|[F2] > 28] > 18] = [(F)o|
This shows that
dimp ((F%)) < dimp(F5)
and completes the proof.[]

Reflexivity

If V is a vector space, then so is the dual space V* and so we may form the
double (algebraic) dual space V**, which consists of all linear functionals
0:V* — F. In other words, an element o of V" is a linear functional that
assigns a scalar to each linear functional on V.

With this firmly in mind, there is one rather obvious way to obtain an element of
V**. Namely, if v € V, consider the map v: V* — F defined by

o(f) = f(v)

which sends the linear functional f to the scalar f(v). The map v is called
evaluation at v. To see thatv € V**,if f,g € V*and a,b € F, then

v(af +bg) = (af +bg)(v) = af(v) + bg(v) = av(f) + bv(g)

and so v is indeed linear.

We can now define amap 7: V' — V** by
TV =1
This is called the canonical map (or the natural map) from V' to V**. This

map is injective and hence in the finite-dimensional case, it is also surjective.

Theorem 3.13 The canonical map 7:V — V** defined by tv =7, where v is
evaluation at v, is a monomorphism. If V is finite-dimensional, then T is an
isomorphism.

Proof. The map 7 is linear since

au+ bu(f) = f(au+bv) = af(u) + bf(v) = (e + b0)(f)
for all f € V*. To determine the kernel of 7, observe that

Tv=0=7v=0
=7(f)=0forall f € V"
= f(v)=0forall f € V*
= v=0

by Theorem 3.10 and so ker(7) = {0}. In the finite-dimensional case, since
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dim(V*") = dim(V"*) = dim(V)
it follows that 7 is also surjective, hence an isomorphism.O]
Note that if dim(1") < oo, then since the dimensions of V' and V** are the same,
we deduce immediately that V' ~ V**. This is not the point of Theorem 3.13.
The point is that the natural map v — v is an isomorphism. Because of this, V'
is said to be algebraically reflexive. Theorem 3.13 and Theorem 3.12 together

imply that a vector space is algebraically reflexive if and only if it is finite-
dimensional.

If V is finite-dimensional, it is customary to identify the double dual space V**
with V' and to think of the elements of V** simply as vectors in V. Let us
consider a specific example to show how algebraic reflexivity fails in the
infinite-dimensional case.
Example 3.4 Let V' be the vector space over Z, with basis

er = (0,...,0,1,0,...)

where the 1 is in the kth position. Thus, V' is the set of all infinite binary
sequences with a finite number of 1's. Define the order o(v) of any v € V' to be
the largest coordinate of v with value 1. Then o(v) < oo forallv € V.

Consider the dual vectors e;,, defined (as usual) by
er(ej) = ok
For any v € V/, the evaluation functional v has the property that
v(er) = en(v) = 0ifk > o(v)

However, since the dual vectors e are linearly independent, there is a linear
functional f € V** for which

fle) =1

for all £k > 1. Hence, f does not have the form v for any v € V. This shows that
the canonical map is not surjective and so V' is not algebraically reflexive.[d

Annihilators

The functions f € V* are defined on vectors in V, but we may also define f on
subsets M of V' by letting

fM) ={f(v)[ve M}
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Definition Let M be a nonempty subset of a vector space V. The annihilator
MY of M is

M= {f e V" | f(M) = {0} O

The term annihilator is quite descriptive, since M° consists of all linear
functionals that annihilate (send to 0) every vector in M. It is not hard to see
that M" is a subspace of V*, even when M is not a subspace of V.

The basic properties of annihilators are contained in the following theorem.
Theorem 3.14
1) (Order-reversing) If M and N are nonempty subsets of V', then
MCN=N"CM
2) Ifdim(V') < oo, then for any nonempty subset M of V' the natural map
7:span(M) ~ M

is an isomorphism from span(M) onto M. In particular, if S is a
subspace of V, then S ~ S.
3) If S andT are subspaces of V, then

(SNT) =8"+71and (S+T)" =S"NnT"
Proof. We leave proof of part 1) for the reader. For part 2), since
M = (span(M))"

it is sufficient to prove that 7:S ~ S% is an isomorphism, where S is a
subspace of V. Now, we know that 7 is a monomorphism, so it remains to prove
that 7S = S If s € S, then 7s = 5 has the property that for all f € S°,

5(f)=fs=0

and so 7s =5 € S%, which implies that 7.5 C S°. Moreover, if 7 € S, then
for all f € S° we have

fv)=3(f) =0

and so every linear functional that annihilates S also annihilates v. But if v ¢ .S,
then there is a linear functional g € V* for which ¢(S) = {0} and g(v) # 0.
(We leave proof of this as an exercise.) Hence, v € S and so v = 7v € 75 and
so S C 78.

For part 3), it is clear that f annihilates S + 7" if and only if f annihilates both
S and T. Hence, (S +7)"=SNT" Also, if f=g+h € S"+T" where
geS%andh € T, theng,h € (SNT)?andso f € (SNT)". Thus,
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S'+1Cc(SnT)°
For the reverse inclusion, suppose that f € (S N T)°%. Write
Vv=SaSnT)aeT aU

where S =S @ (SNT)and T = (SNT) DT Define g € V* by

gls=f, glsar = flsor =0, glv =0, gluv=f
and define h € V* by

hlss =0, hlsnr = flsor =0, hlp=f, hlp=0
It follows that g € T°, h € S® and g + h = f.0O0
Annihilators and Direct Sums

Consider a direct sum decomposition

V=Sa&T
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Then any linear functional f € T can be extended to a linear functional fonV
by setting f(.S) = 0. Let us call this extension by 0. Clearly, f € S° and it is
easy to see that the extension by 0 map f — f is an isomorphism from 7™ to

S9 whose inverse is the restriction to 7.

Theorem 3.15Let V =S & T.
a) The extension by 0 map is an isomorphism from T* to S° and so

T~ S°
b) If'V is finite-dimensional, then
dim(S") = codimy (S) = dim(V') — dim(9)

O

Example 3.5 Part b) of Theorem 3.15 may fail in the infinite-dimensional case,
since it may easily happen that S ~ V*. As an example, let V be the vector
space over Zs with a countably infinite ordered basis B = (e, ea,...). Let
S ={(e;) and T = (eq,e3,...). It is easy to see that S° ~ T* ~ V* and that

dim(V*) > dim(V).00

The annihilator provides a way to describe the dual space of a direct sum.

Theorem 3.16 A linear functional on the direct sum V' =S & T can be written
as a sum of a linear functional that annihilates S and a linear functional that

annihilates T, that is,

SeT) =S"aT1°
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Proof. Clearly S’ NT° = {0}, since any functional that annihilates both S and
T must annihilate S @7 = V. Hence, the sum S°+ 7 is direct. The rest
follows from Theorem 3.14, since

Vi ={0}'=(SNT) " =8"+1" =5 1"

Alternatively, since pr + ps = ¢ is the identity map, if f € V*, then we can
write

f=folpr+ps)=(fopr)+(fops)eS"®&T
andso V* = S ¢ 7.0
Operator Adjoints
If 7 € L(V,W), then we may define a map 7°: W" — V* by
T(f)=for= /T
for f € W". (We will write composition as juxtaposition.) Thus, for any v € V,
[T (Pl(v) = f(7v)

The map 7 is called the operator adjoint of 7 and can be described by the
phrase “apply 7 first.”

Theorem 3.17 (Properties of the Operator Adjoint)
1) Fort,o€ L(V,W)anda,b€F,

(aT +bo)* = at™ 4+ bo™

2) Foroe LV ,W)andT e LIW,U),
(o) = o7
3) For any invertible T € L(V),
(1% = (7)L
Proof. Proof of part 1) is left for the reader. For part 2), we have for all f € U*,
(10)*(f) = f(r0) = o7 (f7) = o*(7"(f)) = (" 77)(f)
Part 3) follows from part 2) and
P = () = =

and in the same way, (77!)*7* = 1. Hence (77!)* = (r*)~1.00

If 7€ L(V,W), then 7 € L(W*,V*) and so 7** € L(V**, W*™). Of course,
7** is not equal to 7. However, in the finite-dimensional case, if we use the

natural maps to identify V** with V' and W** with W, then we can think of 7**
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as being in L(V,W). Using these identifications, we do have equality in the
finite-dimensional case.

Theorem 3.18 Let V' and W be finite-dimensional and let T € L(V ,W). If we
identify V** with V. and W** with W using the natural maps, then 7> is
identified with .

Proof. For any x € V' let the corresponding element of V** be denoted by = and
similarly for W. Then before making any identifications, we have forv € V,

T @) = ()] = o(f7) = f(rv) = T0(f)
for all f € W" and so
@) =T e W
Therefore, using the canonical identifications for both V** and W** we have
() =10
forallv e V.O

The next result describes the kernel and image of the operator adjoint.

Theorem 3.19 Let 7 € L(V,W). Then
1) ker(7*) = im(7)°
2) im(7*) = ker(7)"
Proof. For part 1),
ker(7%) = {f e W* | 7°(f) = 0}

={feW" | f(zV) ={0}}

={f eW"| f(im(r)) = {0}}

= im(7)"
For part 2), if f=gr=7"g¢€im(r*), then ker(r) C ker(f) and so
f € ker(7)".

For the reverse inclusion, let f € ker(7) C V*. We wish to show that
f=1%g=gr for some g € W*. On K = ker(7), there is no problem since f
and 77g = g7 agree on K for any g € W*. Let S be a complement of ker(7).
Then 7 maps a basis B = {b; | i € I'} for S to a linearly independent set

B ={1b; | i €I}
in W and so we can define g € W* on 7B by setting
g(tbi) = fbi

and extending to all of W. Then f = g7 = 7% ¢ on B and therefore on S. Thus,
f=1"g €im(r*).0
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Corollary 3.20 Let 7 € L(V,W), where V and W are finite-dimensional.
Then tk(7) = tk(7>).0

In the finite-dimensional case, 7 and 7™ can both be represented by matrices.
Let

B = (bl,...,bn) and C = (617...7Cm)
be ordered bases for V and W, respectively, and let
B* = (by,...,b;)and C* = (cy,...,cp)

-5 Gy

be the corresponding dual bases. Then
([7lsc)ij = ([7bjle)i = ci[7by]
and
([T e )iy = ([T (cj)lB-)i = 07" [77 (c})] = 77 (¢5) (bi) = ¢ (7by)

Comparing the last two expressions we see that they are the same except that the
roles of 7 and j are reversed. Hence, the matrices in question are transposes.

Theorem 3.21 Let 7 € L(V, W), where V and W are finite-dimensional. If B
and C are ordered bases for V. and W, respectively, and B* and C* are the
corresponding dual bases, then

[ )e s = ([T]B.e)'

In words, the matrices of T and its operator adjoint T* are transposes of one
another.]

Exercises

1. If V is infinite-dimensional and S is an infinite-dimensional subspace, must
the dimension of V'/S be finite? Explain.

Prove the correspondence theorem.

Prove the first isomorphism theorem.

Complete the proof of Theorem 3.9.

Let S be a subspace of V. Starting with a basis {si,...,s;} for S, how
would you find a basis for V' /S?

6. Use the first isomorphism theorem to prove the rank-plus-nullity theorem

tk(7) + null(7) = dim(V')

nhwn

for7 € L(V,W) and dim(V) < oo.
7. Let 7€ L(V) and suppose that S is a subspace of V. Define a map
7:V/S —V/Sby



11.

12.

13.

14.

15.

16.
17.

18.
19.

20.
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v+ 8)=71v+ S

When is 7 well-defined? If 7 is well-defined, is it a linear transformation?
What are im(7’) and ker(7/)?

Show that for any nonzero vector v € V, there exists a linear functional
f € V* for which f(v) # 0.

Show that a vector v € V' is zero if and only if f(v) = 0 forall f € V*.

. Let S be a proper subspace of a finite-dimensional vector space V' and let

v€ V\S. Show that there is a linear functional f € V* for which
f(v) =1and f(s) =0foralls € S.
Find a vector space V' and decompositions

V=AeB=C®D

with A ~ C but B % D. Hence, A ~ C does not imply that A° ~ C°.
Find isomorphic vectors spaces V and W with

V=S@&BandW =S&D

but B % D. Hence, V ~ W does not imply that V' /S ~ W /S.
Let V be a vector space with

V=Soeh=55¢T

Prove that if S; and S5 have finite codimension in V', then so does S1 N Sy
and

codim(S; N Sy) < dim(7y) + dim(T3)
Let V be a vector space with
V=85&T =80T

Suppose that S} and S5 have finite codimension. Hence, by the previous
exercise, so does S; N S,. Find a direct sum decomposition V =W & X
for which (1) W has finite codimension, (2) W C S1N S5 and (3)
XDT + T

Let B be a basis for an infinite-dimensional vector space V' and define, for
all b € B, the map b’ € V* by b/(¢) =1 if ¢ = b and 0 otherwise, for all
¢ € B. Does {0’ | b € B} form a basis for V*? What do you conclude about
the concept of a dual basis?

Prove that if S and T are subspaces of V, then (S & T)* ~ S*H T*.

Prove that 0* = 0 and +* = ¢ where 0 is the zero linear operator and ¢ is
the identity.

Let S be a subspace of V. Prove that (V' /S)* ~ S°.

Verify that

a) (1+o0) =7"+c"forr,0€ L(V,W).

b) (rr)* =rr*foranyr € Fand7 € L(V,W)

Let 7€ L(V,W), where V and W are finite-dimensional. Prove that
tk(7) = rk(7%).



Chapter 4
Modules I: Basic Properties

Motivation

Let V be a vector space over a field F' and let 7 € £L(V). Then for any
polynomial p(z) € F[z], the operator p(7) is well-defined. For instance, if
p(z) = 1+ 2z + 2°, then

p(r)=t+2r+7°

where ¢ is the identity operator and 72 is the threefold composition 7o 7o 7.

Thus, using the operator 7 we can define the product of a polynomial
p(x) € Fx] and a vector v € V by

p(x)v = p(7)(v) (4.1)

This product satisfies the usual properties of scalar multiplication, namely, for
all r(z), s(x) € Flz] and u,v € V,

r(z)(u+v) = r(x)u + r(z)v
(r(z) + s(x)u = r(x)u + s(x)u
[r(z)s(z)]u = r(z)[s(z)u]

lu=u

Thus, for a fixed 7 € £(V'), we can think of V' as being endowed with the
operations of addition and multiplication of an element of V' by a polynomial in
F[z]. However, since F'[z] is not a field, these two operations do not make V'
into a vector space. Nevertheless, the situation in which the scalars form a ring
but not a field is extremely important, not only in this context but in many
others.

Modules

Definition Let R be a commutative ring with identity, whose elements are
called scalars. An R-module (or a module over R) is a nonempty set M,
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together with two operations. The first operation, called addition and denoted
by +, assigns to each pair (u,v) € M x M, an element uw+v € M. The
second operation, denoted by juxtaposition, assigns to each pair
(r,v) € Rx M, an element rv € M. Furthermore, the following properties
must hold:

1) M is an abelian group under addition.

2) Forallr,s € Randu,v € M

r(u4v) =ru+rv
(r+s)u=ru+ su
(rs)u = r(su)
lu=u

The ring R is called the base ring of M .01

Note that vector spaces are just special types of modules: a vector space is a
module over a field.

When we turn in a later chapter to the study of the structure of a linear
transformation 7 € £(V'), we will think of V' as having the structure of a vector
space over F as well as a module over F'[z] and we will use the notation V;. Put
another way, V; is an abelian group under addition, with two scalar
multiplications—one whose scalars are elements of F' and one whose scalars are
polynomials over F'. This viewpoint will be of tremendous benefit for the study
of 7. For now, we concentrate only on modules.

Example 4.1

1) If R is aring, the set R" of all ordered n-tuples whose components lie in R
is an R-module, with addition and scalar multiplication defined
componentwise (just as in F),

(a1, . an) + (b1, ... bp) = (a1 + by, ... a4y + by)
and
r(ai,...,a,) = (ray,...,ray,)

for a;, b;, m € R. For example, Z" is the Z-module of all ordered n-tuples
of integers.

2) If R is a ring, the set M,, ,(R) of all matrices of size m X n is an R-
module, under the usual operations of matrix addition and scalar
multiplication over R. Since R is a ring, we can also take the product of
matrices in M,,,,(R). One important example is R = F[z], whence
M n(F[z]) is the F[z]-module of all m X n matrices whose entries are
polynomials.

3) Any commutative ring R with identity is a module over itself, that is, R is
an R-module. In this case, scalar multiplication is just multiplication by
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elements of R, that is, scalar multiplication is the ring multiplication. The
defining properties of a ring imply that the defining properties of the R-
module R are satisfied. We shall use this example many times in the
sequel.d

Importance of the Base Ring

Our definition of a module requires that the ring R of scalars be commutative.
Modules over noncommutative rings can exhibit quite a bit more unusual
behavior than modules over commutative rings. Indeed, as one would expect,
the general behavior of R-modules improves as we impose more structure on
the base ring R. If we impose the very strict structure of a field, the result is the
very well behaved vector space.

To illustrate, we will give an example of a module over a noncommutative ring
that has a basis of size n for every integer n > 0! As another example, if the
base ring is an integral domain, then whenever wvy,...,v, are linearly
independent over R so are rvi,...,7v, for any nonzero r € R. This can fail
when R is not an integral domain.

We will also consider the property on the base ring R that all of its ideals are
finitely generated. In this case, any finitely generated R-module M has the
property that all of its submodules are also finitely generated. This property of
R-modules fails if R does not have the stated property.

When R is a principal ideal domain (such as Z or F[z]), each of its ideals is
generated by a single element. In this case, the R-modules are “reasonably” well
behaved. For instance, in general, a module may have a basis and yet possess a
submodule that has no basis. However, if R is a principal ideal domain, this
cannot happen.

Nevertheless, even when R is a principal ideal domain, R-modules are less well
behaved than vector spaces. For example, there are modules over a principal
ideal domain that do not have any linearly independent elements. Of course,
such modules cannot have a basis.

Submodules

Many of the basic concepts that we defined for vector spaces can also be
defined for modules, although their properties are often quite different. We
begin with submodules.

Definition 4 submodule of an R-module M is a nonempty subset S of M that
is an R-module in its own right, under the operations obtained by restricting the
operations of M to S. We write S < M to denote the fact that S is a submodule
of M.OO
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Theorem 4.1 A nonempty subset S of an R-module M is a submodule if and
only if it is closed under the taking of linear combinations, that is,

rse€RuveS=rut+sves O

Theorem 4.2 If'S and T are submodules of M, then S N'T and S + T are also
submodules of M .1

We have remarked that a commutative ring R with identity is a module over
itself. As we will see, this type of module provides some good examples of non-
vector-space-like behavior.

When we think of a ring R as an R-module rather than as a ring, multiplication
is treated as scalar multiplication. This has some important implications. In
particular, if S is a submodule of R, then it is closed under scalar multiplication,
which means that it is closed under multiplication by all elements of the ring R.
In other words, S is an ideal of the ring R. Conversely, if Z is an ideal of the
ring R, then 7 is also a submodule of the module R. Hence, the submodules of
the R-module R are precisely the ideals of the ring R.

Spanning Sets
The concept of spanning set carries over to modules as well.
Definition 7/%e submodule spanned (or generated) by a subset S of a module
M is the set of all linear combinations of elements of S':
(S) ={rwvi 4+ +mrw, | r € Ryv; € S,n>1}
A subset S C M is said to span M or generate M if M = ((S)).00
We use a double angle bracket notation for the submodule generated by a set
because when we study the F-vector space/F[z]-module V,, we will need to

make a distinction between the subspace (v) = Fv generated by v € V' and the
submodule (v)) = F[z]v generated by v.

One very important point to note is that if a nontrivial linear combination of the
elements vy, ..., v, in an R-module M is 0,
T+ TR, = 0

where not all of the coefficients are 0, then we cannot conclude, as we could in
a vector space, that one of the elements v; is a linear combination of the others.
After all, this involves dividing by one of the coefficients, which may not be
possible in a ring. For instance, for the Z-module Z x Z we have

2(3,6) — 3(2,4) = (0,0)

but neither (3, 6) nor (2,4) is an integer multiple of the other.
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The following simple submodules play a special role in the theory.

Definition Let M be an R-module. A submodule of the form
{(v) = Rv={rv|r e R}

forv € M is called the cyclic submodule generated by v.[J

Of course, any finite-dimensional vector space is the direct sum of cyclic
submodules, that is, one-dimensional subspaces. One of our main goals is to
show that a finitely generated module over a principal ideal domain has this
property as well.

Definition An R-module M is said to be finitely generated if it contains a
finite set that generates M. More specifically, M is n-generated if it has a
generating set of size n (although it may have a smaller generating set as

well).O]

Of course, a vector space is finitely generated if and only if it has a finite basis,
that is, if and only if it is finite-dimensional. For modules, life is more
complicated. The following is an example of a finitely generated module that
has a submodule that is not finitely generated.

Example 4.2 Let R be the ring F[z1,z2,...] of all polynomials in infinitely
many variables over a field F. It will be convenient to use X to denote
X1, T, ... and write a polynomial in R in the form p(X). (Each polynomial in
R, being a finite sum, involves only finitely many variables, however.) Then R
is an R-module and as such, is finitely generated by the identity element
p(X) =1

Now consider the submodule S of all polynomials with zero constant term. This
module is generated by the variables themselves,

S = <<(E1,.’172,...>>

However, S is not finitely generated. To see this, suppose that G = {pi, ..., p,}
is a finite generating set for S. Choose a variable z;, that does not appear in any
of the polynomials in GG. Then no linear combination of the polynomials in G
can be equal to . For if

o — iampim
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then let a;(X) = xpq;(X) + r;(X) where ;(X) does not involve x. This gives

o= 3 lonai () + (X0l (X)

=

=1
= ) a(X)n () + Y n(X)p(X)

The last sum does not involve z; and so it must equal 0. Hence, the first sum
must equal 1, which is not possible since p;(X) has no constant term.]

Linear Independence

The concept of linear independence also carries over to modules.

Definition A subset S of an R-module M is linearly independent if for any
distinct vy, ...,v, € Sandry,...,r, € R, we have

rivy 4+ 10, =0=1;=0foralli
A set S that is not linearly independent is linearly dependent.[]

It is clear from the definition that any subset of a linearly independent set is
linearly independent.

Recall that in a vector space, a set S of vectors is linearly dependent if and only
if some vector in S is a linear combination of the other vectors in S. For
arbitrary modules, this is not true.

Example 4.3 Consider Z as a Z-module. The elements 2,3 € Z are linearly
dependent, since

3(2) —2(3) =0

but neither one is a linear combination (i.e., integer multiple) of the other..]

The problem in the previous example (as noted earlier) is that
v+ v, =0
implies that
TIV] = — ToUs — +++ — Uy

but in general, we cannot divide both sides by rj, since it may not have a
multiplicative inverse in the ring R.
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Torsion Elements

In a vector space V' over a field F, singleton sets {v} where v # 0 are linearly
independent. Put another way, r # 0 and v # 0 imply v # 0. However, in a
module, this need not be the case.

Example 4.4 The abelian group Z, = {0,1,...,n—1} is a Z-module, with
scalar multiplication defined by za = (z - a) mod n, for all z € Z and a € Z,.
However, since na =0 for all a € Z,, no singleton set {a} is linearly
independent. Indeed, Z,, has no linearly independent sets.[]

This example motivates the following definition.

Definition Let M be an R-module. A nonzero element v € M for which rv =0
for some nonzero r € R is called a torsion element of M. A module that has no
nonzero torsion elements is said to be torsion-free. If all elements of M are
torsion elements, then M is a torsion module. The set of all torsion elements of
M, together with the zero element, is denoted by M,,.[]

If M is a module over an integral domain, it is not hard to see that M, is a
submodule of M and that M /M, is torsion-free. (We will define quotient
modules shortly: they are defined in the same way as for vector spaces.)

Annihilators

Closely associated with the notion of a torsion element is that of an annihilator.

Definition Let M be an R-module. The annihilator of an element v € M is
ann(v) = {r € R | rv =0}
and the annihilator of a submodule N of M is
ann(N) = {re R|rN = {0}}
where rN = {rv | v € N}. Annihilators are also called order ideals.[]
It is easy to see that ann(v) and ann(N) are ideals of R. Clearly, v € M is a

torsion element if and only if ann(v) # {0}. Also, if A and B are submodules of
M, then

A<B = anmn(B)<ann(A4)
(note the reversal of order).
Let M = ((uy,...,u,)) be a finitely generated module over an integral domain
R and assume that each of the generators w; is torsion, that is, for each i, there is

a nonzero a; € ann(u;). Then, the nonzero product a = a;- - -a,, annihilates each
generator of M and therefore every element of M, that is, a € ann(M). This
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shows that ann(M) # {0}. On the other hand, this may fail if R is not an
integral domain. Also, there are torsion modules whose annihilators are trivial.
(We leave verification of these statements as an exercise.)

Free Modules

The definition of a basis for a module parallels that of a basis for a vector space.

Definition Let M be an R-module. A subset B of M is a basis if B is linearly
independent and spans M. An R-module M is said to be free if M = {0} or if
M has a basis. If B is a basis for M, we say that M is free on 5.1

We have the following analog of part of Theorem 1.7.

Theorem 4.3 4 subset B of a module M is a basis if and only if every nonzero
v € M is an essentially unique linear combination of the vectors in B.0J

In a vector space, a set of vectors is a basis if and only if it is a minimal
spanning set, or equivalently, a maximal linearly independent set. For modules,
the following is the best we can do in general. We leave proof to the reader.

Theorem 4.4 Let B be a basis for an R-module M. Then
1) B is a minimal spanning set.
2) B is a maximal linearly independent set.[]

The Z-module Z, has no basis since it has no linearly independent sets. But
since the entire module is a spanning set, we deduce that a minimal spanning set
need not be a basis. In the exercises, the reader is asked to give an example of a
module M that has a finite basis, but with the property that not every spanning
set in M contains a basis and not every linearly independent set in M is
contained in a basis. It follows in this case that a maximal linearly independent
set need not be a basis.

The next example shows that even free modules are not very much like vector
spaces. It is an example of a free module that has a submodule that is not free.

Example 4.5 The set Z x Z is a free module over itself, using componentwise
scalar multiplication

(n,m)(a,b) = (na,mb)

with basis {(1,1)}. But the submodule Z x {0} is not free since it has no
linearly independent elements and hence no basis.[]

Theorem 2.2 says that a linear transformation can be defined by specifying its
values arbitrarily on a basis. The same is true for firee modules.
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Theorem 4.5 Let M and N be R-modules where M is free with basis
B ={b; | i € I}. Then we can define a unique R-map 7: M — N by specifying
the values of Tb; arbitrarily for all b; € B and then extending T to M by
linearity, that is,

T(a1vy + - + ayv,) = a1 + - + @, TV, O

Homomorphisms

The term linear transformation is special to vector spaces. However, the

concept applies to most algebraic structures.

Definition Let M and N be R-modules. A function 7:M — N is an R-

homomorphism or R-map if it preserves the module operations, that is,
T(ru+ sv) = rr(u) + s7(v)

forallr,s € R and w,v € M. The set of all R-homomorphisms from M to N is
denoted by homp (M, N). The following terms are also employed:

1) An R-endomorphism is an R-homomorphism from M to itself.

2) An R-monomorphism or R-embedding is an injective R-homomorphism.
3) An R-epimorphism is a surjective R-homomorphism.

4) An R-isomorphism is a bijective R-homomorphism..O]

It is easy to see that homp(M, N) is itself an R-module under addition of
functions and scalar multiplication defined by
(r7)(v) = r(Tv) = 7(rv)

Theorem 4.6 Let 7 € homp (M, N). The kernel and image of T, defined as for
linear transformations by

ker(r) ={ve M| v =0}
and
im(7) ={rv|ve M}
are submodules of M and N, respectively. Moreover, T is a monomorphism if

and only ifker(7) = {0}.0

If N is a submodule of the R-module M, then the map j: N — M defined by
Jj(v) = v is evidently an R-monomorphism, called injection of N into M.

Quotient Modules

The procedure for defining quotient modules is the same as that for defining
quotient vector spaces. We summarize in the following theorem.
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Theorem 4.7 Let S be a submodule of an R-module M. The binary relation
u=veu—veS
is an equivalence relation on M, whose equivalence classes are the cosets
v+S={v+s|seS}

of S'in M. The set M /S of all cosets of S in M, called the quotient module of
M modulo S, is an R-module under the well-defined operations

(u+S)+(w+S)=(u+v)+S
r(u+S)=ru+95

The zero element in M /S is the coset 0 + S = S.00

One question that immediately comes to mind is whether a quotient module of a
free module must be free. As the next example shows, the answer is no.

Example 4.6 As a module over itself, Z is free on the set {1}. For any n > 0,
the set Zn = {zn | z € Z} is a free cyclic submodule of Z, but the quotient Z-
module Z/7Zn is isomorphic to Z, via the map

T(u 4+ Zn) = umodn
and since Z,, is not free as a Z-module, neither is Z/Zn.0]

The Correspondence and Isomorphism Theorems

The correspondence and isomorphism theorems for vector spaces have analogs
for modules.

Theorem 4.8 (The correspondence theorem) Let S be a submodule of M.
Then the function that assigns to each intermediate submodule S C'T' C M the
quotient submodule T /S of M /S is an order-preserving (with respect to set
inclusion) one-to-one correspondence between submodules of M containing S
and all submodules of M /S.00

Theorem 4.9 (The first isomorphism theorem) Let 7: M — N be an R-
homomorphism. Then the map 7': M /ker(7) — N defined by

7' (v +ker(7)) = v

is an R-embedding and so
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Theorem 4.10 (The second isomorphism theorem) Let M be an R-module
and let S and T be submodules of M. Then

S+T 8
T T SNnT
Theorem 4.11 (The third isomorphism theorem) Let M be an R-module and
suppose that S C T are submodules of M. Then

M/S M
— o~ — O
T/S T

O

Direct Sums and Direct Summands
The definition of direct sum of a family of submodules is a direct analog of the
definition for vector spaces.
Definition 77e external direct sum of R-modules M, ..., M, denoted by
M=MHB---BM,
is the r-module whose elements are ordered n-tuples
M ={(vi,...,v5) |v; € M;,i=1,... ,n}
with componentwise operations
(Ury oo yup) + (V1,000 5 0,) = (U + 01,000 Uy +0p)
and
r(V1y .., U) = (TU1, .00, TO,)
forre RO
We leave it to the reader to formulate the definition of external direct sums and

products for arbitrary families of modules, in direct analogy with the case of
vector spaces.

Definition An R-module M is the (internal) direct sum of a family
F ={S;| i € I} of submodules of M, written

M:@f or M:@Si
1€

if the following hold:
1) (Join of the family) M is the sum (join) of the family F:

V=>S

i€l
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2) (Independence of the family) For eachi € I,

Sin [ >8] =10}

J#i
In this case, each S; is called a direct summand of M. If F = {Si,...,S,} is
a finite family, the direct sum is often written
M — Sl @ e @ ‘5'77

Finally, if M =S & T, then S is said to be complemented and T is called a
complement of S in M.

As with vector spaces, we have the following useful characterization of direct
sums.

Theorem 4.12 Let F = {S; | i € 1} be a family of distinct submodules of an R-
module M. The following are equivalent:
1) (Independence of the family) For each i € I,

sin (>8] =10}

J#i

2) (Uniqueness of expression for 0) The zero element 0 cannot be written as
a sum of nonzero elements from distinct submodules in F.

3) (Uniqueness of expression) Every nonzero v € M has a unique, except for
order of terms, expression as a sum

vV=8+--+58,

of nonzero elements from distinct submodules in F.

Hence, a sum
M=>"5

i€l

is direct if and only if any one of 1)-3) holds..J

In the case of vector spaces, every subspace is a direct summand, that is, every
subspace has a complement. However, as the next example shows, this is not
true for modules.

Example 4.7 The set Z of integers is a Z-module. Since the submodules of Z
are precisely the ideals of the ring Z and since Z is a principal ideal domain, the
submodules of Z are the sets

() =Zn={zn|z€eZ}
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Hence, any two nonzero proper submodules of Z have nonzero intersection, for
ifn # m > 0, then

In N Zm = 7k

where k& = lem{n, m}. It follows that the only complemented submodules of Z
are Z and {0}.00

In the case of vector spaces, there is an intimate connection between subspaces
and quotient spaces, as we saw in Theorem 3.6. The problem we face in
generalizing this to modules is that not all submodules are complemented.
However, this is the only problem.

Theorem 4.13 Let S be a complemented submodule of M. All complements of
S are isomorphic to M /S and hence to each other.

Proof. For any complement 7" of .S, the first isomorphism theorem applied to
the projection pr g: M — T gives T ~ M /S.00

Direct Summands and Extensions of Isomorphisms

Direct summands play a role in questions relating to whether certain module
homomorphisms o: N — M can be extended from a submodule N < M to the
full module M. The discussion will be a bit simpler if we restrict attention to
epimorphisms.

If M = N & H, then a module epimorphism o: N — M, can be extended to an
epimorphism o: M — M simply by sending the elements of H to zero, that is,
by setting

g(n+h)=on
This is easily seen to be an R-map with
ker(c) = ker(o) & H

Moreover, if 7 is another extension of o with the same kernel as &, then 7 and &
agree on H as well as on N, whence 7 = . Thus, there is a unigue extension of
o with kernel ker(o) © H.

Now suppose that o: N =~ M is an isomorphism. If NV is complemented, that is,
if
G=Na&H

then we have seen that there is a unique extension @ of o for which ker(z) = H.
Thus, the correspondence

H — o, whereker(c)=H

from complements of N to extensions of ¢ is an injection. To see that this
correspondence is a bijection, if o: M — M is an extension of o, then
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M = N @ ker(c)
To see this, we have
N Nker(a) = ker(o) = {0}
and if a € M, then there isab € N for which ob = 7a and so
gla—b)=da—0cb=0
Thus,
a=b+(a—b)e N +ker(d)
which shows that ker (@) is a complement of V.
Theorem 4.14 Let M and M, be R-modules and let N < M.

1) If M =N@&H, then any R-epimorphism o:N — M, has a unique
extension o: M — M, to an epimorphism with

ker(c) = ker(o) ® H
2) Leto: N ~ M be an R-isomorphism. Then the correspondence

Hw— 757, whereker(c)=H

is a bijection from complements of N onto the extensions of o. Thus, an
isomorphism o: N ~ M, has an extension to M if and only if N is
complemented.[]

Definition Let N < M. When the identity map v: N =~ N has an extension to
o:M — N, the submodule N is called a retract of M and o is called the
retraction map.]

Corollary 4.15 A submodule N < M is a retract of M if and only if N has a
complement in M.OJ

Direct Summands and One-Sided Invertibility

Direct summands are also related to one-sided invertibility of R-maps.

Definition Let 7: A — B be a module homomorphism.
1) A left inverse of 7 is a module homomorphism T1: B — A for which

TLOT = L.
2) A right inverse of 7 is a module homomorphism Tr: B — A for which
TOTR = L.

Left and right inverses are called one-sided inverses. An ordinary inverse is
called a two-sided inverse.[]

Unlike a two-sided inverse, one-sided inverses need not be unique.
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A left-invertible homomorphism o must be injective, since
ca=0cb=op,00a=0,00b=a=0»>

Also, a right-invertible homomorphism o: A — B must be surjective, since if
b € B, then

b= olor(b)] € im(0)

For set functions, the converses of these statements hold: o is left-invertible if
and only if it is injective and o is right-invertible if and only if it is surjective.
However, this is not the case for R-maps.

Let o: M — M, be an injective R-map. Referring to Figure 4.1,

H
e —
) o™ !im(c)
ey
Figure 4.1

the map o|™): M ~ im(c) obtained from o by restricting its range to im(c) is
an isomorphism and the left inverses o of o are precisely the extensions of
(o[™@)~1:im(c) ~ M to M,;. Hence, Theorem 4.14 says that the
correspondence

H +— extension of (¢|™))~! with kernel H

is a bijection from the complements H of im(o) onto the left inverses of o.

Now let 0: M — M; be a surjective R-map. Referring to Figure 4.2,

ker(c)

oly

_—>
e
M GR_(GlH) M1

Figure 4.2
if ker(o) is complemented, that is, if

M =ker(c) ® H
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then o|y: H ~ M, is an isomorphism. Thus, a map 7: M; — M is a right
inverse of o if and only if 7 is a range-extension of (o|g)~': My ~ H, the only
difference being in the ranges of the two functions. Hence, (o|g)~': My — M
is the only right inverse of o with image H. It follows that the correspondence

H i (o|lg) ™ My — M

is an injection from the complements H of ker(c) to the right inverses of o.
Moreover, this map is a bijection, since if or: M} — M is a right inverse of o,
then op: My ~im(og) and o is an extension of oy':im(cg) ~ M), which
implies that

M = im(og) @ ker(o)

Theorem 4.16 Let M and M, be R-modules and let o: M — M, be an R-map.
1) Leto: M — M, be injective. The map

H — extension of (™))~ with kernel H

is a bijection from the complements H of im(o) onto the left inverses of o.
Thus, there is exactly one left inverse of o for each complement of im(o)
and that complement is the kernel of the left inverse.

2) Leto: M — M, be surjective. The map

Hw (o|lg)™ My, — M

is a bijection from the complements H of ker(o) to the right inverses of o.
Thus, there is exactly one right inverse of o for each complement H of
ker(o) and that complement is the image of the right inverse. Thus,

M =ker(o) ® H =~ ker(c) Him(co) O

The last part of the previous theorem is worth further comment. Recall that if
7:V — W is a linear transformation on vector spaces, then

V = ker(7) B im(7)
This holds for modules as well provided that ker() is a direct summand.

Modules Are Not as Nice as Vector Spaces

Here is a list of some of the properties of modules (over commutative rings with
identity) that emphasize the differences between modules and vector spaces.

1) A submodule of a module need not have a complement.

2) A submodule of a finitely generated module need not be finitely generated.

3) There exist modules with no linearly independent elements and hence with
no basis.

4) A minimal spanning set or maximal linearly independent set is not
necessarily a basis.
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6)
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There exist free modules with submodules that are not free.
There exist free modules with linearly independent sets that are not
contained in a basis and spanning sets that do not contain a basis.

Recall also that a module over a noncommutative ring may have bases of
different sizes. However, all bases for a free module over a commutative ring
with identity have the same size, as we will prove in the next chapter.

Exercises

1.

2.

10.

11.

Give the details to show that any commutative ring with identity is a
module over itself.

Let S = {vy,...,v,} be a subset of a module M. Prove that N = ((.S)) is
the smallest submodule of M containing S. First you will need to formulate
precisely what it means to be the smallest submodule of M containing S'.
Let M be an R-module and let I be an ideal in R. Let I M be the set of all
finite sums of the form

vyt U

where r; € I and v; € M. Is IM a submodule of M?
Show that if S and T' are submodules of M, then (with respect to set
inclusion)

ST =gb{S,T}and S + T = lub{S, T}

Let 51 C Sy C--- be an ascending sequence of submodules of an R-
module M. Prove that the union J.S; is a submodule of M.

Give an example of a module M that has a finite basis but with the property
that not every spanning set in M contains a basis and not every linearly
independent set in M is contained in a basis.

Show that, just as in the case of vector spaces, an R-homomorphism can be
defined by assigning arbitrary values on the elements of a basis and
extending by linearity.

Let 7 € homp(M, N) be an R-isomorphism. If B is a basis for M, prove
that 78 = {7b | b € B} is a basis for N.

Let M be an R-module and let 7 € homp (M, M) be an R-endomorphism.
If 7 is idempotent, that is, if 72> = 7, show that

M = ker(7) ¢ im(7)

Does the converse hold?

Consider the ring R = F[x,y| of polynomials in two variables. Show that
the set M consisting of all polynomials in R that have zero constant term is
an R-module. Show that M is not a free R-module.

Prove that if R is an integral domain, then all R-modules M have the
following property: If vy, ..., v, is linearly independent over R, then so is
rvy, ..., T, for any nonzero r € R.
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12.

13.

14.

15.

16.

17.

18.

19.
20.

21.
22.
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Prove that if a nonzero commutative ring R with identity has the property
that every finitely generated R-module is free then R is a field.
Let M and N be R-modules. If S is a submodule of M and T is a
submodule of N show that
Me&N M __ N
SN |

SeT ~ S T

If R is a commutative ring with identity and 7 is an ideal of R, then Z is an

R-module. What is the maximum size of a linearly independent set in Z?

Under what conditions is Z free?

a) Show that for any module M over an integral domain the set M., of all
torsion elements in a module M is a submodule of M.

b) Find an example of a ring R with the property that for some R-module
M the set M, is not a submodule.

c) Show that for any module M over an integral domain, the quotient
module M /M, is torsion-free.

a) Find a module M that is finitely generated by torsion elements but for
which ann(M) = {0}.

b) Find a torsion module M for which ann(M) = {0}.

Let N be an abelian group together with a scalar multiplication over a ring

R that satisfies all of the properties of an R-module except that 1v does not

necessarily equal v for all v € N. Show that N can be written as a direct

sum of an R-module N, and another “pseudo R-module” V;.

Prove that homp(M, N) is an R-module under addition of functions and

scalar multiplication defined by

(r7)(v) = r(Tv) = 7(rv)

Prove that any R-module M is isomorphic to the R-module hompz(R, M).
Let R and S be commutative rings with identity and let f: R — S be a ring
homomorphism. Show that any S-module is also an R-module under the
scalar multiplication

rv= f(rjv

Prove that homy,(Z,,, Z,,) =~ Z; where d = ged(n, m).

Suppose that R is a commutative ring with identity. If Z and 7 are ideals of
R for which R/ ~ R/J as R-modules, then prove that Z = 7. Is the
result true if R/Z ~ R/J as rings?



Chapter 5
Modules II: Free and Noetherian Modules

The Rank of a Free Module

Since all bases for a vector space V' have the same cardinality, the concept of
vector space dimension is well-defined. A similar statement holds for free R-
modules when the base ring is commutative (but not otherwise).

Theorem 5.1 Let M be a free module over a commutative ring R with identity.
1) Then any two bases of M have the same cardinality.

2) The cardinality of a spanning set is greater than or equal to that of a basis.
Proof. The plan is to find a vector space V' with the property that, for any basis
for M, there is a basis of the same cardinality for V. Then we can appeal to the
corresponding result for vector spaces.

Let 7 be a maximal ideal of R, which exists by Theorem 0.23. Then R/Z is a
field. Our first thought might be that M is a vector space over R/Z, but that is
not the case. In fact, scalar multiplication using the field R/Z,

(r+ZI)v=rv

is not even well-defined, since this would require that ZM = {0}. On the other
hand, we can fix precisely this problem by factoring out the submodule

IM ={ayv1+ -+ ayv, | a; € T,v; € M}

Indeed, M /I M is a vector space over R/Z, with scalar multiplication defined
by

r+2Y(u+ZIM)=ru+IM
To see that this is well-defined, we must show that the conditions
r+Z=1r+1
u+IM=vu+IM

imply
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ru+IM =7v +IM
But this follows from the fact that
ru—7r'v =r(u—u)+(r—rW eIM

Hence, scalar multiplication is well-defined. We leave it to the reader to show
that M /T M is a vector space over R/Z.

Consider now a set B = {b; | i € I} C M and the corresponding set

M
B+IM={b+IM|icl}C ——
+ {b; + |ie }_IM

If B spans M over R, then B + ZM spans M /ZM over R/Z. To see this, note
that any v € M has the form v = Xr;b; for r; € R and so

v+ IM = (Z r,,;jb,,;j> +IM
J
= ri(bi, + IM)
J

=D (ri, + I)(b;, + M)

which shows that B + ZM spans M /T M.

Now suppose that B = {b; | i € I} is a basis for M over R. We show that
B+ IM is a basis for M /ZM over R/Z. We have seen that B+ ZM spans
M /IM. Also, if

> (ri, + )by, + IM) = IM

J

then Z} 7;;b;; € TM and so
Z rijbi; = Z a;,bi,
J k

where a;, € Z. From the linear independence of B we deduce that r;, € 7 for all
jand so 7, +Z =T. Hence B+ IM is linearly independent and therefore a
basis, as desired.

To see that |B| = |B + Z M|, note that if b; + ZM = by, + ZM, then
bi — bk = Z aijbij
J

where a;; € Z. If b; # by, then the coefficient of b; on the right must be equal to
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1 and so 1 € Z, which is not possible since 7 is a maximal ideal. Hence,
b; = by.
Thus, if B is a basis for M over R, then

|B|=|B+IM|= dimR/I(M/IM)

and so all bases for M over R have the same cardinality, which proves part 1).

Finally, if B spans M over R, then B+ ZM spans M /ZM and so
dimp,7(M/IM) < |B+IM| < |B]

Thus, B has cardinality at least as great as that of any basis for M over R.[J

The previous theorem allows us to define the rank of a free module. (The term
dimension is not used for modules in general.)

Definition Let R be a commutative ring with identity. The rank tk(M) of a
nonzero free R-module M is the cardinality of any basis for M. The rank of the
trivial module {0} is 0.00

Theorem 5.1 fails if the underlying ring of scalars is not commutative. The next
example describes a module over a noncommutative ring that has the
remarkable property of possessing a basis of size n for any positive integer n.

Example5.1 Let V' be a vector space over F' with a countably infinite basis
B = {bg,b1,...}. Let L(V) be the ring of linear operators on V. Observe that
L(V') is not commutative, since composition of functions is not commutative.

The ring £(V') is an £(V')-module and as such, the identity map ¢ forms a basis
for L(V'). However, we can also construct a basis for £(V') of any desired finite
size n. To understand the idea, consider the case n = 2 and define the operators

p1 and (2 by

Bi(bar) = bk, B1(bar1) =0
and

Ba(bar) = 0, B2(bor+1) = by

These operators are linearly independent essentially because they are surjective
and their supports are disjoint. In particular, if

fB1+96:=0
then

0= (fB1+ 90B2)(bax) = f(br)
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and

0= (fB1+ gb2)(bar+1) = g(br)

which shows that f = 0 and g = 0. Moreover, if h € £(V'), then we define f
and g by

J(br) = h(ba)
g(br) = h(bay11)

from which it follows easily that
h = fB1+ 9B
which shows that {31, B2} is a basis for L(V).

More generally, we begin by partitioning B into n blocks. For each
s=0,...,n—1,let

Bs = {b; | i = smod n}
Now we define elements 55 € L(V') by
ﬂs(bkﬂH-t) = 6f,73bk

where 0 < ¢ < n and where ¢, , is the Kronecker delta function. These functions
are surjective and have disjoint support. It follows that C,, = {fo, ..., Bn-1} is
linearly independent. For if

0= aOﬂO + -+ anflﬂnfl
where a; € L(V'), then, applying this to by, gives
0= Oétﬂt(bknﬁ) = at<bk)

for all k. Hence, a; = 0.

Also, C,, spans L(V), forif 7 € L(V'), we define oy € L(V') by
o (b)) = T(brpss)
to get
(@oBo + -+ an-180-1) (brn+t) = B (brnt) = r(br) = T(brnst)
and so
T=0afo+ -+ 18
Thus, C, = {fo, ..., Bn—1} is a basis for L(V') of size n.O

Recall that if B is a basis for a vector space V' over F', then V' is isomorphic to
the vector space (F'?), of all functions from B to F that have finite support. A
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similar result holds for free R-modules. We begin with the fact that (R?), is a
free R-module. The simple proofis left to the reader.

Theorem 5.2 Let B be any set and let R be a commutative ring with identity.
The set (RP)q of all functions from B to R that have finite support is a free R-
module of rank | B| with basis B = {6y} where

|1 ifz=b
‘5”(”5){0 iz b

This basis is referred to as the standard basis for (R?),.00

Theorem 5.3 Let M be an R-module. If B is a basis for M, then M is
isomorphic to (RP),.
Proof. Consider the map 7: M — (R?), defined by setting

Tb:5b

where ¢ is defined in Theorem 5.2 and extending 7 to M by linearity. Since 7
maps a basis for M to a basis B = {&} for (R?), it follows that 7 is an
isomorphism from M to (R?)y.00

Theorem 5.4 Two free R-modules (over a commutative ring) are isomorphic if
and only if they have the same rank.

Proof. If M ~ N, then any isomorphism 7 from M to N maps a basis for M to
a basis for N. Since 7 is a bijection, we have k(M) = rk(NN). Conversely,
suppose that rk(M) = k(). Let B be a basis for M and let C be a basis for N.
Since |B| = |C|, there is a bijective map 7: B — C. This map can be extended by
linearity to an isomorphism of M onto N and so M ~ N.O

We have seen that the cardinality of a (minimal) spanning set for a free module
M is at least equal to tk(M ). Let us now speak about the cardinality of maximal
linearly independent sets.

Theorem 5.5 Let R be an integral domain and let M be a free R-module. Then
all linearly independent sets have cardinality at most tk(M).

Proof. Since M ~ (R"), we need only prove the result for (R"),. Let Q) be the
field of quotients of R. Then (Q"), is a vector space. Now, if

B={vi|iel} C(R") < (Q)o

is linearly independent over () as a subset of (Q")y, then B is clearly linearly
independent over R as a subset of (R"),. Conversely, suppose that 3 is linearly
independent over R and

r T

ivil —+ -+ ivik =0

S1 S
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where s; # 0 for all ¢ and r; # 0 for some j. Multiplying by s = s1---5;, # 0
produces a nontrivial linear dependency over R,

s s

—rv;, + o+ —rpv;, =0

S1 Sk
which implies that r; = 0 for all ¢. Thus B is linearly dependent over R if and
only if it is linearly dependent over (). But in the vector space (Q")y, all sets of
cardinality greater than « are linearly dependent over ) and hence all subsets of
(R") of cardinality greater than « are linearly dependent over R.[]

Free Modules and Epimorphisms

If o: M — F is a module epimorphism where F' is free on 5, then it is easy to
define a right inverse for o, since we can define an R-map op: ' — M by
specifying its values arbitrarily on B and extending by linearity. Thus, we take
or(b) to be any member of o1 (b). Then Theorem 4.16 implies that ker(o) is a
direct summand of M and

M = ker(o) B F

This discussion applies to the canonical projection 7m: M — M /S provided that
the quotient M /S is free.

Theorem 5.6 Let R be a commutative ring with identity.
) If o:M — F is an R-epimorphism and F is free, then ker(c) is
complemented and

M =ker(o) ® N = ker(c) B F

where N ~ F.
2) If'Sis a submodule of M and if M /S is free, then S is complemented and
M
M~ SH—
S

If M, S and M /S are free, then
tk(M) = 1k(S) + rk (J\S/”[)
and if the ranks are all finite, then

rk<AS4> = rk(M) — 1k(S) O

Noetherian Modules

One of the most desirable properties of a finitely generated R-module M is that
all of its submodules be finitely generated:
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M finitely generated, S < M = S finitely generated

Example 4.2 shows that this is not always the case and leads us to search for
conditions on the ring R that will guarantee this property for R-modules.

Definition An R-module M is said to satisfy the ascending chain condition
(abbreviated ACC) on submodules if every ascending sequence of submodules

S1C 8 CS;C -
of M is eventually constant, that is, there exists an index k _for which
S = S11 = Sky2 =+

Modules with the ascending chain condition on submodules are also called
Noetherian modules (after Emmy Noether, one of the pioneers of module
theory).r]

Since a ring R is a module over itself and since the submodules of the module R
are precisely the ideals of the ring R, the preceding definition can be formulated
for rings as follows.

Definition 4 ring R is said to satisfy the ascending chain condition
(abbreviated ACC) on ideals if any ascending sequence

LChC~clzC---
of ideals of R is eventually constant, that is, there exists an index k for which

Ly =Irp1 = L2 = -+

A ring that satisfies the ascending chain condition on ideals is called a
Noetherian ring.[J

The following theorem describes the relevance of this to the present discussion.

Theorem 5.7

1) An R-module M is Noetherian if and only if every submodule of M is
finitely generated.

2) In particular, a ring R is Noetherian if and only if every ideal of R is
finitely generated.

Proof. Suppose that all submodules of M are finitely generated and that M

contains an infinite ascending sequence

51 CS5CSC--- (5.1

of submodules. Then the union
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s=UJs
J
is easily seen to be a submodule of M. Hence, S is finitely generated, say

S = {(uy,...,u,). Since u; € S, there exists an index k; such that u; € Sj.
Therefore, if K = max{ky, ..., k,}, we have

{ula"'yun} g Sk
and so
S = (ur,...,un) €S C Spy1 CSpp2 C---C S

which shows that the chain (5.1) is eventually constant.

For the converse, suppose that M satisfies the ACC on submodules and let S be
a submodule of M. Pick u; € S and consider the submodule S} = ((u;)) C S
generated by uy. If S; = 5, then S is finitely generated. If S; # S, then there is
aug €S — S;. Now let Sy = ((u1,us)). If Sy = S, then S is finitely generated.
If Sy#S, then pick u3; €S -5 and consider the submodule
S3 = ((ug,u9,u3)).

Continuing in this way, we get an ascending chain of submodules
(ur)) € (ur, ug)) € (ur,ug,ug) ©--- €

If none of these submodules were equal to S, we would have an infinite
ascending chain of submodules, each properly contained in the next, which
contradicts the fact that M satisfies the ACC on submodules. Hence,
S = {(uy,...,u,)) for some n and so S is finitely generated.[]

Our goal is to find conditions under which all finitely generated R-modules are
Noctherian. The very pleasing answer is that all finitely generated R-modules
are Noetherian if and only if R is Noetherian as an R-module, or equivalently,
as a ring.

Theorem 5.8 Let R be a commutative ring with identity.

1) R is Noetherian if and only if every finitely generated R-module is
Noetherian.

2) Let R be a principal ideal domain. If an R-module M is n-generated, then
any submodule of M is also n-generated.

Proof. For part 1), one direction is evident. Assume that R is Noetherian and

let M = ((u1,...,u,) be a finitely generated R-module. Consider the

epimorphism 7: R" — M defined by

T(Tla ce 7rn> =Trup + -+ rpuy,

Let S be a submodule of M. Then
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7 1(S)={ue R"|Tue S}

is a submodule of R" and 7(7~1S) = S. If every submodule of R" is finitely
generated, then 771(S) is finitely generated and so 771(S) = (v1,..., k).
Then S is finitely generated by {7v1, ..., 7v;}. Thus, it is sufficient to prove the
theorem for R", which we do by induction on n.

If n =1, any submodule of R is an ideal of R, which is finitely generated by
assumption. Assume that every submodule of R* is finitely generated for all
1 <k < nandlet S be a submodule of R".

If n > 1, we can extract from S something that is isomorphic to an ideal of R
and so will be finitely generated. In particular, let S be the “last coordinates” in
S, specifically, let

S1=4(0,...,0,a,) | (a1,...,ap_1,a,) € S for some ay,...,a,_1 € R}

The set .S; is isomorphic to an ideal of R and is therefore finitely generated, say
= {(G1)), where G = {g1, ..., gi} is a finite subset of .

Also, let
Sy={veS|v=(ay,...,a,-1,0) for someay,...,a, 1 € R}

be the set of all elements of S’ that have last coordinate equal to 0. Note that So
is a submodule of R" and is isomorphic to a submodule of R"'. Hence, the
inductive hypothesis implies that S5 is finitely generated, say So = ((G2)), where
G, is a finite subset of S.

By definition of Sy, each g; € G; has the form
9i=1(0,...,0,9in)
for g; , € R where there isa g; € S of the form
G = (9ijs--- s Gin-1,Gin)

Let G = {gy,...,0:}. We claim that S is generated by the finite set G; U Gs.

To see this, let v = (ay,...,a,) € S. Then (0,...,0,a,) € S; and so

( ,0, an Z Tigi

for r; € R. Consider now the sum
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k
w = Zr@: € (G1)

The last coordinate of this sum is

k
E TiGin = An
1=1

and so the difference v — w has last coordinate 0 and is thus in Sy = (Gs)).
Hence

v=(v—w)+we (Gr) + (G) = (G1UG))

as desired.

For part 2), we leave it to the reader to review the proof and make the necessary
changes. The key fact is that S is isomorphic to an ideal of R, which is
principal. Hence, S is generated by a single element of M .01

The Hilbert Basis Theorem

Theorem 5.8 naturally leads us to ask which familiar rings are Noetherian. The
following famous theorem describes one very important case.

Theorem 5.9 (Hilbert basis theorem) If a ring R is Noetherian, then so is the
polynomial ring R[x].

Proof. We wish to show that any ideal Z in R[z] is finitely generated. Let L
denote the set of all leading coefficients of polynomials in Z, together with the 0
element of R. Then L is an ideal of R.

To see this, observe that if o € L is the leading coefficient of f(x) € Z and if
r € R, then either ra = 0 or else r« is the leading coefficient of rf(z) € Z. In
either case, rav € L. Similarly, suppose that 8 € L is the leading coefficient of
g(x) € . We may assume that deg f(x) = i and deg g(z) = j, with i < j. Then
h(x) = 297! f(x) is in Z, has leading coefficient o and has the same degree as
g(x). Hence, either « — 3 is 0 or a«— [ is the leading coefficient of
h(z) — g(x) € Z.In either case a — 3 € L.

Since L is an ideal of the Noetherian ring R, it must be finitely generated, say
L= {ay,...,ay). Since a; € L, there exist polynomials f;(x) € Z with leading
coefficient a;. By multiplying each f;(x) by a suitable power of x, we may
assume that

deg fi(x) = d = max{deg f;(z)}

forall: =1,...,m.
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Now for £k =0,...,d —1 let L; be the set of all leading coefficients of
polynomials in Z of degree k, together with the 0 element of R. A similar
argument shows that L, is an ideal of R and so Lj is also finitely generated.
Hence, we can find polynomials P, = {pr1(z),...,ppn(x)} in T whose
leading coefficients constitute a generating set for L.

Consider now the finite set
d—1
P = (U Pk) U {fl(m)a e fm(m)}
k=0

If J is the ideal generated by P, then J C Z. An induction argument can be
used to show that 7 =Z. If g(x) € Z has degree 0, then it is a linear
combination of the elements of P, (which are constants) and is thus in 7.
Assume that any polynomial in Z of degree less than k is in 7 and let g(z) € Z
have degree k.

If k < d, then some linear combination h(z) over R of the polynomials in P
has the same leading coefficient as g(z) and if k > d, then some linear
combination i (z) of the polynomials

{xkﬂlfl(x)a >xk7dfm(x)} cJ

has the same leading coefficient as g(x). In either case, there is a polynomial
h(z) € J that has the same leading coefficient as g(x). Since g(z) — h(z) € 7
has degree strictly smaller than that of g(z) the induction hypothesis implies that

glx) —h(z) e J
and so
g(x) = [g(x) = @)+ h(z) € T
This completes the induction and shows that Z = 7 is finitely generated.[]
Exercises

1. If M is a free R-module and 7: M — N is an epimorphism, then must NV
also be free?

2. Let Z be an ideal of R. Prove that if R/Z is a free R-module, then Z is the

zero ideal.

Prove that the union of an ascending chain of submodules is a submodule.

4. Let S be a submodule of an R-module M. Show that if M is finitely
generated, so is the quotient module M /S.

5. Let S be a submodule of an R-module. Show that if both S and M /S are
finitely generated, then so is M .

6. Show that an R-module M satisfies the ACC for submodules if and only if
the following condition holds. Every nonempty collection S of submodules

had



138

\© %

11.

12.

13.

14.

15.
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of M has a maximal element. That is, for every nonempty collection S of

submodules of M there is an S &S with the property that

TeS=TCS.

Let 7: M — N be an R-homomorphism.

a) Show that if M is finitely generated, then so is im(7).

b) Show that if ker(r) and im(r) are finitely generated, then
M =ker(r) + S where S is a finitely generated submodule of M.
Hence, M is finitely generated.

If R is Noetherian and Z is an ideal of R show that R/Z is also Noetherian.

Prove that if R is Noetherian, then so is R[z1, ..., ;).

Find an example of a commutative ring with identity that does not satisfy

the ascending chain condition.

a) Prove that an R-module M is cyclic if and only if it is isomorphic to
R/T where T is an ideal of R.

b) Prove that an R-module M is simple (M # {0} and M has no proper
nonzero submodules) if and only if it is isomorphic to R/Z where Z is
a maximal ideal of R.

¢) Prove that for any nonzero commutative ring R with identity, a simple
R-module exists.

Prove that the condition that R be a principal ideal domain in part 2) of

Theorem 5.8 is required.

Prove Theorem 5.8 in the following way.

a) Show that if T C S are submodules of M and if T and S/T are
finitely generated, then so is S

b) The proof is again by induction. Assuming it is true for any module
generated by n elements, let M = ((v1,...,0,41)) and let
M’ = {(v1,...,v,)). Thenlet T'= S N M’ in part a).

Prove that any R-module M is isomorphic to the quotient of a free module

F. If M is finitely generated, then F' can also be taken to be finitely

generated.

Prove that if S and T" are isomorphic submodules of a module M it does

not necessarily follow that the quotient modules M /S and M /T are

isomorphic. Prove also that if S ® T} ~S ® T, as modules it does not
necessarily follow that 77 ~ T5. Prove that these statements do hold if all
modules are free and have finite rank.



Chapter 6
Modules over a Principal Ideal Domain

We remind the reader of a few of the basic properties of principal ideal
domains.

Theorem 6.1 Let R be a principal ideal domain.

1) An element r € R is irreducible if and only if the ideal (r) is maximal.

2) An element in R is prime if and only if it is irreducible.

3) R is a unique factorization domain.

4) R satisfies the ascending chain condition on ideals. Hence, so does any
finitely generated R-module M. Moreover, if M is n-generated, then any
submodule of M is n-generated.

Annihilators and Orders

When R is a principal ideal domain, all annihilators are generated by a single
element. This permits the following definition.

Definition Let R be a principal ideal domain and let M be an R-module.

1) If N is a submodule of M, then any generator of ann(N) is called an order
of N.

2) An order of an element v € M is an order of the submodule ((v)).0]

For readers acquainted with group theory, we mention that the order of a
module corresponds to the smallest exponent of a group, not to the order of the

group.

Theorem 6.2 Let R be a principal ideal domain and let M be an R-module.

1) If a is an order of N < M, then the orders of N are precisely the
associates of a. We denote any order of N by o(N) and, as is customary,
refer to o(N) as “the” order of N.

2) IfM =A® B, then

o(M) =lem(o(A),o(B))
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that is, the orders of M are precisely the least common multiples of the
orders of A and B.
Proof. We leave proof of part 1) for the reader. For part 2), suppose that

o(M)=16, o(A)=a, o(B)=p, I=lm(q,p)

Then 6 A = {0} and 6B = {0} imply that « | 6 and 5 | 6 and so A | 6. On the
other hand, A annihilates both A and B and therefore also M = A & B. Hence,
6| Aand so A ~ § is an order of M.OJ

Cyclic Modules

The simplest type of nonzero module is clearly a cyclic module. Despite their
simplicity, cyclic modules will play a very important role in our study of linear
operators on a finite-dimensional vector space and so we want to explore some
of their basic properties, including their composition and decomposition.

Theorem 6.3 Let R be a principal ideal domain.

1) If {(v)) is a cyclic R-module with annihilator («), then the multiplication
map 7: R — {((v)) defined by Tr = rv is an R-epimorphism with kernel ().
Hence the induced map

7 7 ()

@)
defined by
a(r+ (a)) =rv

is an isomorphism. In other words, cyclic R-modules are isomorphic to
quotient modules of the base ring R.

2)  Any submodule of a cyclic R-module is cyclic.

3) If {(v)) is a cyclic submodule of M of order «, then for 3 € R,

o({(Bv) = m

Also,
(Bv) =(v) & (o(v),8)=1 & o(Bv)=o0(v)

Proof. We leave proof of part 1) as an exercise. For part 2), let S < ((v)). Then
I={reR|rve S}isanideal of R and so I = (s) for some s € R. Thus,

S =Tv= Rsv=(sv))

For part 3), we have r(v) = 0 if and only if (r3)v = 0, that is, if and only if
a | 73, which is equivalent to
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(07

" ged(a,8) |

Thus, r € ann(Bv) if and only if r € () and so ann(v) = (7). For the second
statement, if (o, 5) = 1 then there exist a,b € R for which aae + b3 = 1 and so

v = (ac+bB)v =bpfv € (Bv)) < (v)

and so (Bv)) = ((v). Of course, if {Bv) = (v)) then o(Bv) = «. Finally, if
o(PBv) = a, then

v

«

“= O = i B

and so (o, 8) = 1.0
The Decomposition of Cyclic Modules
The following theorem shows how cyclic modules can be composed and

decomposed.

Theorem 6.4 Let M be an R-module.
1) (Composing cyclic modules) If uy,...,u, € M have relatively prime
orders, then

o(ur + -+ +uy) = o(ur)---o(uy)
and
(u) & - & (un)) = (ua + -+ un))
Consequently, if
M=A+--+A4,

where the submodules A; have relatively prime orders, then the sum is
direct.

2) (Decomposing cyclic modules) If o(v) = ay---a, where the «;'s are
pairwise relatively prime, then v has the form

V=t
where o(u;) = «; and so
(o) = (u1 + - +up) = (u1) © - @ (un)

Proof. For part 1), let oy, = o(uy), o == o+, and v := uy + -+ + w,,. Then
since 4 annihilates v, the order of v divides u. If o(v) is a proper divisor of ,
then for some index k, there is a prime p | oy for which ;/p annihilates v. But
1/ p annihilates each w; for i # k. Thus,
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0= Py iy = (M)
p p P\

Since o(uy) and p/ay, are relatively prime, the order of (u/cy)uy is equal to
o(uy) = ay, which contradicts the equation above. Hence, o(v) = p.

It is clear that ((u;+ -4 u,) C (u1) ®--- & ((u,)). For the reverse
inclusion, since o and i/ are relatively prime, there exist r, s € R for which

rog —l—sﬁ =1
aq

Hence
Uy = <ra1 —|—5M>u1 = sﬂul = sﬁ(ul +ooFuy) € (ur+ - Fuy))
(e75] (03] (675]

Similarly, uj, € {u; 4 --- + w,)) for all k and so we get the reverse inclusion.

Finally, to see that the sum above is direct, note that if
v+--+v,=0

where v; € A;, then each v; must be 0, for otherwise the order of the sum on the
left would be different from 1.

For part 2), the scalars 3, = 1/, are relatively prime and so there exist a; € R
for which

afi+ - +afy=1
Hence,
v=(a181+ -+ anfu)v = a1f1v + -+ + an v

Since o(frv) = p/ged(p, Br) = oy and since ay and «y are relatively prime,
we have o(ay0,v) = ay. The second statement follows from part 1).00

Free Modules over a Principal Ideal Domain

We have seen that a submodule of a free module need not be free: The
submodule Z x {0} of the module Z x Z over itself is not free. However, if R
is a principal ideal domain this cannot happen.

Theorem 6.5 Let M be a free module over a principal ideal domain R. Then
any submodule S of M is also fiee and tk(S) < rk(M).

Proof. We will give the proof first for modules of finite rank and then
generalize to modules of arbitrary rank. Since M ~ R" where n = rk(M) is
finite, we may in fact assume that M = R". Foreach 1 < k < n, let
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I, ={reR]|(ay,...,a5-1,7,0,...,0) € S forsome ay,...,a,-1 € R}

Then it is easy to see that I is an ideal of R and so I;; = (r};) for some rj; € R.
Let

up = (a1,...,a5-1,7%,0,...,0) € S
We claim that
B={u;|k=1,...,nandr; # 0}
is a basis for S. As to linear independence, suppose that
B={u;,...,u; }
and that
ajuj + - +aju; =0

Then comparing the j,th coordinates gives ajr; = 0 and since 7; # 0, it
follows that a;, = 0. In a similar way, all coefficients are 0 and so B is linearly
independent.

To see that 3 spans .S, we partition the elements x € S according to the largest
coordinate index i(x) with nonzero entry and induct on i(x). If i(x) = 0, then
x = 0, which is in the span of 5. Suppose that all © € S with i(z) < k are in
the span of BB and let i(x) = k, that is,

x=(ay,...,a0,...,0)
where aj, #0. Then aj € I}, and so r, #0 and aj, = cry, for some ¢ € R.

Hence, i(x — cuy) < k and so y = — cuy, € (B)) and therefore = € (B)).
Thus, B is a basis for S.

The previous proof can be generalized in a more or less direct way to modules
of arbitrary rank. In this case, we may assume that M = (R") is the R-module
of functions with finite support from « to R, where « is a cardinal number. We
use the fact that  is a well-ordered set, that is, x is a totally ordered set in which
any nonempty subset has a smallest element. If « € , the closed interval [0, &
is

0,0l ={rer|0<z<a}
Let S < M.Foreach0 < o < g, let
Mo = {f €5 | supp(f) € [0, ]}
Then the set
Lo ={f(a)| f € Ma}
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is an ideal of R and so 1, = (f,(c)) for some f, € S. We show that
B={fa|0<a<k, fola) # 0}
is a basis for S. First, suppose that
Mfoy + -+ rnfa, =0
where a; < o for ¢ < j. Applying this to o, gives
Tnfo,(0m) =0

and since R is an integral domain, r,, = 0. Similarly, r; = 0 for all 7 and so B is
linearly independent.

To show that B spans .S, since any f € S has finite support, there is a largest
index ay = i(f) for which f(ay) # 0. Now, if (B)) < S, then since « is well-
ordered, we may choose a g € S\ (B)) for which o = o, = i(g) is as small as
possible. Then ¢ € M,. Moreover, since 0 # g(«) € I,, it follows that
fo(a) # 0and g(a) = c¢f, () for some ¢ € R. Then

supp(g — cfa) € [0,
and
(9 —cfo)(a) = g(a) —cfa(a) =0
and so i(g — ¢f,) < a, which implies that g — ¢ f,, € (B)). But then
g=(9—cfa) +cfa €(B)

a contradiction. Thus, B is a basis for S.[]

In a vector space of dimension 7, any set of n linearly independent vectors is a
basis. This fails for modules. For example, Z is a Z-module of rank 1 but the
independent set {2} is not a basis. On the other hand, the fact that a spanning set
of size n is a basis does hold for modules over a principal ideal domain, as we
now show.

Theorem 6.6 Let M be a free R-module of finite rank n, where R is a principal
ideal domain. Let S = {s1,...,s,} be a spanning set for M. Then S is a basis
for M.

Proof. Let B = {by,...,b,} be a basis for M and define the map : M — M by
7h; = s; and extending to a surjective R-homomorphism. Since M is free,
Theorem 5.6 implies that

M = ker(r) B im(7) = ker(7) B M

Since ker(7) is a submodule of the free module and since R is a principal ideal
domain, we know that ker(7) is free of rank at most n. It follows that
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tk(M) = rk(ker(7)) + rk(M)

and so rk(ker(7)) = 0, that is, ker(7) = {0}, which implies that 7 is an R-
isomorphism and so S is a basis.[J

In general, a basis for a submodule of a free module over a principal ideal
domain cannot be extended to a basis for the entire module. For example, the set
{2} is a basis for the submodule 2Z of the Z-module Z, but this set cannot be
extended to a basis for Z itself. We state without proof the following result
along these lines.

Theorem 6.7 Let M be a free R-module of rank n, where R is a principal ideal
domain. Let N be a submodule of M that is free of rank k < n. Then there is a
basis B for M that contains a subset S = {vi,...,v;} for which
{ryvi,...,rpor} is a basis for N, for some nonzero elements 1, ..., r; of R.O]

Torsion-Free and Free Modules

Let us explore the relationship between the concepts of torsion-free and free. It
is not hard to see that any free module over an integral domain is torsion-free.
The converse does not hold, unless we strengthen the hypotheses by requiring
that the module be finitely generated.

Theorem 6.8 A finitely generated module over a principal ideal domain is free
if and only if'it is torsion-free.

Proof. We leave proof that a free module over an integral domain is torsion-free
to the reader. Let G = {vy,...,v,} be a generating set for M. Consider first the
case n = 1, whence G = {v}. Then G is a basis for M since singleton sets are
linearly independent in a torsion-free module. Hence, M is free.

Now suppose that G = {u, v} is a generating set with u, v # 0. If G is linearly
independent, we are done. If not, then there exist nonzero r,s € R for which
ru = sv. It follows that sM = s{(u,v)) C ((u)) and so sM is a submodule of a
free module and is therefore free by Theorem 6.5. But the map 7: M — sM
defined by 7v = sv is an isomorphism because M is torsion-free. Thus M is
also free.

Now we can do the general case. Write
G = {ul, e, U, U1y e e ,’l)”,k}

where S = {uy,...,u;} is a maximal linearly independent subset of G. (Note
that S is nonempty because singleton sets are linearly independent.)

For each v;, the set {uj,...,ug, v;} is linearly dependent and so there exist
a; € Rand ry,...,r; € R for which
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a;v; +ru + -+ rpup =0
Ifa=ay--a,_r, then
aM = afur, ..., up, V1, ..o, Vo) S (U1, ..., ug)
and since the latter is a free module, so is aM, and therefore so is M .[1

The Primary Cyclic Decomposition Theorem

The first step in the decomposition of a finitely generated module M over a
principal ideal domain R is an easy one.

Theorem 6.9 Any finitely generated module M over a principal ideal domain R
is the direct sum of a finitely generated free R-module and a finitely generated
torsion R-module

M = Mfree S5 Mtor

The torsion part My, is unique, since it must be the set of all torsion elements of
M, whereas the free part My, is unique only up to isomorphism, that is, the
rank of the free part is unique.

Proof. It is easy to see that the set M, of all torsion elements is a submodule of
M and the quotient M /M, is torsion-free. Moreover, since M is finitely
generated, so is M /M. Hence, Theorem 6.8 implies that M /M, is free.
Hence, Theorem 5.6 implies that

M = Mtor GO F
where F' ~ M / My, is free.
As to the uniqueness of the torsion part, suppose that M =T @& G where T is

torsion and G is free. Then T' C M,,. But if v=1¢+ g € My, for t € T and
geG,theng=v—1t € M andsog=0andv € T. Thus, T = M.

For the free part, since M = M, @ F = M, @ G, the submodules F' and G
are both complements of M, and hence are isomorphic.[]
Note that if {wy, ..., w,} is a basis for Mee We can write

M = <<U)1>> b---D <<wm>> S Mtor

where each cyclic submodule ((w;)) has zero annihilator. This is a partial
decomposition of M into a direct sum of cyclic submodules.

The Primary Decomposition

In view of Theorem 6.9, we turn our attention to the decomposition of finitely
generated torsion modules M over a principal ideal domain. The first step is to
decompose M into a direct sum of primary submodules, defined as follows.
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Definition Let p be a prime in R. A p-primary (or just primary) module is a
module whose order is a power of p..]

Theorem 6.10 (The primary decomposition theorem) Let M be a torsion
module over a principal ideal domain R, with order

€n

p=py"p,

where the p;'s are distinct nonassociate primes in R.
1) M is the direct sum

M =M, & &M,
where

My = oM = {0 € M |5 v =0}

(2

is a primary submodule of order p'. This decomposition of M into primary
submodules is called the primary decomposition of M.

2) The primary decomposition of M is unique up to order of the summands.
That is, if

M:qu@...@]\f

m

where Ny, is primary of order q;' and qi, ..., qy are distinct nonassociate
primes, then m = n and, after a possible reindexing, N, = M, Hence,
fi=eandq; ~p;, fori=1,... n

3) Two R-modules M and N are isomorphic if and only if the summands in
their primary decompositions are pairwise isomorphic, that is, if

M =M, & @M,

and

N=N,®--- &N,

m

are primary decompositions, then m = n and, after a possible reindexing,
M, ~ N, fori=1,...,n.
Proof. Let us write 4, = p/p;" and show first that

My, = M = {pv | ve M}

Since p;’ (M) = pM = {0}, we have y;M C M,,. On the other hand, since
i and p* are relatively prime, there exist a,b € R for which

ap; +bpt =1

and so if z € M, then
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x = (ap; +bp; )z = apx € M
Hence M, = p; M.

For part 1), since ged(p1, ..., 4n) = 1, there exist scalars a; for which
aifiy 4 A anply =1
and so for any z € M,
n
T = (aypy + -+ anpin)x € ZmM
i=1

Moreover, since the o(p; M) | p;* and the p;’'s are pairwise relatively prime, it
follows that the sum of the submodules y; M is direct, that is,

M=muM&- - ®p,M=M, & &M,
As to the annihilators, it is clear that (p;") C ann(u,;M). For the reverse

inclusion, if r € ann(w; M), then rp; € ann(M) and so p;'p; | rp;, that is,
p;' | rand sor € (p{'). Thus ann(p; M) = (p").

As to uniqueness, we claim that ¢ = qlll- --q/m is an order of M. It is clear that q
annihilates M and so ¢ | g. On the other hand, N,, contains an element u; of

order qu and so the sum v =wu; + --- 4+ w,, has order ¢, which implies that
q | n. Hence, g and p are associates.

Unique factorization in R now implies that m =n and, after a suitable
reindexing, that f; = e; and ¢; and p; are associates. Hence, IV, is primary of
order p;'. For convenience, we can write Ny, as V,,. Hence,

N, C{ve M |pv=0} =DM,
But if
Np @ ®Np, =M, &S M,

and NN,, € M,, for all i, we must have N,, = M,, for all .

For part 3), if m = n and 0;: M, = N, then the map o: M — N defined by
U(al _|_ e + an) — 0—1(0’1) + _|_ a-n(an)

is an isomorphism and so M =~ N. Conversely, suppose that o: M ~ N. Then
M and N have the same annihilators and therefore the same order

Cn

po=pypy

Hence, part 1) and part 2) imply that m = n and after a suitable reindexing,
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q; = p;. Moreover, since
a€e M, s pa=0%o(pa) =04 poa=0%4 oa €N,
it follows that o: M), = N,,.00

The Cyclic Decomposition of a Primary Module

The next step in the decomposition process is to show that a primary module
can be decomposed into a direct sum of cyclic submodules. While this
decomposition is not unique (see the exercises), the set of annihilators is unique,
as we will see. To establish this uniqueness, we use the following result.

Lemma 6.11 Let M be a module over a principal ideal domain R and let

p € R be a prime.

Iy If pM = {0}, then M is a vector space over the field R/{p) with scalar
multiplication defined by

(r+ (p)o =10

forallve M.
2) For any submodule S of M the set

SW ={veS|pv=0}
is also a submodule of M and if M = S ® T, then
M®P = 8w g 70

Proof. For part 1), since p is prime, the ideal (p) is maximal and so R/(p) is a
field. We leave the proof that M is a vector space over R/(p) to the reader. For
part 2), it is straightforward to show that S is a submodule of M. Since
S C S and TV C T we see that S®) N T® = {0}. Also, if v € M), then
pv=0. But v=s+1 for some s € .5 and t € T and so 0 = pv = ps + pt.
Since ps € S and pt € T we deduce that ps = pt = 0, whence v € S @ T®),
Thus, M®) C S @ T() But the reverse inequality is manifest.(]

Theorem 6.12 (The cyclic decomposition theorem of a primary module) Let
M be a primary finitely generated torsion module over a principal ideal domain
R, with order p°.

1) M is a direct sum

M= () & & (v (6.1)

of cyclic submodules with annihilators ann({(v;))) = (p®), which can be
arranged in ascending order

ann({(v1))) C -+ C ann({(v,))
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or equivalently,

62612622"'Zen
2) As to uniqueness, suppose that M is also the direct sum
M = (ur)) & --- & {um))

of cyclic submodules with annihilators ann({(u;)) = (¢%), arranged in
ascending order

ann(((uy))) C --- € ann(((u,,)))
or equivalently
hZzfz2>fn
Then the two chains of annihilators are identical, that is, m = n and
ann(((u;))) = ann({{v:)))

for alli. Thus, p ~ q and f; = e; for all i.
3) Two p-primary R-modules

M= () & D (vn)
and

are isomorphic if and only if they have the same annihilator chains, that is,
if and only if m = n and, after a possible reindexing,

ann(((u;))) = ann({(v;)))
Proof. Let v; € M have order equal to the order of M, that is,
ann(vy) = ann(M) = (p°)

Such an element must exist since o(v;) < p€ for all v € M and if this inequality
is strict, then p®~! will annihilate M .

If we show that ((v1)) is complemented, that is, M = ((v1)) © S; for some
submodule S, then since .S; is also a finitely generated primary torsion module
over R, we can repeat the process to get

M = (v1)) © ((va)) © So
where ann(v;) = (p“). We can continue this decomposition:
M = (1)) @ (v2)) © - & ((vn)) © Sy

as long as S,, # {0}. But the ascending sequence of submodules
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(o)) € (1)) & ((v2)) S -
must terminate since M is Noetherian and so there is an integer n for which

eventually S, = {0}, giving (6.1).

Let v = v;. The direct sum M; = ((v)) @ {0} clearly exists. Suppose that the
direct sum

M, = <<’U>> ® Sk

exists. We claim that if M < M, then it is possible to find a submodule Sy
for which Sj, < Sy, and for which the direct sum M1 = {v)) & Sy, also

exists. This process must also stop after a finite number of steps, giving
M = (v)) & S as desired.

If My < M and u € M \ My, let
Skt = (Siyu — av)

for « € R. Then Sy < Ski1 since u ¢ M. We wish to show that for some
a € R, the direct sum

(V) & Skt
exists, that is,
z e () N{Sku—av) =x=0
Now, there exist scalars ¢ and b for which
r=av=s5+b(u— av)
for s € S). and so if we find a scalar « for which
b(u — aw) € Sy (6.2)

then ((v)) NS, = {0} implies that z = 0 and the proof of existence will be
complete.

Solving for bu gives
bu = (a+ ab)v — s € (v) & Sy = My,
so let us consider the ideal of all such scalars:
I={reR|ruec M}
Since p® € 7 and Z is principal, we have
=)

for some f < e. Also, f > 0 since u ¢ M}, implies that 1 ¢ 7.
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Since b € 7, we have b = 3p/ and there exist d € R and ¢t € S}, for which
plu=dvo+t
Hence,
bu = Bpu = B(dv +t) = Bdv + St

Now we need more information about d. Multiplying the expression for p/u by
p~! gives

0=pu=p~T(pu)=pTdo+pIt

and since ((v)) N Sy, = {0}, it follows that p°~/dv = 0. Hence, p° | p°~/d, that
is, p/ | dand sod = 6p! for some 6 € R. Now we can write

bu = B6pTv+ Bt

and so

b(u — év) = pt € Sy,
Thus, we take o = 6 to get (6.2) and that completes the proof of existence.
For uniqueness, note first that A/ has orders p® and ¢* and so p and ¢ are

associates and e; = f;. Next we show that n = m. According to part 2) of
Lemma 6.10,

M® = ()P & ... @ (v, )P
and
M®P — (uy) Pg...q () (p)

where all summands are nonzero. Since pM ) = {0}, it follows from Lemma
6.10 that M) is a vector space over R/(p) and so each of the preceding
decompositions expresses M) as a direct sum of one-dimensional vector
subspaces. Hence, m = dim(M®) = n.

Finally, we show that the exponents e; and f; are equal using induction on e;. If
e; =1, then e; = 1 for all i and since f; = ey, we also have f; =1 for all 4.
Suppose the result is true whenever e; < k — 1 and let e; = k. Write

(e1,...,en) = (e1,... 65, 1,...,1),es > 1

and

(fl;---af'n):(fla--~7ft717~~~71);ft>1
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Then

pM = p{vi) @ - @ p((vs))
and

pM = p(u1)) & - & p(ue))

But p{(v1)) = ((pv1)) is a cyclic submodule of M with annihilator (p®~!) and so
by the induction hypothesis

s=tande; = fi,...,e5 = fs

which concludes the proof of uniqueness.

For part 3), suppose that o: M =~ N and M has annihilator chain

ann(((v1))) € -+ C ann({v,)))

and NV has annihilator chain
ann({(u1))) € --- € ann(((up)))
Then
N=ocM = (o)) ® - & (ov,))
and so m = n and after a suitable reindexing,
ann({(v;))) = ann(({ov;))) = ann(((u;))

Conversely, suppose that

M = (v & - & (vn)
and

N = () ®--- & (um)
have the same annihilator chains, that is, m = n and

ann(((u;))) = ann({(v;))
Then

The Primary Cyclic Decomposition

Now we can combine the various decompositions.

Theorem 6.13 (The primary cyclic decomposition theorem) Let M be a
finitely generated torsion module over a principal ideal domain R.
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1) If M has order

€n

H= pil P

where the p;'s are distinct nonassociate primes in R, then M can be
uniquely decomposed (up to the order of the summands) into the direct sum

M=M, & &M,
where
MpI:%M:{v€M|pf"v:0}
b;

is a primary submodule with annihilator (p'). Finally, each primary
submodule M, can be written as a direct sum of cyclic submodules, so that

M= [{v1) @ @ Lorp) ] @ - & [{vn1) @ - D (oar)]

My,

M,

€ j

where ann({(v; ;))) = (p;,"’) and the terms in each cyclic decomposition can
be arranged so that, for each i,

ann({(v;,1))) C -+ C ann({(v; )

or, equivalently,
€ =¢€i1=>€32=> 2> C
2) As for uniqueness, suppose that
M = [{ur1) & - & (ui; )] & & [{uma) & - & (Um,,.)]

Ny Ny

is also a primary cyclic decomposition of M. Then,

a) The number of summands is the same in both decompositions, in fact,
m = n and after possible reindexing, k, = j, for all u.

b) The primary submodules are the same; that is, after possible
reindexing, q; ~ p; and Ny, = M),

¢) For each primary submodule pair N, = M,, the cyclic submodules
have the same annihilator chains; that is, after possible reindexing,

ann(((u; ;) = ann(((v; ;)

forall i, j.
In summary, the primary submodules and annihilator chains are uniquely
determined by the module M.
3) Two R-modules M and N are isomorphic if and only if they have the same
annihilator chains.C]
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Elementary Divisors

Since the chain of annihilators
ann({(vi ;) = (p;")

is unique except for order, the multiset {p;"’} of generators is uniquely
determined up to associate. The generators pff are called the elementary
divisors of M. Note that for each prime p;, the elementary divisor pf” of largest
exponent is precisely the factor of (M) associated to p;.

Let us write ElemDiv(M) to denote the multiset of al/l elementary divisors of
M. Thus, if r € ElemDiv(M ), then any associate of r is also in ElemDiv(M).
We can now say that ElemDiv(M) is a complete invariant for isomorphism.
Technically, the function M +— ElemDiv(M) is the complete invariant, but this
hair is not worth splitting. Also, we could work with a system of distinct
representatives for the associate classes of the elementary divisors, but in
general, there is no way to single out a special representative.

Theorem 6.14 Let R be a principal ideal domain. The multiset ElemDiv(M) is
a complete invariant for isomorphism of finitely generated torsion R-modules,
that is,

M~N << ElemDiv(M) = ElemDiv(N) O
We have seen (Theorem 6.2) that if
M=A®B
then
o(M) =lem(o(A),o(B))

Let us now compare the elementary divisors of M to those of A and B.

Theorem 6.15 Let M be a finitely generated torsion module over a principal
ideal domain and suppose that

M=A®B

1) The primary cyclic decomposition of M is the direct sum of the primary
cyclic decompositons of A and B, that is, if

A=Plai) and B=(bi;)

are the primary cyclic decompositions of A and B, respectively, then

M= (Piaish) @ (b))

is the primary cyclic decomposition of M.
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2) The elementary divisors of M are
ElemDiv(M) = ElemDiv(A) U ElemDiv(B)

where the union is a multiset union; that is, we keep all duplicate
members.]

The Invariant Factor Decomposition

According to Theorem 6.4, if S and T are cyclic submodules with relatively
prime orders, then S & T is a cyclic submodule whose order is the product of
the orders of S and 7. Accordingly, in the primary cyclic decomposition of M,

M= [{or) @@ {orp) ] & & [{var) - © (Vak)

M,

M,

pn
with elementary divisors pf” satisfying
€ = €1 2> €9 > > €L (6.3)

we can combine cyclic summands with relatively prime orders. One judicious
way to do this is to take the leftmost (highest-order) cyclic submodules from
each group to get

Dy = (1) & - & (ona))
and repeat the process

Dy = ((v12)) © -+ @ {(vn2))
Dy = (v13) © -+ D (vn3)

Of course, some summands may be missing here since different primary
modules M, do not necessarily have the same number of summands. In any
case, the result of this regrouping and combining is a decomposition of the form

M=Dy& & D,

which is called an invariant factor decomposition of M.

For example, suppose that
M = [(vi1)) @ (vi2)] & [(v2a)] © [(vs1)) & (v32)) S (vs,3)]
Then the resulting regrouping and combining gives

M = [{v11)) ® (v21)) ® (v31) ] ® [(v1,2)) & (w32) ] & [(v33) ]

/ N

D, D, Dy

As to the orders of the summands, referring to (6.3), if D; has order d;, then
since the highest powers of each prime p; are taken for d;, the second—highest
for dy and so on, we conclude that
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dm | dm—l | | d2 | dl (64)
or equivalently,
ann(D;) C ann(D5) C ---

The numbers d; are called invariant factors of the decomposition.

For instance, in the example above suppose that the elementary divisors are
32 3 3
P11, P1s P2, P3, P3, P3
Then the invariant factors are
dy = pipopy
dy = pipi
ds = p;

The process described above that passes from a sequence pf“‘j of eclementary
divisors in order (6.3) to a sequence of invariant factors in order (6.4) is
reversible. The inverse process takes a sequence di,...,d,, satisfying (6.4),
factors each d; into a product of distinct nonassociate prime powers with the
primes in the same order and then “peels off” like prime powers from the left.
(The reader may wish to try it on the example above.)

This fact, together with Theorem 6.4, implies that primary cyclic
decompositions and invariant factor decompositions are essentially equivalent.
Therefore, since the multiset of elementary divisors of M is unique up to
associate, the multiset of invariant factors of M is also unique up to associate.
Furthermore, the multiset of invariant factors is a complete invariant for
isomorphism.

Theorem 6.16 (The invariant factor decomposition theorem) Let M be a
finitely generated torsion module over a principal ideal domain R. Then

M = Dl @"'®Drrb
where D; is a cyclic submodule of M, with order d;, where

A | dp—1 |+ | do | du

This decomposition is called an invariant factor decomposition of M and the

scalars d; are called the invariant factors of M.

1) The multiset of invariant factors is uniquely determined up to associate by
the module M.

2)  The multiset of invariant factors is a complete invariant for isomorphism..c]

The annihilators of an invariant factor decomposition are called the invariant
ideals of M. The chain of invariant ideals is unique, as is the chain of
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annihilators in the primary cyclic decomposition. Note that d; is an order of M,
that is,

ann(M) = (dy)
Note also that the product
v =dy-dp

of the invariant factors of M has some nice properties. For example, 7 is the
product of all the elementary divisors of M. We will see in a later chapter that
in the context of a linear operator 7 on a vector space, - is the characteristic
polynomial of 7.

Characterizing Cyclic Modules

The primary cyclic decomposition can be used to characterize cyclic modules
via their elementary divisors.

Theorem 6.17 Let M be a finitely generated torsion module over a principal
ideal domain, with order

€n

= pi'-py

The following are equivalent:
1) M is cyclic.
2) M is the direct sum

M= {(v) @& & (v

of primary cyclic submodules ((v;)) of order p;'.
3) The elementary divisors of M are precisely the prime power factors of [i:

ElemDiV(M) = {pil, 7p2n}

Proof. Suppose that M is cyclic. Then the primary decomposition of M is a
primary cyclic decomposition, since any submodule of a cyclic module is cyclic.
Hence, 1) implies 2). Conversely, if 2) holds, then since the orders are relatively
prime, Theorem 6.4 implies that M is cyclic. We leave the rest of the proof to
the reader.[]

Indecomposable Modules

The primary cyclic decomposition of M is a decomposition of M into a direct
sum of submodules that cannot be further decomposed. In fact, this
characterizes the primary cyclic decomposition of M. Before justifying these
statements, we make the following definition.

Definition A module M is indecomposable if it cannot be written as a direct
sum of proper submodules.[]
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We leave proof of the following as an exercise.

Theorem 6.18 Let M be a finitely generated torsion module over a principal
ideal domain. The following are equivalent:

1) M is indecomposable

2) M is primary cyclic

3) M has only one elementary divisor:

ElemDiv(M) = {p°} |

Thus, the primary cyclic decomposition of M is a decomposition of M into a
direct sum of indecomposable modules. Conversely, if

M:A1®"'@Am

is a decomposition of M into a direct sum of indecomposable submodules, then
each submodule A; is primary cyclic and so this is the primary cyclic
decomposition of M.

Indecomposable Submodules of Prime Order

Readers acquainted with group theory know that any group of prime order is
cyclic. However, as mentioned earlier, the order of a module corresponds to the
smallest exponent of a group, not to the order of a group. Indeed, there are
modules of prime order that are not cyclic. Nevertheless, cyclic modules of
prime order are important.

Indeed, if M is a finitely generated torsion module over a principal ideal
domain, with order u, then each prime factor p of u gives rise to a cyclic
submodule W of M whose order is p and so W is also indecomposable.
Unfortunately, W need not be complemented and so we cannot use it to
decompose M. Nevertheless, the theorem is still useful, as we will see in a later
chapter.

Theorem 6.19 Let M be a finitely generated torsion module over a principal
ideal domain, with order u. If p is a prime divisor of u, then M has a cyclic
(equivalently, indecomposable) submodule W of prime order p.

Proof. If i = pq, then there is a v € M for which w = qv # 0 but pw = 0.
Then W = ((w)) is annihilated by p and so o(w) | p. But p is prime and
o(w) # 1 and so o(w) = p. Since W has prime order, Theorem 6.18 implies
that W is cyclic if and only if it is indecomposable.[]

Exercises

1. Show that any free module over an integral domain is torsion-free.

2. Let M be a finitely generated torsion module over a principal ideal domain.
Prove that the following are equivalent:
a) M is indecomposable
b) M has only one elementary divisor (including multiplicity)
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10.

11.

12.

13.
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¢) M is cyclic of prime power order.

Let R be a principal ideal domain and R™ the field of quotients. Then R™ is
an R-module. Prove that any nonzero finitely generated submodule of R™
is a free module of rank 1.

Let R be a principal ideal domain. Let M be a finitely generated torsion-
free R-module. Suppose that N is a submodule of M for which N is a free
R-module of rank 1 and M /N is a torsion module. Prove that M is a free
R-module of rank 1.

Show that the primary cyclic decomposition of a torsion module over a
principal ideal domain is not unique (even though the elementary divisors
are).

Show that if M is a finitely generated R-module where R is a principal
ideal domain, then the free summand in the decomposition M = F' & My,
need not be unique.

If (v)) is a cyclic R-module of order a show that the map 7: R — ((v))
defined by 7r = rv is a surjective R-homomorphism with kernel (a) and so

R
V) R —
) ~ 7
If R is an integral domain with the property that all submodules of cyclic
R-modules are cyclic, show that R is a principal ideal domain.
Suppose that F' is a finite field and let £ be the set of all nonzero elements
of F.
a) Show that if p(x) € F|x] is a nonconstant polynomial over F' and if
r € Fisaroot of p(z), then x — r is a factor of p(z).
b) Prove that a nonconstant polynomial p(x) € F[z] of degree n can have
at most n distinct roots in F'.
¢) Use the invariant factor or primary cyclic decomposition of a finite Z-
module to prove that F™* is cyclic.
Let R be a principal ideal domain. Let M = {(v)) be a cyclic R-module
with order o. We have seen that any submodule of M is cyclic. Prove that
for each § € R such that | « there is a unique submodule of M of order
0.
Suppose that M is a free module of finite rank over a principal ideal
domain R. Let N be a submodule of M. If M /N is torsion, prove that
tk(N) = rk(M).
Let F[x] be the ring of polynomials over a field F' and let F”[x] be the ring
of all polynomials in F[z] that have coefficient of x equal to 0. Then F[z]
is an F'[z]-module. Show that F'[x] is finitely generated and torsion-free
but not free. Is F'[z] a principal ideal domain?
Show that the rational numbers Q form a torsion-free Z-module that is not
free.

More on Complemented Submodules

14.

Let R be a principal ideal domain and let M be a free R-module.



15.

16.

17.

18.
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a) Prove that a submodule N of M is complemented if and only if M /N
is free.

b) If M is also finitely generated, prove that N is complemented if and
only if M /N is torsion-free.

Let M be a free module of finite rank over a principal ideal domain R.

a) Prove that if N is a complemented submodule of M, then
tk(N) = tk(M) ifand only if N = M.

b) Show that this need not hold if /V is not complemented.

c) Prove that N is complemented if and only if any basis for N can be
extended to a basis for M.

Let M and N be free modules of finite rank over a principal ideal domain

R.Let7: M — N be an R-homomorphism.

a) Prove that ker(7) is complemented.

b) What about im(7)?

c) Prove that

k(M) = rk(ker(r)) + rk(im(r)) = rk(ker(r)) + rk<ke]r\4(7)>

d) If 7 is surjective, then 7 is an isomorphism if and only if
k(M) = rk(N).
e) If Lisasubmodule of M and if M /L is free, then

rk(]\f> = rk(M) — rk(L)

A submodule N of a module M is said to be pure in M if whenever

v¢ M\ N,thenrv ¢ N for all nonzero r € R.

a) Show that N is pure if and only if v € NV and v = rw for r € R implies
we N.

b) Show that NV is pure if and only if M /N is torsion-free.

¢) If R is a principal ideal domain and M is finitely generated, prove that
N is pure if and only if M /N is free.

d) If L and N are pure submodules of M, then so are L NN and L U N.
What about L + N?

e) If N is pure in M, then show that LN N is pure in L for any
submodule L of M.

Let M be a free module of finite rank over a principal ideal domain R. Let

L and N be submodules of M with L complemented in M. Prove that

k(L + N) + tk(L N N) = k(L) + rk(N)



Chapter 7
The Structure of a Linear Operator

In this chapter, we study the structure of a linear operator on a finite-
dimensional vector space, using the powerful module decomposition theorems
of the previous chapter. Unless otherwise noted, all vector spaces will be
assumed to be finite-dimensional.

Let V' be a finite-dimensional vector space. Let us recall two earler theorems
(Theorem 2.19 and Theorem 2.20).

Theorem 7.1 Let V' be a vector space of dimension n.

1) Two n X n matrices A and B are similar (written A ~ B) if and only if
they represent the same linear operator T € L(V'), but possibly with
respect to different ordered bases. In this case, the matrices A and B
represent exactly the same set of linear operators in L(V').

2) Then two linear operators T and o on 'V are similar (written T ~ o) if and
only if there is a matrix A € M, that represents both operators, but with
respect to possibly different ordered bases. In this case, T and o are
represented by exactly the same set of matrices in M,,.00

Theorem 7.1 implies that the matrices that represent a given linear operator are
precisely the matrices that lie in one similarity class. Hence, in order to uniquely
represent all linear operators on V', we would like to find a set consisting of one
simple representative of each similarity class, that is, a set of simple canonical
forms for similarity.

One of the simplest types of matrix is the diagonal matrix. However, these are
too simple, since some operators cannot be represented by a diagonal matrix. A
less simple type of matrix is the upper triangular matrix. However, these are not
simple enough: Every operator (over an algebraically closed field) can be
represented by an upper triangular matrix but some operators can be represented
by more than one upper triangular matrix.
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This gives rise to two different directions for further study. First, we can search
for a characterization of those linear operators that can be represented by
diagonal matrices. Such operators are called diagonalizable. Second, we can
search for a different type of “simple” matrix that does provide a set of
canonical forms for similarity. We will pursue both of these directions.

The Module Associated with a Linear Operator

If 7 € L(V), we will think of V' not only as a vector space over a field F' but
also as a module over F'[x], with scalar multiplication defined by
px)v = p(7)(v)

We will write V. to indicate the dependence on 7. Thus, V. and V,, are modules
with the same ring of scalars F'[z], although with different scalar multiplication
if T #£ 0.

Our plan is to interpret the concepts of the previous chapter for the module V.
First, if dim(V') = n, then dim(£(V)) = n?. This implies that V; is a torsion
module. In fact, the n? + 1 vectors

are linearly dependent in £(V'), which implies that p(7) = 0 for some nonzero
polynomial p(z) € Flz]. Hence, p(z) € ann(V;) and so ann(V;) is a nonzero
principal ideal of F'[x].

Also, since V' is finitely generated as a vector space, it is, a fortiori, finitely
generated as an F[z]-module. Thus, V is a finitely generated torsion module
over a principal ideal domain F'[z] and so we may apply the decomposition
theorems of the previous chapter. In the first part of this chapter, we embark on
a “translation project” to translate the powerful results of the previous chapter
into the language of the modules V.

Let us first characterize when two modules V; and V,, are isomorphic.
Theorem 7.2 If 7,0 € L(V), then
VeV, & 71~0

In particular, ¢: V. — V, is a module isomorphism if and only if ¢ is a vector
space automorphism of V' satisfying

o=¢r¢!
Proof. Suppose that ¢: V, — V, is a module isomorphism. Then forv € V,
¢(zv) = z(¢v)

which is equivalent to
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p(Tv) = o(¢v)
and since ¢ is bijective, this is equivalent to
(6760 = ov
that is, 0 = ¢7¢~'. Since a module isomorphism from V; to V, is a vector space

isomorphism as well, the result follows.

For the converse, suppose that ¢ is a vector space automorphism of V' and
o =¢rp~", thatis, ¢7 = 5¢. Then

6(z"v) = g(r"v) = 0" (¢v) = 2" (¢v)
and the F-linearity of ¢ implies that for any polynomial p(x) € F[z],
¢(p(T)v) = p(o)gv
Hence, ¢ is a module isomorphism from V. to V,,.[0
Submodules and Invariant Subspaces

There is a simple connection between the submodules of the F'[x]|-module V;
and the subspaces of the vector space V. Recall that a subspace S of V' is 7-
invariantif 75 C S.

Theorem 7.3 A subset S CV is a submodule of V; if and only if S is a -
invariant subspace of V.1
Orders and the Minimal Polynomial
We have seen that the annihilator of V.,
ann(V;) = {p(x) € Fla] | p(z)V> = {0}}
is a nonzero principal ideal of F'[z], say
ann(V;) = (m(x))

Since the elements of the base ring F'[z] of V; are polynomials, for the first time
in our study of modules there is a logical choice among all scalars in a given
associate class: Each associate class contains exactly one monic polynomial.

Definition Let 7 € L(V'). The unique monic order of V; is called the minimal
polynomial for 7 and is denoted by m.,(x) or min(7). Thus,

ann(V;) = (m.(z)) .

In treatments of linear algebra that do not emphasize the role of the module V,
the minimal polynomial of a linear operator 7 is simply defined as the unique
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monic polynomial m,(x) of smallest degree for which m,(7) = 0. This
definition is equivalent to our definition.

The concept of minimal polynomial is also defined for matrices. The minimal
polynomial 1, () of matrix A € M,,(F) is defined as the minimal polynomial
of the multiplication operator 74. Equivalently, m4(z) is the unique monic
polynomial p(z) € F|[x] of smallest degree for which p(A) = 0.

Theorem 7.4

1) If T ~ o are similar linear operators on V., then m.(x) = m,(x). Thus, the
minimal polynomial is an invariant under similarity of operators.

2) If A~ B are similar matrices, then ma(x) = mp(x). Thus, the minimal
polynomial is an invariant under similarity of matrices.

3) The minimal polynomial of T € L(V) is the same as the minimal
polynomial of any matrix that represents 1.1

Cyclic Submodules and Cyclic Subspaces
Let us now look at the cyclic submodules of V.
(v) = Flz]v = {p(7)(v) | p(x) € Flx]}

which are T-invariant subspaces of V. Let m(z) be the minimal polynomial of
7| vy and suppose that deg(m(z)) = n. If p(z)v € ((v)), then writing

p(x) = q(z)m(z) + r(z)
where deg r(z) < deg m(z) gives
p(x)o = [g(z)m(z) + r(z)]v = r(z)v
and so
{(v) = {r(@)v| degr(z) <n}
Hence, the set
B={v,zv,...,2" v} = {v,70,..., 7" v}

spans the vector space ((v)). To see that B is a basis for ((v)), note that any linear
combination of the vectors in B has the form r(x)v for deg(r(z)) < n and so is
equal to 0 if and only if 7(x) = 0. Thus, B is an ordered basis for ((v}).

Definition Let 7 € L(V). A T-invariant subspace S of V is T-cyelic if S has a
basis of the form

B={v,rv,.., 7™}

for some v € V andn > 0. The basis B is called a T-cyclic basis for V.[J
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Thus, a cyclic submodule {(v)) of V, with order m(x) of degree n is a T-cyclic
subspace of V' of dimension n. The converse is also true, for if

B={v,rv,.., 7™}

is a basis for a 7-invariant subspace S of V, then S is a submodule of V.
Moreover, the minimal polynomial of 7|s has degree n, since if

T = —agv — a1 TV — - — ap 7" v

then 7|g satisfies the polynomial

m(z) = ap+ ayx 4+ +a,_ 12" + 2"
but none of smaller degree since B is linearly independent.
Theorem 7.5 Let V be a finite-dimenional vector space and let S C V. The
following are equivalent:
1) S is a cyclic submodule of V; with order m(x) of degree n
2) Sis a t-cyclic subspace of V' of dimension n.[]

We will have more to say about cyclic modules a bit later in the chapter.

Summary

The following table summarizes the connection between the module concepts
and the vector space concepts that we have discussed so far.

F[z]-Module V, F-Vector Space V
Scalar multiplication: p(z)v Action of p(7): p(7)(v)
Submodule of V; T-Invariant subspace of V'
Annihilator: Annihilator:
ann(V7) = {p(x) | ( ) ={0}} ann(V) = {p(z) | p(7)(V) = {0}}
Monic order m(x) of Minimal polynomial of 7:
ann(V;) = (m(x)) m(x) has smallest deg with m(7) =0
Cyclic submodule of V;: T-cyclic subspace of V':
() = {p()v | deg p(x) < degm(®)} | (v, 7,..., 7" (v)),m = deg(p(x))

The Primary Cyclic Decomposition of V.

We are now ready to translate the cyclic decomposition theorem into the
language of V.

Definition Let 7 € L(V).

1) The elementary divisors and invariant factors of 7 are the monic
elementary divisors and invariant factors, respectively, of the module V..
We denote the multiset of elementary divisors of T by ElemDiv(7) and the
multiset of invariant factors of T by InvFact(7).
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2) The elementary divisors and invariant factors of a matrix A are the
elementary divisors and invariant factors, respectively, of the multiplication
operator Ty:

ElemDiv(A) = ElemDiv(74) and InvFact(A) = InvFact(4) O

We emphasize that the elementary divisors and invariant factors of an operator
or matrix are monic by definition. Thus, we no longer need to worry about
uniqueness up to associate.

Theorem 7.6 (The primary cyclic decomposition theorem for V') Let V be
finite-dimensional and let 7 € L(V') have minimal polynomial

my(x) = py'(z)--py; ()
where the polynomials p;(x) are distinct monic primes.
1) (Primary decomposition) The F'[x|-module V. is the direct sum
Vi=V, @0V,
where
m-(z)
P (z)

V, = V={veV|pi(r)(v)=0}

is a primary submodule of V. of order p;' (). In vector space terms, V,, is a
T-invariant subspace of V' and the minimal polynomial of T|Vm is

min(7ly, ) = pj'(«)

2) (Cyclic decomposition) Each primary summand V), can be decomposed
into a direct sum

Vo = (vin) & -+ & (vig,)
of T-cyclic submodules ((v; ;)) of order p;” () with
€ =612 €22 2 €C

In vector space terms, ((v; ;)) is a T-cyclic subspace of V), and the minimal
polynomial of 7|y, y is
min(7|(,, ) = p;"” (¥)

3) (The complete decomposition) This yields the decomposition of V. into a
direct sum of T-cyclic subspaces

Vo= ((vi) @ @ (vin) © - @ ((0n1)) @ - ® (vn, )

4) (Elementary divisors and dimensions) The multiset of elementary divisors
{p;"(x)} is uniquely determined by 7. If deg(p;"”(x)) = d; j, then the T-

3
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cyclic subspace ((v; j)) has T-cyclic basis
Bz‘,j = (Uw‘, TUZ‘7]‘, ceey Td"’j_l’(}j_’j)

and dim({(v; ;))) = deg(p;"’). Hence,
ki
dim(V},) =) _ deg(p;")
=1

We will call the basis
R=JBi;
0]

for'V the elementary divisor basis for V..

Recall that if V' = A & B and if both A and B are 7-invariant subspaces of V',
the pair (A, B) is said to reduce 7. In module language, the pair (A, B) reduces
7 if A and B are submodules of V; and

V;':AT@BT

We can now translate Theorem 6.15 into the current context.

Theorem 7.7 Let T € L(V) and let

1)

2)

3)

VT = AT b BT
The minimal polynomial of T is
mr (:L‘) = lcm(mT\A ({L‘), mT\B(‘r>)

The primary cyclic decomposition of V; is the direct sum of the primary
cyclic decompositons of A, and B;; that is, if

A = @Pai) and Br = EP(bis)

are the primary cyclic decompositions of A, and B., respectively, then

v, = (D) & (Do)

is the primary cyclic decomposition of V.
The elementary divisors of T are

ElemDiv(7) = ElemDiv(7|4) U ElemDiv(7|p)

where the union is a multiset union, that is, we keep all duplicate
members.]
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The Characteristic Polynomial

To continue our translation project, we need a definition. Recall that in the
characterization of cyclic modules in Theorem 6.17, we made reference to the
product of the elementary divisors, one from each associate class. Now that we
have singled out a special representative from each associate class, we can make
a useful definition.

Definition Let 7 € L(V). The characteristic polynomial c.(z) of 7 is the
product of all of the elementary divisors of T:

er(r) =[] ()

Hence,
deg(c-(x)) = dim(V)
Similarly, the characteristic polynomial c);(x) of a matrix M is the product of

the elementary divisors of M ..

The following theorem describes the relationship between the minimal and
characteristic polynomials.

Theorem 7.8 Let T € L(V).
1) (The Cayley—Hamilton theorem) 7he minimal polynomial of T divides the
characteristic polynomial of T:

m(z) | c-(x)
Equivalently, T satisfies its own characteristic polynomial, that is,
e (1) =0
2)  The minimal polynomial
my(z) = pi" (z)--pi ()
and characteristic polynomial

er(o) =[] ()

of T have the same set of prime factors p;(x) and hence the same set of
roots (not counting multiplicity).(J

We have seen that the multiset of elementary divisors forms a complete
invariant for similarity. The reader should construct an example to show that the
pair (m.(z),c;(x)) is not a complete invariant for similarity, that is, this pair of
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polynomials does not uniquely determine the multiset of elementary divisors of
the operator 7.

In general, the minimal polynomial of a linear operator is hard to find. One of
the virtues of the characteristic polynomial is that it is comparatively easy to
find and we will discuss this in detail a bit later in the chapter.

Note that since m,(z) | ¢.(x) and both polynomials are monic, it follows that
m(r) = ¢ (x) & deg(m(z)) = deg(c())

Definition A4 linear operator T € L(V) is nonderogatory if its minimal
polynomial is equal to its characteristic polynomial:

m-(z) = ¢ ()
or equivalently, if
deg(m-(x)) = deg(c;(z))
orif
deg(m-(z)) = dim(V')
Similar statements hold for matrices..]
Cyclic and Indecomposable Modules

We have seen (Theorem 6.17) that cyclic submodules can be characterized by
their elementary divisors. Let us translate this theorem into the language of V;
(and add one more equivalence related to the characteristic polynomial).

Theorem 7.9 Let T € L(V') have minimal polynomial
my(z) = py'(x)---py (z)

where p;(x) are distinct monic primes. The following are equivalent:
1) V. iscyclic.
2) V. is the direct sum

Vi = (o) @ & (ur))

of T-cyclic submodules ((v;)) of order p;'(x).
3) The elementary divisors of T are

ElemDiv(7) = {p{' (z), ..., p; ()}
4) 7 is nonderogatory, that is,
m,(z) = c.(z) a
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Indecomposable Modules

We have also seen (Theorem 6.19) that, in the language of V., each prime factor
p(z) of the minimal polynomial m,(x) gives rise to a cyclic submodule W of V/
of prime order p(x).

Theorem 7.10 Let 7 € L(V') and let p(x) be a prime factor of m.(x). Then V;
has a cyclic submodule W, of prime order p(x).0]

For a module of prime order, we have the following.

Theorem 7.11 For a module W, of prime order m.(x), the following are
equivalent:

1) W, is cyclic

2) W, is indecomposable

3) ¢ () is irreducible

4) T is nonderogatory, that is, c;(x) = m,(x)

5)  dim(W;) = deg(p(x)).00

Our translation project is now complete and we can begin to look at issues that
are specific to the modules V.
Companion Matrices

We can also characterize the cyclic modules V- via the matrix representations of
the operator 7, which is obviously something that we could not do for arbitrary
modules. Let V; = ((v)) be a cyclic module, with order

my(z) = ag + a1z + -+ 4 ap_yx" " + 3"
and ordered 7-cyclic basis
B = (v,Tv,..., 7" v)
Then
r(rlv) = 7w
for0 <¢<n—2and

(") = 7"
=—(ap+arT+ -+ a, 17"

= —apu— a TV — + — ap 7"

and so
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0 0 0 —a
1 0 0 —aq
[Fs=]0 1 :
0 —Qp—2
0 0 1 —ay

This matrix is known as the companion matrix for the polynomial m. ().

Definition 7he companion matrix of a monic polyomial
p(x) =ag+a1x+ -+ a7171x7171 Sy

is the matrix

00 - 0 —a
10 - 0 —-a

Clp(x)] =10 1 " : O
L0
0 0 1 —Qp—1

Note that companion matrices are defined only for monic polynomials.
Companion matrices are nonderogatory. Also, companion matrices are precisely
the matrices that represent operators on 7-cyclic subspaces.

Theorem 7.12 Let p(x) € F[z].
1) A companion matrix A = C[p(x)] is nonderogatory, in fact,
ca(z) = ma(z) = p(z)

2) V. is cyclic if and only if T can be represented by a companion matrix, in
which case the representing basis is T-cyclic.

Proof. For part 1), let £ = (ey,...,e,) be the standard basis for F". Since

e; = A" tey fori > 2, it follows that for any polynomial f(x),

f(A)=0 & f(Ae=0foralli < f(A)e1=0
If p(z) = ap + 12 + -+ + a,_12"* + 2", then
n—1 ) n—1 n—1
p(A)e; = Z%’A"’@l + A'e; = Zaiem - Zai€i+1 =0
i=0 =0 =0
and so p(A)e; = 0, whence p(A) = 0. Also, if
Q(x) = bO + blx +- 4+ bmflmm_1 + bmmm
is nonzero and has degree m < n, then

Q(A)el =boe; +biea + -+ by_1em + bn767r1,+1 3& 0
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since & is linearly independent. Hence, p(z) has smallest degree among all
polynomials satisfied by A and so p(z:) = m4(x). Finally,

deg(ma(z)) = deg(p(x)) = deg(ca(x))

For part 2), we have already proved that if V. is cyclic with 7-cyclic basis B,
then [7]g = C[p(x)]. For the converse, if 7]z = C[p(z)], then part 1) implies
that 7 is nonderogatory. Hence, Theorem 7.11 implies that V. is cyclic. It is
clear from the form of C'[p(z)] that B is a 7-cyclic basis for V.OO

The Big Picture

If 0,7 € L(V), then Theorem 7.2 and the fact that the elementary divisors form
a complete invariant for isomorphism imply that

o~1T & V,=V, <« ElemDiv(7) = ElemDiv(0)

Hence, the multiset of elementary divisors is a complete invariant for similarity
of operators. Of course, the same is true for matrices:

A~B & Fi~Fp < ElemDiv(A) = ElemDiv(B)
where we write I} in place of FT'.
The connection between the elementary divisors of an operator 7 and the
elementary divisors of the matrix representations of 7 is described as follows. If

A = [7]s, then the coordinate map ¢p:V ~ F" is also a module isomorphism
¢p: V, — F. Specifically, we have

o5(p(1)v) = [p(r)v]s = p([7]8)[v]s = P(A)d5(V)
and so ¢ preserves F'[z]-scalar multiplication. Hence,
A=Irlgpforsome B = V.= F)

For the converse, suppose that o: V, ~ F. If we define b; € V' by ob; = ¢;,
where e; is the ith standard basis vector, then B = (by,...,b,) is an ordered
basis for V' and o = ¢p is the coordinate map for . Hence, ¢p is a module
isomorphism and so

¢5(Tv) = Ta(PBV)
for all v € V, that is,
[Tv]s = Ta([v]B)

which shows that A = [7]g.

Theorem 7.13 Let V be a finite-dimensional vector space over F. Let
o,7€ L(V)andlet A,B € M, (F).
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1) The multiset of elementary divisors (or invariant factors) is a complete
invariant for similarity of operators, that is,
o~TE V, xRV,
< ElemDiv(7) = ElemDiv(0)
< InvFact(7) = InvFact(o)

A similar statement holds for matrices.
A~B& Fy =~ Fp
< ElemDiv(A) = ElemDiv(B)
< InvFact(A) = InvFact(B)
2)  The connection between operators and their representing matrices is

A = [1]p for some B < V. ~ F
< ElemDiv(7) = ElemDiv(A)
< InvFact(7) = InvFact(A) 0O

Theorem 7.13 can be summarized in Figure 7.1, which shows the big picture.

similarity classes
e of L(V)
A
Vv Vv isomorphism classes
T ° of F[x]-modules
Multisets of
{ED;} {ED,} elementary divisors
[l |[ols Similarity classes
[tlk| [olk of matrices

Figure 7.1

Figure 7.1 shows that the similarity classes of L£(V) are in one-to-one
correspondence with the isomorphism classes of F'[z]-modules V; and that these
are in one-to-one correspondence with the multisets of elementary divisors,
which, in turn, are in one-to-one correspondence with the similarity classes of
matrices.

We will see shortly that any multiset of prime power polynomials is the multiset
of elementary divisors for some operator (or matrix) and so the third family in
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the figure could be replaced by the family of all multisets of prime power
polynomials.

The Rational Canonical Form

We are now ready to determine a set of canonical forms for similarity. Let
7 € L(V). The elementary divisor basis R for V; that gives the primary cyclic
decomposition of V.,

Ve= (o) @ & (vip) @ & ((va) &+ & (vn,)
is the union of the bases

i,’_]j*l

Bij = (vijsTij, ..., T 0y )

and so the matrix of 7 with respect to R is the block diagonal matrix
[rlr = diag(C[p;" (@)],...,Clp, " (@)], .., Clpi" ()], .., Clpi*" (x)])

with companion matrices on the block diagonal. This matrix has the following
form.

Definition A matrix A is in the elementary divisor form of rational canonical
form if

A= diag(C[rT‘ (@)],...,Clre (x)])
where the r;(x) are monic prime polynomials.(]

Thus, as shown in Figure 7.1, each similarity class S contains at least one matrix
in the elementary divisor form of rational canonical form.

On the other hand, suppose that M is a rational canonical matrix
: 1, Jij fom, . m
M = diag(Clg/" (2)], .-, Clgy"" (@), ..., Clai (&), ..., Clai " ()

of size d x d. Then M represents the matrix multiplication operator 7, under
the standard basis £ on F?. The basis £ can be partitioned into blocks Eik
corresponding to the position of each of the companion matrices on the block
diagonal of M. Since

[Tarlie e, = C[Q{i‘k(x)]
it follows from Theorem 7.12 that each subspace (&; 1) is Tas-cyclic with monic
firk

order ¢;"*(x) and so Theorem 7.9 implies that the multiset of elementary

divisors of 7y is {q;f["'(m)}.

This shows two important things. First, any multiset of prime power
polynomials is the multiset of elementary divisors for some matrix. Second, M
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lies in the similarity class that is associated with the elementary divisors
{¢;"(z)}. Hence, two matrices in the elementary divisor form of rational
canonical form lie in the same similarity class if and only if they have the same
multiset of elementary divisors. In other words, the elementary divisor form of
rational canonical form is a set of canonical forms for similarity, up to order of
blocks on the block diagonal.

Theorem 7.14 (The rational canonical form: elementary divisor version) Let
V' be a finite-dimensional vector space and let 7€ L(V) have minimal
polynomial

m.(z) = pi'()---py (z)

where the p;(x)'s are distinct monic prime polynomials.
1) If R is an elementary divisor basis for V., then [T|g is in the elementary
divisor form of rational canonical form:

(7l = diag(Clp" @), .., O™ @)], ., Clpi @), .., Clpi ™ ()]

where pi’“"(x) are the elementary divisors of T. This block diagonal matrix
is called an elementary divisor version of a rational canonical form of 7.

2) Each similarity class S of matrices contains a matrix R in the elementary
divisor form of rational canonical form. Moreover, the set of matrices in S
that have this form is the set of matrices obtained from M by reordering the
block diagonal matrices. Any such matrix is called an elementary divisor
verison of a rational canonical form of A.

3) The dimension of 'V is the sum of the degrees of the elementary divisors of
T, that is,

n ki

dim(V) = 375" deg(y") O
1

=1 j=

Example 7.1 Let 7 be a linear operator on the vector space R’ and suppose that
7 has minimal polynomial

me (@) = (@ — 1)(a® + 1)

Noting that z — 1 and (2? + 1)? are elementary divisors and that the sum of the
degrees of all elementary divisors must equal 7, we have two possibilities:

) o—1, (22 +1)% 22 +1
2) x—1,2—1,z—1, (22 +1)?

These correspond to the following rational canonical forms:
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1000 00 0
0000 120 0
0100 00 O
H |00 10 —-20 0
0001 00 O
0000 00 -1
0000 01 0
(1 0 00 00 0]
01 000O0 0
001000 0
2) 1000000 -1 O
000100 0
000010 -2
00 00GO0T1 0

The rational canonical form may be far from the ideal of simplicity that we had
in mind for a set of simple canonical forms. Indeed, the rational canonical form
can be important as a theoretical tool, more so than a practical one.

The Invariant Factor Version

There is also an invariant factor version of the rational canonical form. We
begin with the following simple result.

Theorem 7.15 If p(z), q(x) € F[x] are relatively prime polynomials, then

Clp(x)] 0 )
Clp(z)q(x)] ~
[p(z)q(z)] ( 0 Clq(z)] ek
Proof. Speaking in general terms, if an m X m matrix A has minimal
polynomial
m-(z) = py' (z)---p (2)
of degree equal to the size m of the matrix, then Theorem 7.14 implies that the
elementary divisors of A are precisely
P (), P ()

Since the matrices C'[p(x)q(x)] and diag(C[p(z)], C[q(x)]) have the same size
m x m and the same minimal polynomial p(x)q(x) of degree m, it follows that
they have the same multiset of elementary divisors and so are similar.[]

Definition A4 matrix A is in the invariant factor form of rational canonical
form if
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A= diag(C[sl(az)], ey C[sn(m)])
where sp1(x) | sp(x) fork=1,...,n—1.0

Theorem 7.15 can be used to rearrange and combine the companion matrices in
an elementary divisor version of a rational canonical form R to produce an
invariant factor version of rational canonical form that is similar to R. Also, this
process is reversible.

Theorem 7.16 (The rational canonical form: invariant factor version) Let
dim(V') < oo and suppose that 7 € L(V') has minimal polynomial

m.(z) = pi'(z) - py(z)

where the monic polynomials p;(x) are distinct prime (irreducible) polynomials
1) 'V has an invariant factor basis B, that is, a basis for which

[r]s = diag(C’[sl(x)], " ,0[5,,(:@])

where the polynomials si(x) are the invariant factors of T and
Skt1(x) | sk(x). This block diagonal matrix is called an invariant factor
version of a rational canonical form of 7.

2) Each similarity class S of matrices contains a matrix R in the invariant
factor form of rational canonical form. Moreover, the set of matrices in S
that have this form is the set of matrices obtained from M by reordering the
block diagonal matrices. Any such matrix is called an invariant factor
verison of a rational canonical form of A.

3) The dimension of 'V is the sum of the degrees of the invariant factors of T,
that is,

dim(V) = ideg(si) O
=1

The Determinant Form of the Characteristic Polynomial

In general, the minimal polynomial of an operator 7 is hard to find. One of the
virtues of the characteristic polynomial is that it is comparatively easy to find.
This also provides a nice example of the theoretical value of the rational
canonical form.

Let us first take the case of a companion matrix. If A = C[p,(x)] is the
companion matrix of a monic polynomial

. _ n—1 n
pn(xva()a"'aanfl) =a)+ a1+ -+ a, 1T +x

then how can we recover p(x) = c4(x) from C[p(x)] by arithmetic operations?
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When n = 2, we can write py(x) as
(2500, 01) = ap + a1z + 2* = z(x + a1) + ag

which looks suspiciously like a determinant:

. - x ap
pg(x,ao,al)—det[_l $+a1:|

- det(xl— [(1) :Zf])
_ qet(oT - Cln()

So, let us define

A(z;ag, ... ,ap—1) = I — Clpy(x)]

T 0 0 ap

1 z - 0 aj
=10 -1 :

: : R ap—9

0 0 - =1 z4ay_

where = is an independent variable. The determinant of this matrix is a
polynomial in = whose degree equals the number of parameters ay, ..., a,—1.
We have just seen that

det(A(z; ag, a1)) = pa(; ag, ar)
and this is also true for n = 1. As a basis for induction, if
det(A(z;ag, ..., an-1)) = pp(z;ag,...,an-1)
then expanding along the first row gives

det(A(z, ag, ..., an))

-1 =z 0
= zdet(A(z,ay,...,a,)) + (—1)"ap det _:1 -

0 0 ~1

nxXn

=zdet(A(z,a1,...,a,)) + ag
=z py(x;al,...,a,) + ag
=z +ayx’ + -+ a2" + 2" 4 a
= p71,+1(13; agy .-, an)

We have proved the following.
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Lemma 7.17 For any p(x) € F[z],
det(z] — Clp(x)]) = p(z) O

Now suppose that R is a matrix in the elementary divisor form of rational
canonical form. Since the determinant of a block diagonal matrix is the product
of the determinants of the blocks on the diagonal, it follows that

det(z] — R) Hp‘f” ()

Moreover, if A ~ R, say A = PRP~!, then
det(z] — A) = det(x] — PRP™)
=det[P(x] — R)P!]
= det(P)det(z] — R)det(P™")
=det(z] — R)
and so

det(zl — A) = det(xl — R) = cg(x) = ca(x)

Hence, the fact that all matrices have a rational canonical form allows us to
deduce the following theorem.

Theorem 7.18 Let 7 € L(V). If A is any matrix that represents T, then
e () = cq(x) = det(z] — A) |

Changing the Base Field

A change in the base field will generally change the primeness of polynomials
and therefore has an effect on the multiset of elementary divisors. It is perhaps a
surprising fact that a change of base field has no effect on the invariant factors—
hence the adjective invariant.

Theorem 7.19 Let F and K be fields with F' C K. Suppose that the elementary
divisors of a matrix A € M,,(F) are

€11 €1,k Cn,1 €n,kn }

_{p a"'apl‘ yeosPno 5oy Pn

Suppose also that the polynomials p; can be further factored over K, say

R (1,71 . .adz,mi
Di 7,1 1,1

where a; j is prime over K. Then the prime powers

B— { dy. le] 1 dime1 dy1€nky, .y, En,kn}
e A ,...,...,an’l g ooy Unm,

are the elementary divisors of A over K.
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€5

Proof. Consider the companion matrix C'[p;"(z)] in the rational canonical form

of A over F. This is a matrix over K as well and Theorem 7.15 implies that

e; j . i1€i dim;€ij
Clp" ()] ~ diag(Clagy™], ..., Clajm ™))

i i,m;

Hence, B is an elementary divisor basis for A over K.[J

As mentioned, unlike the elementary divisors, the invariant factors are field
independent. This is equivalent to saying that the invariant factors of a matrix
A € M, (F) are polynomials over the smallest subfield of F' that contains the
entries of A.

Theorem 7.20 Let A € M, (F) and let E C F be the smallest subfield of F

that contains the entries of A.

1) The invariant factors of A are polynomials over E.

2) Two matrices A, B € M,(F) are similar over F if and only if they are
similar over E.

Proof. Part 1) follows immediately from Theorem 7.19, since using either A or

B to compute invariant factors gives the same result. Part 2) follows from the

fact that two matrices are similar over a given field if and only if they have the

same multiset of invariant factors over that field..]

Example 7.2 Over the real field, the matrix
0 -1
()
is the companion matrix for the polynomial 22 + 1, and so

ElemDivg(A) = {2 + 1} = InvFactg(A)

However, as a complex matrix, the rational canonical form for A is

and so

ElemDive(A) = {x — i,z +i} and InvFactc(A) = {z? +1} O

Exercises

1. We have seen that any 7 € £(V') can be used to make V' into an F[x]-
module. Does every module V' over F[z] come from some 7€ L(V)?
Explain.

2. Let7T € L(V') have minimal polynomial

my(z) = pi'(x)---pi (z)
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11.

12.

13.
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where p;(z) are distinct monic primes. Prove that the following are
equivalent:

a) V,is r-cyclic.

b) deg(m.(z)) = dim(V).

¢) The elementary divisors of 7 are the prime power factors p;’(z) and so

V= (i) @ & (or)

is a direct sum of 7-cyclic submodules ((v;)) of order p{*(z).
Prove that a matrix A € M,,(F’) is nonderogatory if and only if it is similar
to a companion matrix.
Show that if A and B are block diagonal matrices with the same blocks, but
in possibly different order, then A and B are similar.
Let A € M, (F). Justify the statement that the entries of any invariant
factor version of a rational canonical form for A are “rational” expressions
in the coefficients of A, hence the origin of the term rational canonical
form. Is the same true for the elementary divisor version?
Let 7 € L(V') where V is finite-dimensional. If p(xz) € F|x] is irreducible
and if p(r) is not one-to-one, prove that p(z) divides the minimal
polynomial of 7.
Prove that the minimal polynomial of 7€ L£(V) is the least common
multiple of its elementary divisors.
Let 7 € £L(V) where V is finite-dimensional. Describe conditions on the
minimal polynomial of 7 that are equivalent to the fact that the elementary
divisor version of the rational canonical form of 7 is diagonal. What can
you say about the elementary divisors?
Verify the statement that the multiset of elementary divisors (or invariant
factors) is a complete invariant for similarity of matrices.
Prove that given any multiset of monic prime power polynomials

M = {pfl'1 (2),... 7p?'k1 (T)yeeey.nn , (x),... P (x)}

and given any vector space V' of dimension equal to the sum of the degrees

of these polynomials, there is an operator 7 € £L(V') whose multiset of

elementary divisors is M.

Find all rational canonical forms (up to the order of the blocks on the

diagonal) for a linear operator on R® having minimal polynomial

(x —1)*(z+1)%

How many possible rational canonical forms (up to order of blocks) are

there for linear operators on R® with minimal polynomial (z — 1)(z + 1)2?

a) Show that if A and B are n X n matrices, at least one of which is
invertible, then AB and BA are similar.
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14.

15.

16.
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b) What do the matrices

1 0 0 1
A—[O O] and B_[O 0}

have to do with this issue?
¢) Show that even without the assumption on invertibility the matrices
AB and BA have the same characteristic polynomial. Hint: Write

A=PIl,,Q

where P and () are invertible and I,,, is an n x n matrix that has the
r X r identity in the upper left-hand corner and 0's elsewhere. Write
B'=QBP. Compute AB and BA and find their characteristic
polynomials.

Let 7 be a linear operator on F* with minimal polynomial
m,(z) = (2% + 1)(2® — 2). Find the rational canonical form for 7 if
F=Q,F=RorF=C.

Suppose that the minimal polynomial of 7 € £(V) is irreducible. What can

you say about the dimension of V'?

Let 7 € L(V) where V is finite-dimensional. Suppose that p(z) is an

irreducible factor of the minimal polynomial m(x) of 7. Suppose further

that u,v € V have the property that o(u) = o(v) = p(z). Prove that

u = f(7)v for some polyjomial f(z) if and only if v = g(7)u for some

polynomial g(z).



Chapter 8
Eigenvalues and Eigenvectors

Unless otherwise noted, we will assume throughout this chapter that all vector
spaces are finite-dimensional.

Eigenvalues and Eigenvectors

We have seen that for any 7€ £(V), the minimal and characteristic
polynomials have the same set of roots (but not generally the same multiset of
roots). These roots are of vital importance.

Let A = [7]g be a matrix that represents 7. A scalar A € F' is a root of the
characteristic polynomial ¢, (z) = c4(z) = det(z] — A) if and only if
det(A\]—A)=0 (8.1)

that is, if and only if the matrix A\I — A is singular. In particular, if dim(V') = n,
then (8.1) holds if and only if there exists a nonzero vector x € F" for which

(M —-A)x=0
or equivalently,
TAT = AT
If [v]p = x, then this is equivalent to
[7]5[vls = Alv]s
or in operator language,
TV = Av
This prompts the following definition.
Definition Let V' be a vector space over a field F and let T € L(V).

1) A scalar \ € F is an eigenvalue (or characteristic value) of 7 if there
exists a nonzero vector v € V for which
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TV = \U

In this case, v is called an eigenvector (or characteristic vector) of 7
associated with \.

2) A scalar A € F is an eigenvalue for a matrix A if there exists a nonzero
column vector x_for which

Ar = Az

In this case, x is called an eigenvector (or characteristic vector) for A
associated with \.

3) The set of all eigenvectors associated with a given eigenvalue \, together
with the zero vector, forms a subspace of V', called the eigenspace of \ and
denoted by E. This applies to both linear operators and matrices.

4) The set of all eigenvalues of an operator or matrix is called the spectrum
of the operator or matrix. We denote the spectrum of T by Spec(7).O

Theorem 8.1 Let 7 € L(V') have minimal polynomial m,(x) and characteristic

polynomial c.(x).

1) The spectrum of T is the set of all roots of m.(x) or of ¢.(x), not counting
multiplicity.

2) The eigenvalues of a matrix are invariants under similarity.

3) The eigenspace £\ of the matrix A is the solution space to the homogeneous
system of equations

(M — A)(z) =0 O

One way to compute the eigenvalues of a linear operator 7 is to first represent 7
by a matrix A and then solve the characteristic equation

det(xI — A)=0

Unfortunately, it is quite likely that this equation cannot be solved when
dim(V) > 5. As a result, the art of approximating the eigenvalues of a matrix is
a very important area of applied linear algebra.

The following theorem describes the relationship between eigenspaces and
eigenvectors of distinct eigenvalues.

Theorem 8.2 Suppose that \i,...,\, are distinct eigenvalues of a linear

operator T € L(V).

1) Eigenvectors associated with distinct eigenvalues are linearly independent;
that is, if v; € E,,, then the set {v1, ..., v} is linearly independent.

2) Thesum Ey, + --- + &), is direct; that is, £y, @ -+ @ E,, exists.

Proof. For part 1), if {vy, ..., v} is linearly dependent, then by renumbering if

necessary, we may assume that among all nontrivial linear combinations of
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these vectors that equal 0, the equation
rvp 4+ =0 (8.2)
has the fewest number of terms. Applying 7 gives
T+ A =0 (8.3)
Multiplying (8.2) by A; and subtracting from (8.3) gives
ro(Ae — Ap)vg + -+ +7j(Aj — M)v; =0

But this equation has fewer terms than (8.2) and so all of its coefficients must
equal 0. Since the \;'s are distinct, ; = 0 for ¢ > 2 and so r; = 0 as well. This
contradiction implies that the v;'s are linearly independent.[]

The next theorem describes the spectrum of a polynomial p(7) in 7.

Theorem 8.3 (The spectral mapping theorem) Let V' be a vector space over
an algebraically closed field F. Let T € L(V') and let p(x) € F|x]. Then

Spec(p(7)) = p(Spec(7)) = {p(A) | A € Spec(7)}

Proof. We leave it as an exercise to show that if A is an eigenvalue of 7, then
p(A) is an eigenvalue of p(7). Hence, p(Spec(7)) C Spec(p(7)). For the reverse
inclusion, let A € Spec(p(7)), that is,

(p(T) - /\)U = O
forv # 0. If
p(l') — A= (:I,‘ — 7«1)61. . (33 _ rn)en

where r; € F, then writing this as a product of (not necessarily distinct) linear
factors, we have

(t—r1)(r—r1) (=1 (T—1r)v=0

(The operator 7j¢ is written r; for convenience.) We can remove factors from
the left end of this equation one by one until we arrive at an operator o (perhaps
the identity) for which ov # 0 but (7 — r;)ov = 0. Then ov is an eigenvector
for 7 with eigenvalue 7. But since p(ry) —A =0, it follows that
A = p(ri) € p(Spec(r)). Hence, Spec(p(7)) C p(Spec(7)).O

The Trace and the Determinant

Let F' be algebraically closed and let A € M, (F) have characteristic
polynomial

calz) =a" + Co1" T e+
=(x—=X)(x—=N\)
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where Aq, ..., A\, are the eigenvalues of A. Then
ca(z) = det(al — A)
and setting x = 0 gives
det(A) = —co = (=1)" " Ai--- A,

Hence, if F is algebraically closed then, up to sign, det(A) is the constant term
of ¢4 (x) and the product of the eigenvalues of A, including multiplicity.

The sum of the eigenvalues of a matrix over an algebraically closed field is also
an interesting quantity. Like the determinant, this quantity is one of the
coefficients of the characteristic polynomial (up to sign) and can also be
computed directly from the entries of the matrix, without knowing the
eigenvalues explicitly.

Definition 7/e trace of a matrix A € M,,(F'), denoted by tr(A), is the sum of
the elements on the main diagonal of A.L]

Here are the basic propeties of the trace. Proof is left as an exercise.

Theorem 8.4 Let A, B € M, (F).

Iy tr(rd) =rte(A), forr € F.

2) tr(A+ B) =tr(A) + tr(B).

3) tr(AB) =tr(BA).

4) tr(ABC)=tu(CAB)=1t(BCA). However, tr(ABC) may not equal
tr(ACB).

5) The trace is an invariant under similarity.

6) If F is algebraically closed, then tr(A) is the sum of the eigenvalues of A,
including multiplicity, and so

tr(A) = —¢py

where ca(z) = 2" + ¢, 12"+ - + 1w + .00

Since the trace is invariant under similarity, we can make the following
definition.

Definition The trace of a linear operator 7 € L(V') is the trace of any matrix
that represents T.[1

As an aside, the reader who is familar with symmetric polynomials knows that
the coefficients of any polynomial

p(x) =2+ 2" -zt
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are the elementary symmetric functions of the roots:

Cp—1 = (_1)12 Ai
Cp—9 = (—1)22A7)\J

1<j

Cp—3 = (—1)32 /\i/\]')\k

i<j<k

c = (—1)HH/\1‘
i1

The most important elementary symmetric functions of the eigenvalues are the
first and last ones:

Cho1 = =M+ -+ N\, = tI‘(A) and ¢y = (_1)77,/\1_ Ay = det(A)

Geometric and Algebraic Multiplicities

Eigenvalues actually have two forms of multiplicity, as described in the next
definition.

Definition Let \ be an eigenvalue of a linear operator 7 € L(V).

1) The algebraic multiplicity of )\ is the multiplicity of \ as a root of the
characteristic polynomial ¢ ().

2) The geometric multiplicity of \ is the dimension of the eigenspace £).[1

Theorem 8.5 The geometric multiplicity of an eigenvalue X of 7 € L(V) is less
than or equal to its algebraic multiplicity.

Proof. We can extend any basis B = {vy,...,v;} of £, to a basis B for V.
Since &) is invariant under 7, the matrix of 7 with respect to B has the block

form
7] ( M A >
B f—
0 B block

where A and B are matrices of the appropriate sizes and so
c-(z) = det(zI — [7]p)
= det(:c]k — )\Ik)det(IIn_k - B)
= (z — N)¥det(zI,_ — B)

(Here n is the dimension of V'.) Hence, the algebraic multiplicity of X is at least
equal to the the geometric multiplicity & of 7.01
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The Jordan Canonical Form

One of the virtues of the rational canonical form is that every linear operator on
a finite-dimensional vector space has a rational canonical form. However, as
mentioned earlier, the rational canonical form may be far from the ideal of
simplicity that we had in mind for a set of simple canonical forms and is really
more of a theoretical tool than a practical tool.

When the minimal polynomial m. (x) of 7 splits over F,
me(x) = (& — X)) (. — \p)™
there is another set of canoncial forms that is arguably simpler than the set of

rational canonical forms.

In some sense, the complexity of the rational canonical form comes from the
choice of basis for the cyclic submodules ((v; ;)). Recall that the 7-cyclic bases
have the form

d; j—1

Bij = (vijs i, T i)

Cij

where d; ; = deg(p;"”’). With this basis, all of the complexity comes at the end,

so to speak, when we attempt to express
(% (i) = 7% (viy)

as a linear combination of the basis vectors.

However, since B; ; has the form
(v, TV, 7'211, ey Tdilv)
any ordered set of the form
(po(T)v, p1(T)v, ...y pa—1(T)V)

where deg(py;(z)) = k will also be a basis for ((v; ;)). In particular, when m(z)
splits over F', the elementary divisors are

() = (@ = )
and so the set
Cij = (Vijs (T = N)Vigyooey (T = X) 7 M0y )

is also a basis for ((v; ;)).

If we temporarily denote the kth basis vector in C;; by b, then for
k=0,...,ei3j—2,
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by = 7[(T — Ai)" (v )]
= (1= A+ 2T = 2) (v )]
= (1= X)) (vig) + Ml = X)) (i)
= b1+ Aiby
For k = e; j — 1, a similar computation, using the fact that
(r— )\i)k+l(vz,j) =(r— )\i)ei’](vi,]‘) =0
gives

T(be,,~1) = Aibe, ;1

Thus, for this basis, the complexity is more or less spread out evenly, and the
matrix of 7| (v, Withrespect to C; ; is the e; j X e; ; matrix

A 0 e o 0
1 N :
J(ANiseij) =10 1 :
o 0
o --- 0 1 N

which is called a Jordan block associated with the scalar )\;. Note that a Jordan
block has \;'s on the main diagonal, 1's on the subdiagonal and 0's elsewhere.
Let us refer to the basis

c={Jc,

as a Jordan basis for 7.

Theorem 8.6 (The Jordan canonical form) Suppose that the minimal
polynomial of T € L(V) splits over the base field F, that is,

() = (2 = M) — M)

where \; € F.
1) The matrix of T with respect to a Jordan basis C is

diag(j()‘laeLl)a ey \7(>‘1a eLkl); ey j(>\7m en,l); ey j()\m en,k,,))

where the polynomials (x — \;)% are the elementary divisors of T. This
block diagonal matrix is said to be in Jordan canonical form and is called
the Jordan canonical form of .

2) If F is algebraically closed, then up to order of the block diagonal
matrices, the set of matrices in Jordan canonical form constitutes a set of
canonical forms for similarity.

Proof. For part 2), the companion matrix and corresponding Jordan block are

similar:
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Cl(z — X)W ~ T (N, ei )

since they both represent the same operator 7 on the subspace ((v; ;)). It follows
that the rational canonical matrix and the Jordan canonical matrix for 7 are
similar.[]

Note that the diagonal elements of the Jordan canonical form J of 7 are
precisely the eigenvalues of 7, each appearing a number of times equal to its
algebraic multiplicity. In general, the rational canonical form does not “expose”
the eigenvalues of the matrix, even when these eigenvalues lie in the base field.

Triangularizability and Schur's Lemma

We have discussed two different canonical forms for similarity: the rational
canonical form, which applies in all cases and the Jordan canonical form, which
applies only when the base field is algebraically closed. Moreover, there is an
annoying sense in which these sets of canoncial forms leave something to be
desired: One is too complex and the other does not always exist.

Let us now drop the rather strict requirements of canonical forms and look at
two classes of matrices that are too large to be canonical forms (the upper
triangular matrices and the almost upper triangular matrices) and one class of
matrices that is too small to be a canonical form (the diagonal matrices).

The upper triangular matrices (or lower triangular matrices) have some nice
algebraic properties and it is of interest to know when an arbitrary matrix is
similar to a triangular matrix. We confine our attention to upper triangular
matrices, since there are direct analogs for lower triangular matrices as well.

Definition 4 linear operator T € L(V) is upper triangularizable if there is an
ordered basis B = (vi,...,v,) of V for which the matrix [T|p is upper
triangular, or equivalently, if

TU; € (U1, ..., ;)

foralli=1,...,n.0

As we will see next, when the base field is algebraically closed, all operators are
upper triangularizable. However, since two distinct upper triangular matrices
can be similar, the class of upper triangular matrices is not a canonical form for
similarity. Simply put, there are just too many upper triangular matrices.

Theorem 8.7 (Schur's theorem) Let V' be a finite-dimensional vector space

over a field F'.

1) If the characteristic polynomial (or minimal polynomial) of 7 € L(V') splits
over F, then T is upper triangularizable.

2) If F is algebraically closed, then all operators are upper triangularizable.
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Proof. Part 2) follows from part 1). The proof of part 1) is most easily
accomplished by matrix means, namely, we prove that every square matrix
A € M, (F) whose characteristic polynomial splits over F' is similar to an upper
triangular matrix. If n = 1 there is nothing to prove, since all 1 x 1 matrices are
upper triangular. Assume the result is true for n — 1 and let A € M,,(F).

Let v; be an eigenvector associated with the eigenvalue \; € F' of A and extend
{v1} to an ordered basis B = (v1,...,v,) for R". The matrix of 74 with respect
to BB has the form

[ ]
1 1 block
for some A; € M,,_;(F). Since [74]p and A are similar, we have
det (zI — A) = det(z] — [14]g) = (& — Ay) det (] — Ay)

Hence, the characteristic polynomial of A; also splits over F' and the induction
hypothesis implies that there is an invertible matrix P € M,,_;(F') for which

U=PA P!

is upper triangular. Hence, if

1 0
o-[s 7]
0 P block
then (@ is invertible and
-1 _ 1 0 Al * 1 0 . )\1 *
QAlsQ [0 PO Ajlo P |0 U
is upper triangular.[]

The Real Case

When the base field is F' = R, an operator 7 is upper triangularizable if and
only if its characteristic polynomial splits over R. (Why?) We can, however,
always achieve a form that is close to triangular by permitting values on the first
subdiagonal.

Before proceeding, let us recall Theorem 7.11, which says that for a module W,
of prime order m. (), the following are equivalent:

1) W;iscyclic

2) W, is indecomposable

3) ¢, () is irreducible

4) T is nonderogatory, that is, ¢, (z) = m,(x)
5)  dim(W;) = deg(p(x)).
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Now suppose that F' =R and ¢,(z) = 2% + sz + t is an irreducible quadratic.
If B is a 7-cyclic basis for W, then

[7]5 = [(1) :ﬂ

However, there is a more appealing matrix representation of 7. To this end, let
A be the matrix above. As a complex matrix, A has two distinct eigenvalues:

V4t — 52

S
A=—2 4
27" 9

Now, a matrix of the form

has characteristic polynomial ¢(z) = (z — a)? + b* and eigenvalues a & ib. So
if we set

V4t — 52

5
=—- d b=-—
a 5 an 5

then B has the same two distinct eigenvalues as A and so A and B have the
same Jordan canonical form over C. It follows that A and B are similar over C
and therefore also over R, by Theorem 7.20. Thus, there is an ordered basis C
for which [7]¢ = B.

Theorem 8.8 If F' = R and W is cyclic and deg(c,(x)) = 2, then there is an
ordered basis C for which

[7]e = [Cbl _b] O

a

Now we can proceed with the real version of Schur's theorem. For the sake of
the exposition, we make the following definition.

Definition 4 matrix A € M, (F') is almost upper triangular if it has the form

Al *
Ay
0 Ay, block

where
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Ai=la] or AZ:[Z _ab]

for a,b € F. A linear operator T € L(V') is almost upper triangularizable if
there is an ordered basis B for which 7]z is almost upper triangular.C]

To see that every real linear operator is almost upper triangularizable, we use
Theorem 7.19, which states that if p(x) is a prime factor of ¢ (z), then V; has a
cyclic submodule W, of order p(x). Hence, W is a 7-cyclic subspace of
dimension deg(p(x)) and 7|y has characteristic polynomial p(z).

Now, the minimal polynomial of a real operator 7 € L£(V") factors into a product
of linear and irreducible quadratic factors. If ¢,(z) has a linear factor over F,
then V. has a one-dimensional 7-invariant subspace W. If c¢.(z) has an
irreducible quadratic factor p(x), then V; has a cyclic submodule W, of order
p(z) and so a matrix representation of 7 on W is given by the matrix

a —b
=]
This is the basis for an inductive proof, as in the complex case.

Theorem 8.9 (Schur's theorem: real case) If'V is a real vector space, then
every linear operator on 'V is almost upper triangularizable.

Proof. As with the complex case, it is simpler to proceed using matrices, by
showing that any n x n real matrix A is similar to an almost upper triangular
matrix. The result is clear if n = 1. Assume for the purposes of induction that
any square matrix of size less than n x n is almost upper triangularizable.

We have just seen that F"* has a one-dimensional 74-invariant subspace W or a
two-dimensional 74-cyclic subspace W, where 74 has irreducible characteristic
polynomial on . Hence, we may choose a basis B for F" for which the first
one or first two vectors are a basis for . Then

= 4]
A|B =
0 A block

where

Ay =la] or Al—[z _ab}

and A, has size k x k. The induction hypothesis applied to A, gives an
invertible matrix P € M, for which

U=PA,P!
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is almost upper triangular. Hence, if

I, 0
o-[5 3
0 P block

then @ is invertible and
-1 _ In,]g 0 Al * In,k; 0 - Al *
QAlsQ _[0 PO Al 0o P' |0 U
is almost upper triangular.[]

Unitary Triangularizability

Although we have not yet discussed inner product spaces and orthonormal
bases, the reader may very well be familiar with these concepts. For those who
are, we mention that when V' is a real or complex inner product space, then if an
operator 7 on V can be triangularized (or almost triangularized) using an
ordered basis 3, it can also be triangularized (or almost triangularized) using an
orthonormal ordered basis O.

To see this, suppose we apply the Gram—Schmidt orthogonalization process to a
basis B = (v1,...,v,) that triangularizes (or almost triangularizes) 7. The
resulting ordered orthonormal basis O = (uy, ..., u,) has the property that

(v1y ..y 0) = (U, ..., uy)
for all i < n. Since [7]p is (almost) upper triangular, that is,
TU; € (U1, ..., V)
for all 7 < n, it follows that
TU; € (U1, ., TU;) C (U1, ., 0) = (U, .o, u)
and so the matrix [7]o is also (almost) upper triangular.
A linear operator 7 is unitarily upper triangularizable if there is an ordered
orthonormal basis with respect to which 7 is upper triangular. Accordingly,
when V is an inner product space, we can replace the term ‘“‘upper

triangularizable” with “unitarily upper triangularizable” in Schur's theorem. (A
similar statement holds for almost upper triangular matrices.)

Diagonalizable Operators

Definition A linear operator 7 € L(V') is diagonalizable if there is an ordered
basis B = (vi,...,v,) of V for which the matrix [r|g is diagonal, or
equivalently, if
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TV, = )\ﬂ)i

foralli=1,...,n.0

The previous definition leads immediately to the following simple
characterization of diagonalizable operators.

Theorem 8.10 Let 7 € L(V'). The following are equivalent:
1) 7 is diagonalizable.

2) 'V has a basis consisting entirely of eigenvectors of T.
3) 'V has the form

V:g/\l@...@&k

where A1, ..., A\, are the distinct eigenvalues of .01

Diagonalizable operators can also be characterized in a simple way via their
minimal polynomials.

Theorem 8.11 A linear operator T € L(V') on a finite-dimensional vector space
is diagonalizable if and only if its minimal polynomial is the product of distinct
linear factors.

Proof. If 7 is diagonalizable, then

V=& &--®E,
and Theorem 7.7 implies that m,(z) is the least common multiple of the
minimal polynomials 2 — \; of 7 restricted to &;. Hence, m,(x) is a product of

distinct linear factors. Conversely, if m.(x) is a product of distinct linear
factors, then the primary decomposition of V' has the form

V=Wie ol
where
Vi={veV|(r—X)v=0}=¢&,
and so 7 is diagonalizable.[d
Spectral Resolutions

We have seen (Theorem 2.25) that resolutions of the identity on a vector space
V' correspond to direct sum decompositions of V. We can do something similar
for any diagonalizable linear operator 7 on V' (not just the identity operator).
Suppose that 7 has the form

T=Xp1+ -+ Nepr

where p; +--- 4+ pr = is a resolution of the identity and the \; € F' are
distinct. This is referred to as a spectral resolution of 7.
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We claim that the \;'s are the eigenvalues of 7 and im(p;) = &£,,. Theorem 2.25
implies that

V =im(p1) & - @ im(py)

If p;v € im(p;), then

7(piv) = (A1p1 + -+ + Appr) piv = Ni(piv)
and so p;v € &, Hence, im(p;) C &, and so

V=im(p)) ®---@im(p,) CE, G- DE,CV
which implies that im(p;) = £,, and
V=@ D&,
The converse also holds, for if V =&, & --- @ &), and if p; is projection onto
&), along the direct sum of the other eigenspaces, then
prt+-tpp =t

and since 7p; = \;p;, it follows that

T=T(pr 4 F pr) = Aipr+ o Aepr

Theorem 8.12 A linear operator 7 € L(V) is diagonalizable if and only if it
has a spectral resolution

T=MAp1+ -+ Appr

In this case, {\1, ..., \¢ } is the spectrum of T and

im(p;) =&\, and ker(p;) = @E,\J O
i

Exercises

1. Let J be the n x n matrix all of whose entries are equal to 1. Find the
minimal polynomial and characteristic polynomial of J and the
eigenvalues.

2. Prove that the eigenvalues of a matrix do not form a complete set of

invariants under similarity.

Show that 7 € L(V) is invertible if and only if 0 is not an eigenvalue of 7.

4. Let A be an n x n matrix over a field F' that contains all roots of the
characteristic polynomial of A. Prove that det(A) is the product of the
eigenvalues of A, counting multiplicity.

5. Show that if \ is an eigenvalue of 7, then p()\) is an eigenvalue of p(7), for
any polynomial p(z). Also, if A # 0, then A~ is an eigenvalue for 7.

6. Anoperator 7 € L(V) is nilpotent if 7* = 0 for some positive n € N.

W



10.

11.

12.

13.
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a) Show that if 7 is nilpotent, then the spectrum of 7 is {0}.

b) Find a nonnilpotent operator 7 with spectrum {0}.

Show that if 0,7 € £(V') and one of o and 7 is invertible, then o7 ~ 70

and so o7 and 7o have the same eigenvalues, counting multiplicty.

(Halmos)

a) Find a linear operator 7 that is not idempotent but for which
(1 —71)=0.

b) Find a linear operator 7 that is not idempotent but for which
(b —7)2=0.

c) Provethatif 7*(c — 7) = 7(1v — 7)? = 0, then 7 is idempotent.

An involution is a linear operator # for which 6% = .. If 7 is idempotent

what can you say about 27 — ¢? Construct a one-to-one correspondence

between the set of idempotents on V' and the set of involutions.

Let A, B € My(C) and suppose that A? = B*=1,ABA= B! but

A # I and B # I. Show that if C' € M5(C) commutes with both A and B,

then C' = rI for some scalar rr € C.

Let7 € £(V) and let

S = (v,Tv,..., 7 )

be a 7-cyclic submodule of V; with minimal polynomial p(z)® where p(z)
is prime of degree d. Let o = p(7) restricted to (v). Show that S is the
direct sum of d o-cyclic submodules each of dimension e, that is,

S=T1¢---dTy
Hint: For each 0 < i < d, consider the set
B; = {Tiv,p(T)Ti’U, ... ,p(T)e’lTiv)

Fix € > 0. Show that any complex matrix is similar to a matrix that looks
just like a Jordan matrix except that the entries that are equal to 1 are
replaced by entries with value e, where € is any complex number. Thus, any
complex matrix is similar to a matrix that is “almost” diagonal. Hint:
consider the fact that

1 0 0 A0 O 1 0 0 A0 O
0 € O 1 X 0 0 ¢ 0|l=]e X O
0 0 €[]0 1 X||0o 0 €2 0 € X

Show that the Jordan canonical form is not very robust in the sense that a
small change in the entries of a matrix A may result in a large jump in the
entries of the Jordan form .J. Hint: consider the matrix

e 0
a=[5 3]

What happens to the Jordan form of A, as € — 0?
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14. Give an example of a complex nonreal matrix all of whose eigenvalues are
real. Show that any such matrix is similar to a real matrix. What about the
type of the invertible matrices that are used to bring the matrix to Jordan
form?

15. Let J = [7]p be the Jordan form of a linear operator 7 € L(V'). For a given
Jordan block of J(A,e) let U be the subspace of V' spanned by the basis
vectors of B associated with that block.

a) Show that 7|y has a single eigenvalue A with geometric multiplicity 1.
In other words, there is essentially only one eigenvector (up to scalar
multiple) associated with each Jordan block. Hence, the geometric
multiplicity of A for 7 is the number of Jordan blocks for A\. Show that
the algebraic multiplicity is the sum of the dimensions of the Jordan
blocks associated with .

b) Show that the number of Jordan blocks in .J is the maximum number
of linearly independent eigenvectors of 7.

¢) What can you say about the Jordan blocks if the algebraic multiplicity
of every eigenvalue is equal to its geometric multiplicity?

16. Assume that the base field F' is algebraically closed. Then assuming that the
eigenvalues of a matrix A are known, it is possible to determine the Jordan
form J of A by looking at the rank of various matrix powers. A matrix B is
nilpotent if B" = 0 for some n > 0. The smallest such exponent is called
the index of nilpotence.

a) Let J =J(\,n) be a single Jordan block of size n x n. Show that
J — AI is nilpotent of index n. Thus, n is the smallest integer for
which tk(J — AT)" = 0.

Now let J be a matrix in Jordan form but possessing only one eigenvalue

A

b) Show that J — A[ is nilpotent. Let m be its index of nilpotence. Show
that m is the maximum size of the Jordan blocks of .J and that
rk(J — AI)™~! is the number of Jordan blocks in J of maximum size.

¢) Show that rk(J — AI)™? is equal to 2 times the number of Jordan
blocks of maximum size plus the number of Jordan blocks of size one
less than the maximum.

d) Show that the sequence rtk(J — AI)* for k=1,...,m uniquely
determines the number and size of all of the Jordan blocks in .J, that is,
it uniquely determines .JJ up to the order of the blocks.

e) Now let J be an arbitrary Jordan matrix. If A is an eigenvalue for .J
show that the sequence rk(J — AI)* for k = 1,...,m where m is the
first integer for which rk(J — AI)™ =rtk(J — AI)™" uniquely
determines J up to the order of the blocks.

f) Prove that for any matrix A with spectrum {\,..., \;} the sequence
tk(A — \I)* fori=1,...,5 and k = 1,...,m where m is the first
integer for which tk(A — \I)"™ =1k(A — N\I)™ ! uniquely
determines the Jordan matrix J for A up to the order of the blocks.

17. Let A € M, (F).



a)

b)

©)
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If all the roots of the characteristic polynomial of A lie in I prove that
A is similar to its transpose A’. Hint: Let B be the matrix

10
B=|g . :
10 0

with 1's on the diagonal that moves up from left to right and 0's
elsewhere. Let J be a Jordan block of the same size as B. Show that
BJB™' = J'.

Let A, B € M, (F). Let K be a field containing F'. Show that if A and
B are similar over K, that is, if B = PAP~! where P € M,,(K), then
A and B are also similar over F, that is, there exists Q € M,,(F) for
which B = QAQ ™.

Show that any matrix is similar to its transpose.

The Trace of a Matrix
18. Let A € M, (F). Verify the following statements.

a)
b)
¢)
d)

e)
f)

(rA) =rtr(A), forr € F.

(A+ B) =tr(A) + tr(B).
tr(AB) = tr(BA).
tr(ABC) = tr(CAB) = tr(BC'A). Find an example to show that
tr(ABC') may not equal tr(AC'B).
The trace is an invariant under similarity.
If F is algebraically closed, then the trace of A is the sum of the
eigenvalues of A.

tr
tr

19. Use the concept of the trace of a matrix, as defined in the previous exercise,
to prove that there are no matrices A, B € M,,(C) for which

AB—-BA=1

20. Let T: M,,(F) — F be a function with the following properties. For all
matrices A, B € M, (F)andr € F,

1)
2)
3)

T(rA) =rT(A)
T(A+B)=T(A)+T(B)
T(AB) =T(BA)

Show that there exists s € F for which T(A) =str(A), for all
Ae M, (F).

Commuting Operators

Let

F={neLl(V)|licTI}

be a family of operators on a vector space V. Then F is a commuting family if
every pair of operators commutes, that is, o7 = 7o for all o, 7 € F. A subspace
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U of V is F-invariant if it is 7-invariant for every 7 € F. It is often of interest
to know whether a family F of linear operators on V has a common
eigenvector, that is, a single vector v € V' that is an eigenvector for every
o € F (the corresponding eigenvalues may be different for each operator,
however).

21. A pair of linear operators o, 7 € L(V) is simultaneously diagonalizable if
there is an ordered basis B for V' for which [7]z and [0]3 are both diagonal,
that is, 53 is an ordered basis of eigenvectors for both 7 and o. Prove that
two diagonalizable operators ¢ and 7 are simultaneously diagonalizable if
and only if they commute, that is, o7 = 7o. Hint: If o7 = 70, then the
eigenspaces of T are invariant under o.

22. Let o, 7 € L(V). Prove that if o and 7 commute, then every eigenspace of
o is T-invariant. Thus, if F is a commuting family, then every eigenspace
of any member of F is F-invariant.

23. Let F be a family of operators in £(V') with the property that each operator
in F has a full set of eigenvalues in the base field F', that is, the
characteristic polynomial splits over F. Prove that if F is a commuting
family, then F has a common eigenvector v € V.

24. What do the real matrices

1 1 1 2
A[—l 1]andB[_2 1]

have to do with the issue of common eigenvectors?
Gersgorin Disks

It is generally impossible to determine precisely the eigenvalues of a given
complex operator or matrix A € M,,(C), for if n > 5, then the characteristic
equation has degree 5 and cannot in general be solved. As a result, the
approximation of eigenvalues is big business. Here we consider one aspect of
this approximation problem, which also has some interesting theoretical
consequences.

Let A € M,,(C) and suppose that Av = Av where v = (by, ..., b,)". Comparing
kth rows gives

S Auib = Aby
i=1

which can also be written in the form
(A — Agr) ZAM i

L;ék
If k has the property that |b;| > |b;| for all 4, we have
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[bil| A — Agi| < Z\Amef\ < |bk;|Z|Almt|
Zh Zh

and thus

A= Api| < Z|Aki| (8.7)
iZh

The right-hand side is the sum of the absolute values of all entries in the kth row
of A except the diagonal entry Aj;. This sum Ry (A) is the kth deleted absolute
row sum of A. The inequality (8.7) says that, in the complex plane, the
eigenvalue A lies in the disk centered at the diagonal entry Ay, with radius equal
to Ri(A). This disk

GRk(A) = {Z eC | |Z — Akkl < Rk(A)}

is called the GerSgorin row disk for the kth row of A. The union of all of the
Gersgorin row disks is called the Ger$gorin row region for A.

Since there is no way to know in general which is the index & for which
|br| > |b:], the best we can say in general is that the eigenvalues of A lie in the
union of all Ger$gorin row disks, that is, in the Ger§gorin row region of A.

Similar definitions can be made for columns and since a matrix has the same
eigenvalues as its transpose, we can say that the eigenvalues of A lie in the
Gersgorin column region of A. The GerSgorin region G(A) of a matrix
A € M, (F) is the intersection of the Ger§gorin row region and the Ger§gorin
column region and we can say that all eigenvalues of A lie in the GerS§gorin
region of A. In symbols, cA C G A.

25. Find and sketch the GerSgorin region and the eigenvalues for the matrix
1 2 3
A=1{4 5 6
7T 8 9

26. A matrix A € M, (C) is diagonally dominant if foreach k = 1,...,n,
[Api| = Ry(A)

and it is strictly diagonally dominant if strict inequality holds. Prove that
if A is strictly diagonally dominant, then it is invertible.

27. Find a matrix A € M,,(C) that is diagonally dominant but not invertible.

28. Find a matrix A € M, (C) that is invertible but not strictly diagonally
dominant.



Chapter 9
Real and Complex Inner Product Spaces

We now turn to a discussion of real and complex vector spaces that have an
additional function defined on them, called an inner product, as described in the
following definition. In this chapter, F will denote either the real or complex
field. Also, the complex conjugate of r € C is denoted by 7.

Definition Let V' be a vector space over F' =R or F' = C. An inner product
onV is a function {,): V x V' — F with the following properties:
1) (Positive definiteness) Forallv €V,

(v,v) >0 and (v,v) =0&v=0

2) For I' = C: (Conjugate symmetry)

(u,v) = (v, u)
For F = R: (Symmetry)
(u,v) = (v, u)
3) (Linearity in the first coordinate) For all u,v € V andr,s € F
(ru + sv,w) = r{u, w) + s{v, w)

A real (or complex) vector space V, together with an inner product, is called a
real (or complex) inner product space.[]

If X,Y CV, then we let
(X, V) ={{z,y) |z e X,y eV}
and
(v, X) ={{v,x) | x € X}

Note that a vector subspace S of an inner product space V' is also an inner
product space under the restriction of the inner product of V' to S.
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We will study bilinear forms (also called inner products) on vector spaces over
fields other than R or C in Chapter 11. Note that property 1) implies that (v, v)
is always real, even if V' is a complex vector space.

If F = R, then properties 2) and 3) imply that the inner product is linear in both
coordinates, that is, the inner product is bilinear. However, if F' = C, then

(w,ru + sv) = (ru + sv,w) = T(u, w) + 5(v, w) = 7{w, u) + 5{w, v)

This is referred to as conjugate linearity in the second coordinate. Specifically,
a function f: V' — W between complex vector spaces is conjugate linear if

flu+v)= f(u)+ f(v)
and
f(ru) =7f(u)

for all u,v € V and r € C. Thus, a complex inner product is linear in its first
coordinate and conjugate linear in its second coordinate. This is often described
by saying that a complex inner product is sesquilinear. (Sesqui means “one and
a half times.”)

Example 9.1
1) The vector space R" is an inner product space under the standard inner
product, or dot product, defined by

<(7'1;~..7rn),(31,...78n)> =781+ -+ Sy

The inner product space R" is often called n-dimensional Euclidean
space.

2) The vector space C" is an inner product space under the standard inner
product defined by

<(T1, arn); (517 ---73n>> =711S1+ -+ TSy

This inner product space is often called n-dimensional unitary space.

3) The vector space C'a, b] of all continuous complex-valued functions on the
closed interval [a,b] is a complex inner product space under the inner
product

b
(f.g) = / f(2)9(@) dz X

Example 9.2 One of the most important inner product spaces is the vector space
% of all real (or complex) sequences (s,,) with the property that

Z|Sn|2 < 00
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under the inner product
((sn)s (tn)) = ana
n=0

Such sequences are called square summable. Of course, for this inner product
to make sense, the sum on the right must converge. To see this, note that if

(54), (t,) € £%, then
0 < (Isnl = [ta)? = [sul® = 2lsulltu] + [ta]”
and so
2[sutn| < |sul” + |ta]?

which implies that (s,t,) € ¢>. We leave it to the reader to verify that /* is an
inner product space.[]

The following simple result is quite useful.

Lemma 9.1 If'V is an inner product space and (u,x) = (v,x) for all x € V,
then v = v.0d

The next result points out one of the main differences between real and complex
inner product spaces and will play a key role in later work.

Theorem 9.2 Let V' be an inner product space and let 7 € L(V).
1)

(to,w) =0forallv,weV = 7=0
2) If'V is a complex inner product space, then

(to,v) =0forallveV = 71=0

but this does not hold in general for real inner product spaces.
Proof. Part 1) follows directly from Lemma 9.1. As for part 2), let v = rz 4y,
forz,y € Vandr € F. Then

0=(r(rz+y),rz+y)
= |7'|2<7'1:, x) + {ty,y) + r{te,y) + 71y, x)
=r(rz,y) +7(Ty,T)

Setting = 1 gives
(rz,y) + (ry,2) =

and setting r = ¢ gives
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<T.’E,y> - <Ty7 .1?> =0

These two equations imply that (rz,y) =0 for all 2,y € V and so part 1)
implies that 7 = 0. For the last statement, rotation by 90 degrees in the real
plane R? has the property that (7v,v) = 0 for all v.[J

Norm and Distance
If V' is an inner product space, the norm, or length of v € V' is defined by
o]l = v/ (v, 0) ©.1)

A vector v is a unit vector if ||v|| = 1. Here are the basic properties of the norm.

Theorem 9.3
1) |v|| = 0and ||v|| = 0 if and only if v = 0.
2) Forallr € FandveV,

[[roll = Ir{flol
3) (The Cauchy—Schwarz inequality) For all u,v € V,
[{w, ) < Jlulll]v]]

with equality if and only if one of u and v is a scalar multiple of the other.
4) (The triangle inequality) For all u,v € V,

lw +ol} < flufl + o]l

with equality if and only if one of u and v is a scalar multiple of the other.
5) Forallu,v,xz €V,

[ —oll < flu =zl + [z — vl
6) Forallu,veV,
[l = llvllf < flu = ol
7) (The parallelogram law) For all u,v € V,
lu + o) + u = o)* = 2]jul|* + 2|o]|*

Proof. We prove only Cauchy—Schwarz and the triangle inequality. For
Cauchy—Schwarz, if either u or v is zero the result follows, so assume that
u,v # 0. Then, for any scalar r € F',

0<|ju-— rvH2
= (u—rv,u—rv)
= <ua 'LL> - ?<’U,, v> - T[<vv u> - ?<v7 U>]

Choosing 7 = (v,u)/(v,v) makes the value in the square brackets equal to 0
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and so

[, v)*
(v, > o]

which is equivalent to the Cauchy—Schwarz inequality. Furthermore, equality
holds if and only if ||u — rv||* = 0, that is, if and only if u — rv = 0, which is
equivalent to u and v being scalar multiples of one another.

To prove the triangle inequality, the Cauchy—Schwarz inequality gives
lu+v)* = (u+ v, u+v)
= (u,u) + (u,v) + (v,u) + (v, v)
< Jull® + 2fulllfol + flv]|*
= (llull + [lvll)?

from which the triangle inequality follows. The proof of the statement
concerning equality is left to the reader.[J

Any vector space V, together with a function |- ||:V — R that satisfies
properties 1), 2) and 4) of Theorem 9.3, is called a normed linear space and the
function || - || is called a norm. Thus, any inner product space is a normed linear
space, under the norm given by (9.1).

It is interesting to observe that the inner product on V' can be recovered from the
norm. Thus, knowing the length of all vectors in V' is equivalent to knowing all

inner products of vectors in V.

Theorem 9.4 (The polarization identities)
1) If'V is a real inner product space, then

1
(w,0) = 7 (lu+ ol = flu = ]*)
2) If'V is a complex inner product space, then
1 2 29y, L. 2 2
(w,0) = Z(lu+ 0" = llu = ol") + Filllu+ wl]” — [lu — [

The norm can be used to define the distance between any two vectors in an
inner product space.

Definition Let V' be an inner product space. The distance d(u,v) between any
two vectors uw and v in 'V is

d(u,v) = |lu— ] .20

Here are the basic properties of distance.
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Theorem 9.5
) d(u,v) > 0and d(u,v) = 0ifand only ifu = v
2) (Symmetry)

d(u,v) = d(v,u)
3) (The triangle inequality)
d(u,v) < d(u,w) + d(w,v) O

Any nonempty set V, together with a function d: V' x V' — R that satisfies the
properties of Theorem 9.5, is called a metric space and the function d is called
a metric on V. Thus, any inner product space is a metric space under the metric
9.2).

Before continuing, we should make a few remarks about our goals in this and
the next chapter. The presence of an inner product, and hence a metric, permits
the definition of a topology on V, and in particular, convergence of infinite
sequences. A sequence (v,,) of vectors in V' converges tov € V if

lim ||v, —v]| =0
n—oo

Some of the more important concepts related to convergence are closedness and
closures, completeness and the continuity of linear operators and linear
functionals.

In the finite-dimensional case, the situation is very straightforward: All
subspaces are closed, all inner product spaces are complete and all linear
operators and functionals are continuous. However, in the infinite-dimensional
case, things are not as simple.

Our goals in this chapter and the next are to describe some of the basic
properties of inner product spaces—both finite and infinite-dimensional—and
then discuss certain special types of operators (normal, unitary and self-adjoint)
in the finite-dimensional case only. To achieve the latter goal as rapidly as
possible, we will postpone a discussion of convergence-related properties until
Chapter 12. This means that we must state some results only for the finite-
dimensional case in this chapter.

Isometries

An isomorphism of vector spaces preserves the vector space operations. The
corresponding concept for inner product spaces is the isometry.

Definition Let V' and W be inner product spaces and let 7 € L(V ,W).
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1) 7 is an isometry if it preserves the inner product, that is, if
(Tu, Tv) = (u,v)

forallu,veV.

2) A bijective isometry is called an isometric isomorphism. When 7:V — W
is an isometric isomorphism, we say that V and W are isometrically
isomorphic.]

It is clear that an isometry is injective and so it is an isometric isomorphism
provided it is surjective. Moreover, if

dim(V) = dim(W) < oo

injectivity implies surjectivity and 7 is an isometry if and only if 7 is an
isometric isomorphism. On the other hand, the following simple example shows
that this is not the case for infinite-dimensional inner product spaces.

Example 9.3 The map 7: (> — ¢? defined by
7(z1, 22, 3,...) = (0,21, 29, ...)

is an isometry, but it is clearly not surjective.[]

Since the norm determines the inner product, the following should not come as a
surprise.

Theorem 9.6 A linear transformation T € L(V , W) is an isometry if and only if
it preserves the norm, that is, if and only if
[7oll = [lvll

forallveV.
Proof. Clearly, an isometry preserves the norm. The converse follows from the
polarization identities. In the real case, we have

(Tu, Tv) = %(Hru + TUH2 — |lru — Tv||2)
1 2 2
= U@ +o)" = lir(u = v)[")
1
= 7(lu+ o> = flu — vl*)
= <U7U>

and so 7 is an isometry. The complex case is similar.[]

Orthogonality

The presence of an inner product allows us to define the concept of
orthogonality.
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Definition Let V' be an inner product space.
1) Two vectors u,v € V are orthogonal, written u L v, if

(u,v) =0

2) Two subsets X, Y CV are orthogonal, written X LY, if (X,Y) = {0},
that is, if © Ly for all x € X and y €Y. We write v L X in place of
{v} L X.

3) The orthogonal complement of a subset X C V' is the set

Xt={veV|vlX} O

The following result is easily proved.

Theorem 9.7 Let V' be an inner product space.
1) The orthogonal complement X of any subset X C V is a subspace of V.
2) For any subspace S of V,

SnS+t=1{0} O
Definition An inner product space V is the orthogonal direct sum of
subspaces S and T if
V=SeT, SLT
In this case, we write
SoT

More generally, V is the orthogonal direct sum of the subspaces Si,..., S,
written

S=50---005,

V=8@&--®S, and S; L S;fori#j O

Theorem 9.8 Let V' be an inner product space. The following are equivalent.

) V=SoT

2) V=S®TandT = S+

Proof. If V = S ® T, then by definition, 7" C S*. However, if v € S*, then
v=s+twheres € S andt € T. Then s is orthogonal to both ¢ and v and so s
is orthogonal to itself, which implies that s = 0 and so v € T Hence, T = S*.
The converse is clear.[d

Orthogonal and Orthonormal Sets

Definition 4 nonempty set O = {u; | i € K} of vectors in an inner product
space is said to be an orthogonal set if u; L u; for all i # j€ K. If, in
addition, each vector u; is a unit vector, then O is an orthonormal set. Thus, a
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set is orthonormal if
(ui, uj) = bi;
foralli,je K, where 0, j is the Kronecker delta function.[]

Of course, given any nonzero vector v € V, we may obtain a unit vector u by
multiplying v by the reciprocal of its norm:

1

U= 0
]

This process is referred to as normalizing the vector v. Thus, it is a simple
matter to construct an orthonormal set from an orthogonal set of nonzero
vectors.

Note that if © L v, then
2 2 2
lw+ol" = Jlul|” + v

and the converse holds if F' = R.
Orthogonality is stronger than linear independence.

Theorem 9.9 Any orthogonal set of nonzero vectors in V is linearly
independent.
Proof. If O = {u, | ¢ € K} is an orthogonal set of nonzero vectors and

ruy + -+ rpu, =0
then
0= (ryug + -+ rouy, ug) = re{ug, ug)
and so . = 0, for all k. Hence, O is linearly independent.[]
Gram—Schmidt Orthogonalization

The Gram—Schmidt process can be used to transform a sequence of vectors into
an orthogonal sequence. We begin with the following.

Theorem 9.10 (Gram—Schmidt augmentation) Let V' be an inner product
space and let O = {uy,...,u,} be an orthogonal set of vectors in V. If
v & (u1,...,uy,), then there is a nonzero u € V. for which {us,... ,uy,u} is
orthogonal and

(Upy ey Uy t) = (Upy.eny Uy, V)

In particular,
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n
uUu=v— E Tl
i=1

where

Proof. We simply set

U=V—=T1uUr — = Tplp
and force u L wu; for all 4, that is,
0= (u,u;) = (V—riug — - = rpp, w;) = (V,u;) — 73(U;, u;)
Thus, if u; = 0, take r; = 0 and if u; # 0, take
o <Uv U'i> O

T (ug u)

The Gram—Schmidt augmentation is traditionally applied to a sequence of
linearly independent vectors, but it also applies to any sequence of vectors.

Theorem 9.11 (The Gram-Schmidt orthogonalization process) Let

B = (v1,v,...) be a sequence of vectors in an inner product space V. Define a
sequence O = (uy,us, ... ) by repeated Gram—Schmidt augmentation, that is,

k=1
Uk = Vg — E Tl i
i=1

where uy = v, and

T w Ao

Then O is an orthogonal sequence in V with the property that
(uyy .. uk) = (U1, ..., V)

forall k > 0. Also, ur, = 0 if and only if vi, € (v, ..., Vp-1).
Proof. The result holds for k=1. Assume it holds for k£ —1. If
v € (v1,...,05-1), then

Vg € (U1, vy Uk—1) = (U1, ooy Up—1)

Writing
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k—1
UV = E a;u;
i—1
we have

(o0 i) = {0 ifu; =0

ai{u;, u;) ifu; #0
Therefore, a; = rj,; when u; # 0 and so u;, = 0. Hence,
(upy ooy ug) = (U, up—1,0) = (U1, oo, vp—1) = (U1, ..., V)
If vy & (v1,...,v5-1) then
(ury oo up) = (U1, oo, Vg1, ug) = (U1, ..., V1, Ug) O

Example 9.4 Consider the inner product space R|[x] of real polynomials, with
inner product defined by

(o) ala)) = [ polalords

1

Applying the Gram-Schmidt process to the sequence B = (1,x, 2% 2%,...)

gives

ur(z) =1
1
d
us(z) =2 — Ly dz =
1
S dx
1 9 1 3
d d 1
’LL3(.T): 2 _ f—llx x _ f—llx x .I—JI2—*
S dx S jzdx 3
1 1 1
wa(z) = 2 JLatde - [Hatda o I {xz B 1}
fjldm fllx dx fll(aﬂ—l)?dac 3
. 3
=23 -z

and so on. The polynomials in this sequence are (at least up to multiplicative
constants) the Legendre polynomials.[]

The QR Factorization

The Gram—Schmidt process can be used to factor any real or complex matrix
into a product of a matrix with orthogonal columns and an upper triangular
matrix. Suppose that A = (vy |ve | -+ | v,) is an m X n matrix with columns
v;, where n < m. The Gram—Schmidt process applied to these columns gives
orthogonal vectors O = (uy | ug | -+ | u,) for which
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(U, ooy ugy = (U1, ..o, v)

for all £ < n. In particular,
k—1
U = up + Z ThiWi
i=1

where

i = low) e £

In matrix terms,

1 roq1 o rpa
1 “ e r
(vi [va |- |vn) = (ur |ug |- |un) : "2

1
that is, A = OB where O has orthogonal columns and B is upper triangular.

We may normalize the nonzero columns u; of O and move the positive
constants to B. In particular, if a; = ||u;|| for u; # 0 and a; = 1 for u; = 0, then

a airzyx - aiTp
Uy | U2 Unp as o a2Tp2
(U1\U2|"'|Un): =22 . )
ap ! az Qp, .
ap,
and so
A=QR

where the columns of () are orthogonal and each column is either a unit vector
or the zero vector and R is upper triangular with positive entries on the main
diagonal. Moreover, if the vectors vy, ..., v, are linearly independent, then the
columns of @) are nonzero. Also, if m =n and A is nonsingular, then @ is
unitary/orthogonal.

If the columns of A are not linearly independent, we can make one final
adjustment to this matrix factorization. If a column w;/a; is zero, then we may
replace this column by any vector as long as we replace the (7, ¢)th entry a; in R
by 0. Therefore, we can take nonzero columns of (), extend to an orthonormal
basis for the span of the columns of () and replace the zero columns of ) by the
additional members of this orthonormal basis. In this way, @ is replaced by a
unitary/orthogonal matrix Q' and R is replaced by an upper triangular matrix R’
that has nonnegative entries on the main diagonal.
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Theorem 9.12 Let A € M,,,,(F), where F =C or F =R. There exists a
matrix Q € M,,,(F) with orthonormal columns and an upper triangular

matrix R € M,,(F) with nonnegative real entries on the main diagonal for
which

A=QR

Moreover, if m = n, then Q is unitary/orthogonal. If A is nonsingular, then R
can be chosen to have positive entries on the main diagonal, in which case the
factors @QQ and R are unique. The factorization A = QR is called the QR
factorization of the matrix A. If A is real, then QQ and R may be taken to be
real.

Proof. As to uniqueness, if A is nonsingular and QR = Q1 R, then

Q'Q=RR™"

and the right side is upper triangular with nonzero entries on the main diagonal
and the left side is unitary. But an upper triangular matrix with positive entries
on the main diagonal is unitary if and only if it is the identity and so Q1 = Q
and Ry = R. Finally, if A is real, then all computations take place in the real
field and so @) and R are real.l]

The QR decomposition has important applications. For example, a system of
linear equations Ax = u can be written in the form

QRx =wu
and since Q! = Q*, we have
Rr = Q"u

This is an upper triangular system, which is easily solved by back substitution;
that is, starting from the bottom and working up.

We mention also that the QR factorization is associated with an algorithm for
approximating the eigenvalues of a matrix, called the QR algorithm.
Specifically, if A = Ay is an n X n matrix, define a sequence of matrices as
follows:

1) Let Ay = QoRy be the QR factorization of Ay and let Ay = RyQ.
2) Once A; has been defined, let A, = QR be the QR factorization of Ay
and let Ak+1 = R.Qy.

Then Ay, is unitarily/orthogonally similar to A, since

Qr141Q5_1 = Qr—1(Ri—1Qr-1)Q1 = Qr—1Rp—1 = Ay

For complex matrices, it can be shown that under certain circumstances, such as
when the eigenvalues of A have distinct norms, the sequence Aj converges
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(entrywise) to an upper triangular matrix U, which therefore has the eigenvalues
of A on its main diagonal. Results can be obtained in the real case as well. For
more details, we refer the reader to [48], page 115.

Hilbert and Hamel Bases

Definition 4 maximal orthonormal set in an inner product space V' is called a
Hilbert basis for V.[J

Zorn's lemma can be used to show that any nontrivial inner product space has a
Hilbert basis. We leave the details to the reader.

Some care must be taken not to confuse the concepts of a basis for a vector
space and a Hilbert basis for an inner product space. To avoid confusion, a
vector space basis, that is, a maximal linearly independent set of vectors, is
referred to as a Hamel basis. We will refer to an orthonormal Hamel basis as an
orthonormal basis.

To be perfectly clear, there are maximal linearly independent sets called
(Hamel) bases and maximal orthonormal sets (called Hilbert bases). If a
maximal linearly independent set (basis) is orthonormal, it is called an
orthonormal basis.

Moreover, since every orthonormal set is linearly independent, it follows that an
orthonormal basis is a Hilbert basis, since it cannot be properly contained in an
orthonormal set. For finite-dimensional inner product spaces, the two types of
bases are the same.

Theorem 9.13 Let V be an inner product space. A finite subset
O ={uy,...,u;} of V is an orthonormal (Hamel) basis for V' if and only if it is
a Hilbert basis for V.

Proof. We have seen that any orthonormal basis is a Hilbert basis. Conversely,
if O is a finite maximal orthonormal set and O C P, where P is linearly
independent, then we may apply part 1) to extend O to a strictly larger
orthonormal set, in contradiction to the maximality of O. Hence, O is maximal
linearly independent.[]

The following example shows that the previous theorem fails for infinite-
dimensional inner product spaces.
Example 9.5 Let V = (2 and let M be the set of all vectors of the form

e; =(0,...,0,1,0,...)

where e; has a 1 in the ith coordinate and 0's elsewhere. Clearly, M is an
orthonormal set. Moreover, it is maximal. For if v = (z,,) € £? has the property
that v 1L M, then
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x; = (v,e;) =0
for all ¢ and so v = 0. Hence, no nonzero vector v ¢ M is orthogonal to M.

This shows that M is a Hilbert basis for the inner product space £2.

On the other hand, the vector space span of M is the subspace S of all
sequences in ¢? that have finite support, that is, have only a finite number of
nonzero terms and since span(M) = S # (%, we see that M is not a Hamel
basis for the vector space ¢2.00

The Projection Theorem and Best Approximations

Orthonormal bases have a great practical advantage over arbitrary bases. From a
computational point of view, if B = {vy,...,v,} is a basis for V, then each
v € V has the form

V=701 + -+ U,
In general, determining the coordinates r; requires solving a system of linear
equations of size n X n.
On the other hand, if O = {uy, ..., u,} is an orthonormal basis for V and
v=r1ur + o+ rpuy
then the coefficients r; are quite easily computed:
(v, u5) = (riug + - 4 Ty, wi) = (Ui, u) =1y

Even if O = {uy,...,u,} is not a basis (but just an orthonormal set), we can
still consider the expansion

V= <'U, u1>u1 +-+ <'U, un)“n

Theorem 9.14 Let O = {uy,...,u;} be an orthonormal subset of an inner
product space V and let S = (O). The Fourier expansion with respect to O of
a vectorv € V is

V= (v,u)ur + - + (v, uphug

Each coefficient (v,u;) is called a Fourier coefficient of v with respect to O.

The vector v can be characterized as follows:

1) 7 is the unique vector s € S for which (v—s) L S.

2) 7 is the best approximation fo v from within S, that is, U is the unique
vector s € S that is closest to v, in the sense that

lo =2l < [lv—s]|

Jorall s € S\ {v}.
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3) Bessel's inequality holds for all v € V, that is
1ol < ]l
Proof. For part 1), since
(v =71, u;) = (v,u;) — (B, u;) =0
it follows that v — % € S*. Also, ifv —s € S+ fors € S, then s — v € S and
s—0=(w-2)—(v—s) €St

and so s=79. For part 2), if s€ S, then v—v€ St implies that
(v—70) L (0—s) and so

2 ~ 2 SN2 L 1 2
lo=slI" =llv=0+2— s = lo=2[" + [[0 - 5]
Hence, ||v — s|| is smallest if and only if s =7 and the smallest value is
|lv — ||. We leave proof of Bessel's inequality as an exercise.[]
Theorem 9.15 (The projection theorem) If S is a finite-dimensional subspace
of an inner product space V, then
S=8S68*
In particular, if v € V, then
v=0+@w-0) €SOt
It follows that
dim(V') = dim(S) + dim(S™)
Proof. We have seen that v — 9 € S+ andso V = S + S+. But SN S+ = {0}
andsoV =S50 s+t.0

The following example shows that the projection theorem may fail if S is not
finite-dimensional. Indeed, in the infinite-dimensional case, S must be a
complete subspace, but we postpone a discussion of this case until Chapter 13.

Example 9.6 As in Example 9.5, let V = ¢? and let S be the subspace of all
sequences with finite support, that is, S is spanned by the vectors

e;=(0,...,0,1,0,...)

where e; has a 1 in the ith coordinate and 0's elsewhere. If # = (z,,) € S*, then
x; = (x,e;) = 0 for all i and so = = 0. Therefore, S* = {0}. However,

SOSt=8#£" O

The projection theorem has a variety of uses.
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Theorem 9.16 Let V' be an inner product space and let S be a finite-
dimensional subspace of V.

) Stt=¢
2) If X CV anddim((X)) < oo, then

XLL — <X>

Proof. For part 1), it is clear that S C S**. On the other hand, if v € S+, then
the projection theorem implies that v = s + s’ where s € S and s’ € S*. Then
s’ is orthogonal to both s and v and so s’ is orthogonal to itself. Hence, s’ = 0
andv = s € Sandso S = S**. We leave the proof of part 2) as an exercise.[]

Characterizing Orthonormal Bases

We can characterize orthonormal bases using Fourier expansions.

Theorem 9.17 Let O = {uy,...,u;} be an orthonormal subset of an inner
product space V and let S = (O). The following are equivalent:

1) O is an orthonormal basis for V.

2) (0)+ = {0}

3) Every vector is equal to its Fourier expansion, that is, for allv € V,
V=0
4) Bessel's identity /olds for all v € V, that is,
12l = [|v]]
5) Parseval's identity holds for all v,w € V, that is,
(v, w) = []o - [W]o

where

Plo - [@]o = (v, un){w, 1) + - + (v, up) (w, ug)

is the standard dot product in F*.
Proof. To see that 1) implies 2), if v € (O)* is nonzero, then O U {v/||v]|} is
orthonormal and so O is not maximal. Conversely, if O is not maximal, there is
an orthonormal set P for which O C P. Then any nonzero v € P\ O is in
(O)*. Hence, 2) implies 1). We leave the rest of the proof as an exercise.[]

The Riesz Representation Theorem

We have been dealing with linear maps for some time. We now have a need for
conjugate linear maps.

Definition A function o:V — W on complex vector spaces is conjugate linear
if it is additive,

o(vy + v9) = ovy + ovy
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and
o(rv) =TFov

for all r € C. 4 conjugate isomorphism is a bijective conjugate linear map.l1

If x € V, then the inner product function ( - ,z): V' — F defined by
()= (v,z)
is a linear functional on V. Thus, the linear map 7: V' — V* defined by
T =(-,x)

is conjugate linear. Moreover, since (-, x) = (-,y) implies x = y, it follows
that 7 is injective and therefore a conjugate isomorphism (since V is finite-
dimensional).

Theorem 9.18 (The Riesz representation theorem) Let V be a finite-
dimensional inner product space.
1) Themap 7:V — V* defined by

Tr={-,x)

is a conjugate isomorphism. In particular, for each f € V*, there exists a
unique vector x € V for which [ = (-, x), that is,

Jv= <U7$>

forallv e V. We call x the Riesz vector for f and denote it by R;.
2) Themap R:V* — V defined by

Rf =Ry

is also a conjugate isomorphism, being the inverse of T. We will call this
map the Riesz map.
Proof. Here is the usual proof that 7 is surjective. If f = 0, then Ry = 0, so let
us assume that f # 0. Then K = ker(f) has codimension 1 and so

V=(woK
for w € K*. Letting 2 = aw for o € F, we require that
f(v) = (v, aw)

and since this clearly holds for any v € K, it is sufficient to show that it holds
for v = w, that is,

fw) = (w, aw) = @(w, w)

Thus, o = f(w)/|lwl|* and
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B ()

- 2
[[]

For part 2), we have

(0, Rrfisg) = (rf + s9)(v)
=rf(v) + sg(v)
= (v, TRy) + (v,5R,)
= (v,7R; + 3R,)

forall v € V and so

Royisg =TR;+35R, O

Note that if V' =R", then R; = (f(e1),..., f(en)), where (ey,...,e,) is the
standard basis for R".

Exercises

1.

b

10.
11.

12.

Prove that if a matrix M is unitary, upper triangular and has positive entries
on the main diagonal, must be the identity matrix.

Use the QR factorization to show that any triangularizable matrix is
unitarily (orthogonally) triangularizable.

Verify the statement concerning equality in the triangle inequality.

Prove the parallelogram law.

Prove the Apollonius identity

1 1 ’
2 2 2
o=l + oo = ol = = o+ 20 = 0+ 0

Let V' be an inner product space with basis 3. Show that the inner product
is uniquely defined by the values (u, v), for all u,v € B.

Prove that two vectors u and v in a real inner product space V are
orthogonal if and only if

2 2 2
[+ ol[" = [l]|” + o]

Show that an isometry is injective.

Use Zorn's lemma to show that any nontrivial inner product space has a
Hilbert basis.

Prove Bessel's inequality.

Prove that an orthonormal set O is a Hilbert basis for a finite-dimensional
vector space V' if and only if ¥ = v, forallv e V.

Prove that an orthonormal set O is a Hilbert basis for a finite-dimensional
vector space V' if and only if Bessel's identity holds for all v € V/, that is, if
and only if
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13.

14.

15.

16.

17.
18.

19.

20.
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121l = ol

forallv e V.

Prove that an orthonormal set O is a Hilbert basis for a finite-dimensional
vector space V' if and only if Parseval's identity holds for all v, w € V, that
is, if and only if

(v,w) = [Plo - [@]o

forallv,w e V.
Let w=(r1,...,r,) and v = (s1,...,s,) be in R". The Cauchy—Schwarz
inequality states that

Irisy 4 A rasal < (FF 4o 4 12)(sE 4+ 52)
Prove that we can do better:
(Irsi] 4 -+ |rasal)? < (rF + - +70) (57 + -+ + 53)

Let V be a finite-dimensional inner product space. Prove that for any subset
X of V, we have X+ = span(X).

Let P; be the inner product space of all polynomials of degree at most 3,
under the inner product

(vla).a@)) = [ pl@ha()e s
Apply the Gram-Schmidt process to the basis {1,x,% 2}, thereby
computing the first four Hermite polynomials (at least up to a
multiplicative constant).
Verify uniqueness in the Riesz representation theorem.
Let V be a complex inner product space and let S be a subspace of V.
Suppose that v € V' is a vector for which (v, s) + (s,v) < (s,s) for all
s € S. Prove thatv € S+,

If V and W are inner product spaces, consider the function on VW
defined by

(v, wr), (v2,w2)) = (v1,v2) + (w1, w2)

Is this an inner product on VB W?

A normed vector space over R or C is a vector space (over R or C)
together with a function ||||: V' — R for which for all u,v € V' and scalars r
we have

a) |[Jrv]| = [r[lv]

) u+ vl <flull + o]

¢) |lv|| =0ifand onlyifv =0

If V is a real normed space (over R) and if the norm satisfies the
parallelogram law
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llu+ol)” + lu = o* = 2]Jul* + 2]

prove that the polarization identity

defines an inner product on V. Hint: Evaluate 8(u,z) + 8(v,x) to show
that (u, 2z) = 2(u,z) and (u,z) + (v,x) = (u + v, x). Then complete the
proof that (u, rz) = r(u, ).

21. Let S be a subspace of a finite-dimensional inner product space V. Prove
that each coset in V' /S contains exactly one vector that is orthogonal to S.

Extensions of Linear Functionals

22. Let f be a linear functional on a subspace S of a finite-dimensional inner
product space V. Let f(v) = (v, Ry). Suppose that g € V* is an extension
of f, thatis, g|s = f. What is the relationship between the Riesz vectors R
and I,?

23. Let f be a nonzero linear functional on a subspace S of a finite-dimensional
inner product space V' and let K = ker(f). Show that if g € V* is an
extension of f, then R, € K*+\S*. Moreover, for each vector
u € K+ \ S* there is exactly one scalar A for which the linear functional
9(X) = (X, Au) is an extension of f.

Positive Linear Functionals on R™

A vector v = (ay,...,a,) in R" is nonnegative (also called positive), written
v >0, if a; > 0 for all i. The vector v is strictly positive, written v > 0, if v is
nonnegative but not 0. The set R" of all strictly positive vectors in R" is called
the nonnegative orthant in R". The vector v is strongly positive, written
v > 0, if a; > 0 for all ¢. The set R}, of all strongly positive vectors in R" is
the strongly positive orthant in R".

Let f: S — R be a lincar functional on a subspace S of R”. Then f is
nonnegative (also called positive), written f > 0, if
v>0= f(v) >0
forall v € S and f is strictly positive, written f > 0, if
v>0= f(v)>0
forallv e S.
24. Prove that a linear functional f on R" is positive if and only if Ry > 0 and

strictly positive if and only if Ry > 0. If S is a subspace of R" is it true
that a linear functional f on S is nonnegative if and only if 2y > 0?
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25. Let f:S — R be a strictly positive linear functional on a subspace S of R".
Prove that f has a strictly positive extension to R”. Use the fact that if

U NR7Y = {0}, where
R} ={(ai,...,a,) | a; > 0all ¢}

and U is a subspace of R", then U contains a strongly positive vector.
26. If V is a real inner product space, then we can define an inner product on its
complexification VC as follows (this is the same formula as for the ordinary

inner product on a complex vector space):
(u i,z +yi) = (u,z) + (v,y) + ((v,2) = (u,9))i
Show that
(e + o) |* = [l + [Jolf*

where the norm on the left is induced by the inner product on V' and the
norm on the right is induced by the inner product on V.



Chapter 10
Structure Theory for Normal Operators

Throughout this chapter, all vector spaces are assumed to be finite-dimensional
unless otherwise noted. Also, the field F is either R or C.

The Adjoint of a Linear Operator

The purpose of this chapter is to study the structure of certain special types of
linear operators on finite-dimensional real and complex inner product spaces. In
order to define these operators, we introduce another type of adjoint (different
from the operator adjoint of Chapter 3).

Theorem 10.1 Let V' and W be finite-dimensional inner product spaces over F
and let T € L(V,W). Then there is a unique function 7:W — V, defined by
the condition

(rv,w) = (v, 7"w)

forallv eV and w € W. This function is in LW, V') and is called the adjoint
of T.

Proof. If 7* exists, then it is unique, for if
(T, w) = (v, ow)

then (v, cw) = (v, 7*w) for all v and w and so o = 7*.

We seek a linear map 7%: W — V' for which
(v, T"w) = (Tv, W)

By way of motivation, the vector 7w, if it exists, looks very much like a linear
map sending v to (7v,w). The only problem is that 7*v is supposed to be a
vector, not a linear map. But the Riesz representation theorem tells us that linear
maps can be represented by vectors.
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Specifically, for each w € W, the linear functional f,, € V* defined by
Sfuwv = {1V, W)
has the form
fuv = (v, Ry,)
where Ry € V is the Riesz vector for f,,. If 7°: W — V' is defined by
Tw =Ry, = R(fu)
where R is the Riesz map, then
(v, 7"w) = (v, Ry,) = fuv = (TV, W)

Finally, since 7% = R o f is the composition of the Riesz map R and the map
frww— f, and since both of these maps are conjugate linear, their composition
is linear.[d

Here are some of the basic properties of the adjoint.

Theorem 10.2 Let V and W be finite-dimensional inner product spaces. For
everyo, 7€ L(V,W)andr € F,

D (oc+7) =c"+71"

2) (rr)*=7r"

3) 1 =rTandso

(", w) = (v, Tw)
4 IfV =W, then (o1)* = 770"
—1\*

5) If T is invertible, then (171)* = (7%)7!
6) IfV =W and p(x) € Rlx], then p(1)* = p(7%).

Moreover, if T € L(V') and S is a subspace of V, then

7) S is T-invariant if and only if S* is T*-invariant.

8) (S,S*) reduces T if and only if S is both T-invariant and T*-invariant, in
which case

(rls)" = (7")s
Proof. For part 7), let s € S and z € S+ and write
(772, 8) = (z,7s)

Now, if S is T-invariant, then (7*2,s) = 0 for all s € S and so 7"z € S+ and
S+ is 7*-invariant. Conversely, if S* is 7*-invariant, then (z,7s) = 0 for all
z € S*tandso 7s € ST+ = S, whence S is T-invariant.

The first statement in part 8) follows from part 7) applied to both S and S*. For
the second statement, since S is both 7-invariant and 7*-invariant, if s,z € S,
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then
(s, (T)]5(t)) = (s,7"t) = (7s,t) = (7]s(s), )

Hence, by definition of adjoint, (7%)|s = (7]g)*.0

Now let us relate the kernel and image of a linear transformation to those of its
adjoint.

Theorem 10.3 Let 7 € L(V, W), where V and W are finite-dimensional inner

product spaces.
1)

ker(7*) = im(7)* and im(7*) = ker(7)*

and so
T surjective < T" injective
T injective < T" surjective

2)

ker(7"7) = ker(r) and ker(r7") = ker(7)
3)

im(7°7) = im(7*) and im(77") =im(T)

)

(psr)" = pre s
Proof. For part 1),
u € ker(7") & 7'u =0

& (T7u, V) = {0}

< (u,7V) = {0}

& ucim(t)"
and so ker(7*) = im(7)*. The second equation in part 1) follows by replacing 7
by 7* and taking complements.
For part 2), it is clear that ker(7) C ker(7*7). For the reverse inclusion, we have

Tru=0 = (Tfru,u)=0 = (tu,7u)=0 = Tu=0

and so ker(7*7) C ker(7). The second equation follows from the first by
replacing 7 with 7*. We leave the rest of the proof for the reader.C]
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The Operator Adjoint and the Hilbert Space Adjoint

We should make some remarks about the relationship between the operator
adjoint 7 of 7, as defined in Chapter 3 and the adjoint 7* that we have just
defined, which is sometimes called the Hilbert space adjoint. In the first place,
if 7: V' — W, then 7* and 7* have different domains and ranges:

W —=V* and ™MW —V

The two maps are shown in Figure 10.1, along with the conjugate Riesz
isomorphisms RV:V* — V and RW: W* — W.

Figure 10.1
The composite map o: W* — V* defined by
o= (RV)—l or* o RW
is linear. Moreover, for all f € W*andv € V,

(= f(r)
= (ro, RY (1)

= (0.7 RV (1)
= [(R") RV ())])
= (of)0

and so 0 = 7. Hence, the relationship between 7 and 7* is
X _ (RV)fl or* ORW

Loosely speaking, the Riesz functions are like “change of variables” functions
from linear functionals to vectors, and we can say that 7* does to Riesz vectors
what 7* does to the corresponding linear functionals. Put another way (and just
as loosely), 7 and 7" are the same, up to conjugate Riesz isomorphism.

In Chapter 3, we showed that the matrix of the operator adjoint 7 is the
transpose of the matrix of the map 7. For Hilbert space adjoints, the situation is
slightly different (due to the conjugate linearity of the inner product). Suppose
that B = (by,...,b,) and C = (cy, ..., ¢;,) are ordered orthonormal bases for V
and W, respectively. Then
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([T les)is = (T7¢); bi) = (¢j; 7bi) = (7his ¢;) = ([7].c)j
and so [7%]cz and [7]g¢ are conjugate transposes. The conjugate transpose of a
matrix A = (a;;) is
A" = (@)
and is called the adjoint of A.
Theorem 10.4 Let 7 € L(V, W), where V and W are finite-dimensional inner

product spaces.
1) The operator adjoint T and the Hilbert space adjoint 7* are related by

7 =(RY) " or* o RV

where RV and R™ are the conjugate Riesz isomorphisms on V. and W,
respectively.
2) If B and C are ordered orthonormal bases for V' and W, respectively, then

[T*]es = ([7]Be)"

In words, the matrix of the adjoint T* is the adjoint (conjugate transpose) of
the matrix of 7.3

Orthogonal Projections

In an inner product space, we can single out some special projection operators.

Definition A projection of the form pgg. is said to be orthogonal
Equivalently, a projection p is orthogonal if ker(p) L im(p).Od

Some care must be taken to avoid confusion between orthogonal projections and
two projections that are orthogonal to each other, that is, for which
po=op=0.

We have seen that an operator p is a projection operator if and only if it is
idempotent. Here is the analogous characterization of orthogonal projections.

Theorem 10.5 Let V' be a finite-dimensional inner product space. The following
are equivalent for an operator p on'V:

1) pis an orthogonal projection

2) pis idempotent and self-adjoint

3) pis idempotent and does not expand lengths, that is

lpvll < vl

forallveV.
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Proof. Since
(ps.r)" = pres-
it follows that p = p* if and only if S* =T, that is, if and only if p is

orthogonal. Hence, 1) and 2) are equivalent.

To prove that 1) implies 3), let p = pg g:. Then if v=s+1¢ for s € S and
t € S1, it follows that

loll* = [lsll* + [1£l1* = lIs)* = [l poll*
Now suppose that 3) holds. Then
im(p) & ker(p) = V = ker(p)" © ker(p)

and we wish to show that the first sum is orthogonal. If w € im(p), then
w = = + y, where x € ker(p) and y € ker(p)*. Hence,

w=pw = px+ py = py
and so the orthogonality of x and y implies that
l]” + llyll* = [lwl® = lloyll* < lly®
Hence, = = 0 and so im(p) C ker(p)~*, which implies that im(p) = ker(p)+.00
Orthogonal Resolutions of the Identity
We have seen (Theorem 2.25) that resolutions of the identity
pr+-tpp=1t

on V correspond to direct sum decompositions of V. If, in addition, the
projections are orthogonal, then the direct sum is an orthogonal sum.

Definition An orthogonal resolution of the identity is a resolution of the
identity p1 + -+ + pr = ¢ in which each projection p; is orthogonal.(]

The following theorem displays a correspondence between orthogonal direct
sum decompositions of V' and orthogonal resolutions of the identity.

Theorem 10.6 Let V' be an inner product space. Orthogonal resolutions of the

identity on V' correspond to orthogonal direct sum decompositions of V as
follows:
1) Ifpy+ -+ pr = v is an orthogonal resolution of the identity, then

V =im(p1) ©--- © im(py)

and p; is orthogonal projection onto im(p;).
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2) Conversely, if
V=505

and if p; is orthogonal projection onto S;, then py + -+ pp = is an
orthogonal resolution of the identity.
Proof. To prove 1), if p; 4+ -+ pr = ¢ is an orthogonal resolution of the
identity, Theorem 2.25 implies that

V =im(p1) @ --- @ im(py)
However, since the p;'s are pairwise orthogonal and self-adjoint, it follows that
(piv, pjw) = (v, pipjw) = (v,0) =0
and so
V =im(p) ® --- © im(py,)

For the converse, Theorem 2.25 implies that p; + --- + p = ¢ is a resolution of
the identity where p; is projection onto im(p;) along

ker(p;) le (p;) = im(p;)*
J#i
Hence, p; is orthogonal.[]
Unitary Diagonalizability

We have seen (Theorem 8.10) that a linear operator 7 € £(V') on a finite-
dimensional vector space V' is diagonalizable if and only if

V=53 ®E,

Of course, each eigenspace &), has an orthonormal basis O;, but the union of
these bases need not be an orthonormal basis for V.

Definition A linear operator T € L(V') is unitarily diagonalizable (when V is
complex) and orthogonally diagonalizable (When V is real) if there is an
ordered orthonormal basis O = (uq, ..., uy,) of V for which the matrix 7)o is
diagonal, or equivalently, if

Tui:/\iui
foralli=1,...,n.00

Here is the counterpart of Theorem 8.10 for inner product spaces.

Theorem 10.7 Let V be a finite-dimensional inner product space and let
7 € L(V). The following are equivalent:

1) 7 is unitarily (orthogonally) diagonalizable.

2) 'V has an orthonormal basis that consists entirely of eigenvectors of T.
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3) 'V has the form
Vv :g/\l ® ...@g/\k
where A1, ..., A\, are the distinct eigenvalues of .01
For simplicity in exposition, we will tend to use the term unitarily
diagonalizable for both cases. Since unitarily diagonalizable operators are so

well behaved, it is natural to seek a characterization of such operators.
Remarkably, there is a simple one, as we will see next.

Normal Operators
Operators that commute with their own adjonts are very special.
Definition

1) A linear operator T on an inner product space V' is normal if it commutes
with its adjoint:

* *
TT =TT

2) A matrix A € M,,(F) is normal if A commutes with its adjoint A*.C]

If 7 is normal and O is an ordered orthonormal basis of V', then
[Tlolrlo = [Tlolr"]o = [r7]0

and
[Tlolrlo = [T"]olr]o = [777]o

and so 7 is normal if and only if [7]p is normal for some, and hence all,
orthonormal bases for V. Note that this does not hold for bases that are not
orthonormal.

Normal operators have some very special properties.

Theorem 10.8 Let 7 € L(V') be normal.
1) The following are also normal:

a) Tls, if T reduces (S, S”t)

by T

c) 17 if T is invertible

d) p(T), for any polynomial p(z) € F|x]
2) Foranyv,w eV,

(tv, Tw) = (77, TMW)
and, in particular,

[[Toll = {l7"l|
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and so
ker(7*) = ker(7)
3) For any integer k > 1,
ker(7") = ker(7)

4) The minimal polynomial m.(x) is a product of distinct prime monic
polynomials.
5)

=M & Tu=\

6) If'S andT are submodules of V. with relatively prime orders, then S 1. T.
7) If X and i are distinct eigenvalues of T, then £\ L E,,.
Proof. We leave part 1) for the reader. For part 2), normality implies that

(T, Tw) = (T*1V,0) = (TT "V, V) = (TTV, T V)
We prove part 3) first for the operator o = 7*7, which is self-adjoint, that is,
of=(")"=71"r=0
If oFv = 0 for k > 1, then
0 = (oFv, 0" %) = (6" 1o, ")

k—

and so o*~'v = 0. Continuing in this way gives ov = 0. Now, if 7%v = 0 for

k > 1, then
v = (7' 1) = (TP =0
and so ov = 0. Hence,

0 = (ov,v) = (t"1v,0) = (TV, TV)

and so 7v = 0.

For part 4), suppose that
m-(z) = p*(x)q()
where p(z) is monic and prime. Then for any v € V,
p(M)lg(r)v] =0
and since p(7) is also normal, part 3) implies that
p(m)lg(r)v] =0

for all v € V.. Hence, p(7)q(7) = 0, which implies that e = 1. Thus, the prime
factors of m. () appear only to the first power.
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Part 5) follows from part 2):
ker(T — \) = ker[(T — \)*] = ker(7* — X)

For part 6), if o(S) = p(x) and o(T') = ¢(z), then there are polynomials a(x)
and b(z) for which a(z)p(x) + b(z)q(x) = 1 and so
a(7)p(r) + b(T)q(7) =+

Now, a = a(7)p(7) annihilates S and 5 = b(7)q(7) annihilates T". Therefore
(5% also annihilates 7" and so

(5,1) = ((a+ )5, T) = (85,T) = (5,8°T) = {0}

Part 7) follows from part 6), since o(€y) =z — A and o(€,) =z — p are
relatively prime when A # pi. Alternatively, for v € £, and w € &, we have

Mo, w) = (Tv,w) = (v, T"w) = (v, Lw) = pfv, w)
and so A # p implies that (v, w) = 0.00
The Spectral Theorem for Normal Operators

Theorem 10.8 implies that when F' = C, the minimal polynomial m(x) splits
into distinct linear factors and so Theorem 8.11 implies that 7 is diagonalizable,
that is,

V,=E, @ ®E

Moreover, since distinct eigenspaces of a normal operator are orthogonal, we
have

V, =6, 0 0&,

and so 7 is unitarily diagonalizable.

The converse of this is also true. If V' has an orthonormal basis O =
{vi,...,v,} of eigenvectors for 7, then since [r]p and [r*]p = [7]}, are
diagonal, these matrices commute and therefore so do 7* and 7.

Theorem 10.9 (The spectral theorem for normal operators: complex case)
Let V be a finite-dimensional complex inner product space and let 7 € L(V).
The following are equivalent:

1) T is normal.

2) 7 is unitarily diagonalizable, that is,

{/T:g/\l@...@g/\k
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3) 7 has an orthogonal spectral resolution
T=Mp1+ -+ Nepr (10.1)

where p1+ -+ p, =t and p; is orthogonal for all i, in which case,
{1, ..., \p} is the spectrum of T and

im(p;) =&\ and ker(p;) = @5’,\1
i

Proof. We have seen that 1) and 2) are equivalent. To see that 2) and 3) are
equivalent, Theorem 8.12 says that
Vi=E6,& @&
if and only if
T=Mp1+ -+ Mepr

and in this case,

im(p;) =&, and ker(p;) = @5,\]
J#i
But &), L &), fori # jifand only if
im(p;) L ker(p;)

that is, if and only if each p; is orthogonal. Hence, the direct sum V. =
Ex @ --DE), 1s an orthogonal sum if and only if each projection is
orthogonal.[J

The Real Case

If F = R, then m,(x) has the form

me(xz) = (x — M)--(z = Xp)p1(z)- - -pp ()

where each p;(z) is an irreducible monic quadratic. Hence, the primary cyclic
decomposition of V. gives

Vi=E6,006,0W 0 0W,

where W; is cyclic with prime quadratic order p;(z). Therefore, Theorem 8.8
implies that there is an ordered basis B; for which

i —bi
[T|w:]5 = {Z ]

Qi

Theorem 10.10 (The spectral theorem for normal operators: real case) 4
linear operator T on a finite-dimensional real inner product space is normal if
and only if
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V=E6,0-00W 00 Wy,

where {1, ..., \;} is the spectrum of T and each W is an indecomposable two-
dimensional T-invariant subspace with an ordered basis B; for which

=[]

Proof. We need only show that if V' has such a decomposition, then 7 is normal.
But

(715 (7], = (af + 7)o = [1]}3[7]5,
and so [7]p, is normal. It follows easily that 7 is normal.[]

Special Types of Normal Operators

We now want to introduce some special types of normal operators.

Definition Let V' be an inner product space.
1) 7€ L(V) is self-adjoint (also called Hermitian in the complex case and
symmetric in the real case) if

TN=T

2y 1€ L(V) is skew self-adjoint (also called skew-Hermitian in the
complex case and skew-symmetric in the real case) if

"= —71
3) 7€ L(V) is unitary in the complex case and orthogonal in the real case if
T is invertible and

™ =71 O

There are also matrix versions of these definitions, obtained simply by replacing
the operator T by a matrix A. Moreover, the operator 7 is self-adjoint if and only
if any matrix that represents 7 with respect to an ordered orthonormal basis O is
self-adjoint. Similar statements hold for the other types of operators in the
previous definition.

In some sense, square complex matrices are a generalization of complex
numbers and the adjoint (conjugate transpose) is a generalization of the complex
conjugate. In looking for a better analogy, we could consider just the diagonal
matrices, but this is a bit too restrictive. The next logical choice is the set N of
normal matrices.

Indeed, among the complex numbers, there are some special subsets: the real
numbers, the positive numbers and the numbers on the unit circle. We will soon
see that a complex matrix A is self-adjoint if and only if its complex eigenvalues
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are real. This would suggest that the analog of the set of real numbers is the set
of self-adjoint matrices. Also, we will see that a complex matrix is unitary if and
only if its eigenvalues have norm 1, so numbers on the unit circle seem to
correspond to the set of unitary matrices. This leaves open the question of which
normal matrices correspond to the positive real numbers. These are the positive
definite matrices, which we will discuss later in the chapter.

Self-Adjoint Operators

Let us consider the basic properties of self-adjoint operators. The quadratic
form associated with the linear operator 7 is the function Q.:V — F' defined
by

Qr(v) = (1v,0)
We have seen (Theorem 9.2) that in a complex inner product space, 7 = 0 if and

only if @), = 0 but this does not hold, in general, for real inner product spaces.
However, it does hold for symmetric operators on a real inner product space.

Theorem 10.11 Let V' be a finite-dimensional inner product space and let

o,7 € L(V).
1) If T and o are self-adjoint, then so are the following:
a) o+T1

b) 1 if T is invertible
¢) p(7), for any real polynomial p(z) € R[z]

2) A complex operator T is Hermitian if and only if Q,(v) is real for all
veV.

3) If 7 is a complex operator or a real symmetric operator, then

T=0 < @Q,=0

4) The characteristic polynomial c.(x) of a self-adjoint operator T splits over
R, that is, all complex roots of c.(x) are real. Hence, the minimal
polynomial m,(x) of T is the product of distinct monic linear factors over
R.

Proof. For part 2), if 7 is Hermitian, then

(Tv,v) = (v, TV) = (TV, V)
and so @, (v) = (Tv,v) is real. Conversely, if (7v,v) € R, then
(v, Tv) = (TV,V) = (v, T*V)

andso T ="7".

For part 3), we need only prove that @), = 0 implies 7 = 0 when F' = R. But if
Q- = 0, then
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= (rz,7) + (Ty,9) + (T2,9) + (7Y, 7)
= (rz,y) + (1Y, 7)

= (17,y) + (v, 7Yy)

= (rz,y) + (T2, Y)

= 2(tx,y)

and so 7 = 0.

For part 4), if 7 is Hermitian (/' = C) and 7v = Awv, then
AN=T1v="7=M

and so A\ = \ is real. If 7 is symmetric (F' = R), we must be a bit careful, since
a nonreal root of ¢ (x) is not an eigenvalue of 7. However, matrix techniques
can come to the rescue here. If A = [7]p for any ordered orthonormal basis O
for V, then ¢;(x) = ca(x). Now, A is a real symmetric matrix, but can be
thought of as a complex Hermitian matrix with real entries. As such, it
represents a Hermitian linear operator on the complex space C" and so, by what
we have just shown, all (complex) roots of its characteristic polynomial are real.
But the characteristic polynomial of A is the same, whether we think of A as a
real or a complex matrix and so the result follows.[]

Unitary Operators and Isometries

We now turn to the basic properties of unitary operators. These are the
workhorse operators, in that a unitary operator is precisely a normal operator
that maps orthonormal bases to orthonormal bases.

Note that 7 is unitary if and only if
(v, w) = (v, 7" 'w)

forallv,w € V.

Theorem 10.12 Let V' be a finite-dimensional inner product space and let

o, 7€ LV).

1) If T and o are unitary/orthogonal, then so are the following:

a) rr, forreC,lr|=1
b) ot
c) 1 if T is invertible.

2) T is unitary/orthogonal if and only it is an isometric isomorphism.

3) 7 is unitary/orthogonal if and only if it takes some orthonormal basis to an
orthonormal basis, in which case it takes all orthonormal bases to
orthonormal bases.

4) If T is unitary/orthogonal, then the eigenvalues of T have absolute value 1.
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Proof. We leave the proof of part 1) to the reader. For part 2), a
unitary/orthogonal map is injective and since V' is finite-dimensional, it is
bijective. Moreover, for a bijective linear map 7, we have

T is an isometry < (v, Tw) = (v, w) forallv,w € V
& (v, 7" Tw) = (v,w) forallv,w € V
ST =1
ST =7
< T is unitary/orthogonal

1

For part 3), suppose that 7 is unitary/orthogonal and that O = {uy,...,u,} is an
orthonormal basis for V. Then

(Tui, Tug) = (Ui, uj) = ;5

and so 7O is an orthonormal basis for V. Conversely, suppose that O and 7O
are orthonormal bases for V. Then

(Twi, Tuj) = 6; j = (i, uj)

which implies that (rv,7w) = (v,w) for all v,weV and so 7 is
unitary/orthogonal.

For part 4), if 7 is unitary and 7v = Av, then
M (v,v) = (A, W) = (Tv,70) = (v, V)
and so |A|* = AX = 1, which implies that |\| = 1.0]

We also have the following theorem concerning unitary (and orthogonal)
matrices.

Theorem 10.13 Let A be an n x n matrix over F = C or F = R.
1) The following are equivalent:

a) A is unitary/orthogonal.

b) The columns of A form an orthonormal set in F".

¢) The rows of A form an orthonormal set in F".
2) If A is unitary, then |det(A)| = 1. If A is orthogonal, then det(A) = £1.
Proof. The matrix A is unitary if and only if AA* = I, which is equivalent to
the rows of A being orthonormal. Similarly, A is unitary if and only if
A*A = I, which is equivalent to the columns of A being orthonormal. As for
part 2),

AA* =1 = det(A)det(A") =1 = det(A)det(A) =1

from which the result follows.[



242 Advanced Linear Algebra

Unitary/orthogonal matrices play the role of change of basis matrices when we
restrict attention to orthonormal bases. Let us first note that if B = (uq, ..., u,)
is an ordered orthonormal basis and

V=aiuy + -+ auy
w = biuy + - + byuy,
then
(v,w) = a1by + -+ + apb, = [v|p - [w]p
where the right hand side is the standard inner product in F* and so v L w if

and only if [v]p L [w]z. We can now state the analog of Theorem 2.9.

Theorem 10.14 If we are given any two of the following:
1) A unitary/orthogonal n x n matrix A,

2) An ordered orthonormal basis B for F™",

3) An ordered orthonormal basis C for F™,

then the third is uniquely determined by the equation
A= M&C

Proof. Let B = {b;} be a basis for V. If C is an orthonormal basis for V', then
(bi, bj) = [bile - [bjle

where [b;]¢ is the ith column of A = Mpc. Hence, A is unitary if and only if B
is orthonormal. We leave the rest of the proof to the reader..]

Unitary Similarity
We have seen that the change of basis formula for operators is given by
75 = P[r]sP™"
where P is an invertible matrix. What happens when the bases are orthonormal?
Definition

1) Two complex matrices A and B are unitarily similar (also called
unitarily equivalent) if there exists a unitary matrix U for which

B=UAU'=UAU*

The equivalence classes associated with unitary similarity are called
unitary similarity classes.

2)  Similarly, two real matrices A and B are orthogonally similar (also called
orthogonally equivalent) if there exists an orthogonal matrix O for which

B=0A0"'=0A0"

The equivalence classes associated with orthogonal similarity are called
orthogonal similarity classes.[]
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The analog of Theorem 2.19 is the following.

Theorem 10.15 Let V' be an inner product space of dimension n. Then two
n X n matrices A and B are unitarily/orthogonally similar if and only if they
represent the same linear operator 7 € L(V') with respect to (possibly different)
ordered orthonormal bases. In this case, A and B represent exactly the same
set of linear operators in L(V') with respect to ordered orthonormal bases.
Proof. If A and B represent 7 € L£(V), that is, if

A=Irlp and B=]7]¢
for ordered orthonormal bases 5 and C, then
B = MgcAMcp
and according to Theorem 10.14, Mp ¢ is unitary/orthogonal. Hence, A and B
are unitarily/orthogonally similar.
Now suppose that A and B are unitarily/orthogonally similar, say
B=UAU""!

where U is unitary/orthogonal. Suppose also that A represents a linear operator
7 € L(V) for some ordered orthonormal basis B, that is,

AZ[T]B

Theorem 10.14 implies that there is a unique ordered orthonormal basis C for V'
for which U = Mp¢. Hence

B = ngc[T]BMg,(lj = [T]C

and so B also represents 7. By symmetry, we see that A and B represent the
same set of linear operators, under all possible ordered orthonormal bases.[]

We have shown (see the discussion of Schur's theorem) that any complex matrix
A is unitarily similar to an upper triangular matrix, that is, that A is unitarily
upper triangularizable. However, upper triangular matrices do not form a set of
canonical forms under unitary similarity. Indeed, the subject of canonical forms
for unitary similarity is rather complicated and we will not discuss it in this
book, but instead refer the reader to the survey article [28].

Reflections

The following defines a very special type of unitary operator.
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Definition For a nonzero v € V, the unique operator H, for which
Huw=—v, Hw=wforallw € <v>L

is called a reflection or a Householder transformation.[]

It is easy to verify that

2(x,v)

(v, v)

Hyox=x—

Moreover, H,x = —xz for x # 0 if and only if x = awv for some o € F' and so
we can uniquely identify v by the behavior of the reflection on V.

If H, is a reflection and if we extend v to an ordered orthonormal basis BB for V,
then [H,] is the matrix obtained from the identity matrix by replacing the upper
left entry by —1,

-1
[H U]B =
1
Thus, a reflection is both unitary and Hermitian, that is,
H'=H'=H,
Given two nonzero vectors of equal length, there is precisely one reflection that

interchanges these vectors.

Theorem 10.16 Let v, w € V be distinct nonzero vectors of equal length. Then
H,_,, is the unique reflection sending v to w and w to v.
Proof. If ||v|| = ||w]|, then (v — w) L (v+ w) and so

H, y(v—w)=w—wv
H?,'f?l}(v + ’LU) =v+w

from which it follows that H, ,,(v) = w and H,_,(w) = v. As to uniqueness,
suppose H, is a reflection for which H,(v) = w. Since H, ! = H,, we have
H,(w) =vandso

H, (0 —w) = —(v - w)
which implies that H, = H, ,,.00

Reflections can be used to characterize unitary operators.

Theorem 10.17 Let V be a finite-dimensional inner product space. The
Jfollowing are equivalent for an operator T € L(V):
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1) T is unitary/orthogonal

2) T is a product of reflections.

Proof. Since reflections are unitary/orthogonal and the product of unitary/
orthogonal operators is unitary, it follows that 2) implies 1). For the converse,
let 7 be unitary. Let B = (uy, ..., u,) be an orthonormal basis for V. Then

Hﬂulfu] (T’Uq) = Uy

and so if 1 = Tu; — wuq then

(Hy,T)up = uy
that is, 7y := H,,7 is the identity on (u;). Suppose that we have found
reflections H,, ,...,H,, for which 7,y = H,, ,---H, 7 is the identity on
(ul, ,uk_1>. Then

HkalLL;‘-f’U.k (kaluk) = uk
Moreover, we claim that (7,_jur — u) L u; fori < k, since

(Th—1wr, — g, wi) = ((Hyp -+ Ha, T)up, u;)
(Tuy, Hy,-- ‘Hwk,lui>

= <7-uk,a T’qu>
= (ug, u;)
=0

Hence, if 2, = 7,_1u; — uy, then
(Hmk' : 'Hle)ui = szuz = Uy

and so 75, == H,,---H, 7 is the identity on (ui,...,ug). Thus, for k =n we
have H, ---H, 7 =tandso T = H,,---H, , as desired.(]

The Structure of Normal Operators

The following theorem includes the spectral theorems stated above for real and
complex normal operators, along with some further refinements related to self-
adjoint and unitary/orthogonal operators.

Theorem 10.18 (The structure theorem for normal operators)
1) (Complex case) Let V be a finite-dimensional complex inner product
space.
a) The following are equivalent for v € L(V):
i) T is normal
ii) T is unitarily diagonalizable
iii) T has an orthogonal spectral resolution

T=Ap1+ -+ Akprk
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b) Among the normal operators, the Hermitian operators are precisely
those for which all complex eigenvalues are real.
¢) Among the normal operators, the unitary operators are precisely those
for which all complex eigenvalues have norm 1.
2) (Real case) Let V' be a finite-dimensional real inner product space.
a) 1€ L(V) is normal if and only if

V=E,0-0&0W 0 0Wy,

where {\i,...,\;} is the spectrum of T and each W; is a two-
dimensional indecomposable T-invariant subspace with an ordered

basis B; for which
_|w —b]}
T\B: —
e, [bj aj

b) Among the real normal operators, the symmetric operators are those
for which there are no subspaces W in the decomposition of part 2a).
Hence, the following are equivalent for 7 € L(V):

i) T issymmetric.
ii) T is orthogonally diagonalizable.
iii) T has the orthogonal spectral resolution

T=Mp1+ -+ Appr

¢) Among the real normal operators, the orthogonal operators are
precisely those for which the eigenvalues are equal to +1 and the
matrices ||, described in part 2a) have rows (and columns) of norm

1, that is,
s, = sing —cosf
TIB = | cos®  sinf

for some 0 € R.
Proof. We have proved part 1a). As to part 1b), it is only necessary to look at a
diagonal matrix A representing 7. This matrix has the eigenvalues of 7 on its
main diagonal and so it is Hermitian if and only if the eigenvalues of 7 are real.
Similarly, A is unitary if and only if the eigenvalues of 7 have absolute value
equal to 1.

We have proved part 2a). Parts 2b) and 2c) follow by looking at the matrix
A =[]z where B = |JB;. This matrix is symmetric if and only if A is diagonal,
and A is orthogonal if and only if \; = £1 and the matrices [r]s, have
orthonormal rows.

Matrix Versions

We can formulate matrix versions of the structure theorem for normal operators.
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Theorem 10.19 (The structure theorem for normal matrices)
1) (Complex case)
a) A complex matrix A is normal if and only if it is unitarily
diagonalizable, that is, if and only if there is a unitary matrix U for
which

UAU™ = diag(\y, ..., Ap)

b) A complex matrix A is Hermitian if and only if la) holds, where all
eigenvalues \; are real.
¢) A complex matrix A is unitary if and only if la) holds, where all
eigenvalues \; have norm 1.
2) (Real case)
a) A real matrix A is normal if and only if there is an orthogonal matrix

O for which
ay —by,
’ b"L aTTL

b) A real matrix A is symmetric if and only if it is orthogonally
diagonalizable, that is, if and only if there is an orthogonal matrix O
for which

OAOt:diag()\l,...,)\k,[al _bl]

b1 @

OAO" = diag(Ay, ..., \k)

¢) A real matrix A is orthogonal if and only if there is an orthogonal
matrix O for which

OAO"

—diag(/\l,...,)\k, [sm@l —cos@l}ru’ [sm&m —cosém])

cosf; sinb; cosf,, sinb,,

for some 0y, ...,0, € RO
Functional Calculus

Let 7 be a normal operator on a finite-dimensional inner product space V' and let
7 have spectral resolution

T=MAp1+ o+ Nepr
m

Since each p; is idempotent, we have p}
orthogonality of the projections implies that

"= (Mpr o+ Aepr)" = oL+ 4 Ak

= p; for all m > 1. The pairwise

More generally, for any polynomial p(z) over F,
p(7) = p(A)p1 + -+ + p(Ak) pr

Note that a polynomial of degree k£ — 1 is uniquely determined by specifying an
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arbitrary set of k of its values at the distinct points a1, ..., a;. This follows from
the Lagrange interpolation formula

k—1

pa) =3 plai) [T] “””_‘_O;fj

i=0 J#i %i

Therefore, we can define a unique polynomial p(z) by specifying the values
p(A\i), fori=1,... k.

For example, for a given 1 < j < k, if p;(z) is a polynomial for which
pi(Ai) = bi
fori=1,...,k, then
pi(T) = p;

and so each projection p; is a polynomial function of 7. As another example, if
7 is invertible and p()\;) = A\; !, then

p(r) =X+ N =T

as can easily be verified by direct calculation. Finally, if p(\;) = \;, then since
each p; is self-adjoint, we have
p(1) =Xipr+ -+ Aepr = 7"

and so 7" is a polynomial in 7.

We can extend this idea further by defining, for any function
fAAM, o )P — F
the linear operator f(7) by
f(r) = f(A)pr+ -+ F(A)pr

For example, we may define \ﬁ, 771, 7 and so on. Notice, however, that
since the spectral resolution of 7 is a finite sum, we gain nothing (but
convenience) by using functions other than polynomials, for we can always find
a polynomial p(x) for which p(X\;) = f(N\,) for i=1,...,k and so
f(7) = p(7). The study of the properties of functions of an operator T is
referred to as the functional calculus of 7.

According to the spectral theorem, if V' is complex and 7 is normal, then f(7) is
a normal operator whose eigenvalues are f();). Similarly, if V' is real and 7 is
symmetric, then f(7) is symmetric, with eigenvalues f(\;).
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Commutativity

The functional calculus can be applied to the study of the commutativity
properties of operators. Here are two simple examples.

Theorem 10.20 Let V' be a finite-dimensional complex inner product space.
For t,0 € L(V), we write T < o to denote the fact that T and o commute. Let
T and o have spectral resolutions

T=Mp1+ -+ Appr
0 =t + - "‘,Uml/m
Then
1) Foranype L(V),
W T & e piforalli
2)
Te o & pev,foralli g
N I fiA{N, ..} — Foand g:{p1,...,um}t — F are injective functions,
then
(1) = glo) & To0
Proof. For 1), if u <> p; for all 4, then i <> 7 and the converse follows from the
fact that p; is a polynomial in 7. Part 2) is similar. For part 3), 7 <= o clearly
implies f(7) <> g(o). For the converse, let A= {\;,...,A\;}. Since f is
injective, the inverse function f~!:f(A) — A is well-defined and

f~Y(f(7)) = 7. Thus, 7 is a function of f(7). Similarly, o is a function of g(o).
It follows that f(7) < g(o) implies 7 < o.O

Theorem 10.21 Let 7 and o be normal operators on a finite-dimensional
complex inner product space V. Then T and o commute if and only if they have
the form

7 = p(r(7,0))
o =q(r(r,0))

where p(x), q(x) and r(z,y) are polynomials.
Proof. If 7 and o are polynomials in § = r(7,0), then they clearly commute.
For the converse, suppose that 7o = o7 and let

T=MAp1L+ -+ \epr
and
O'ZILL1V1+"'+,Ume

be the orthogonal spectral resolutions of 7 and o.
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Then Theorem 10.20 implies that p;v; = v;p;. Hence,

0" = (Alpl + -+ Akﬂk)r(/ilVl + -+ Mmym)s

]
It follows that for any polynomial r(z, y) in two variables,

r(r,0) =Y r(N w)pw;
i

So if we choose 7(x, y) with the property that c; j = 7(\;, 1) are distinct, then

r(r,0) =Y aipv
0

and we can also choose p(z) and ¢(z) so that p(a; ;) = \; for all j and
q(cvi j) = p; for all i. Then

p(r(r,0)) = ZP(%,;‘)PWJ‘ = Z)\ipiyj

(D)) 2

and similarly, ¢(r(7,0)) = .00
Positive Operators

One of the most important cases of the functional calculus is f(z) = \/E
Recall that the quadratic form associated with a linear operator 7 is

Q:(v) = {ro 1)

Definition 4 self-adjoint linear operator T € L(V) is
1) positive if Q- (v) > 0 forallv eV
2) positive definite if Q- (v) > 0 for all v # 0.00

Theorem 10.22 A4 self-adjoint operator T on a finite-dimensional inner product
space is

1) positive if and only if all of its eigenvalues are nonnegative

2) positive definite if and only if all of its eigenvalues are positive.

Proof. If Q- (v) > 0 and 7v = Av, then

0 < (rv,v) = Av,v)
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and so A > 0. Conversely, if all eigenvalues of 7 are nonnegative, then
T=Mp1+ -+ NP, A >0
and since ¢ = p; + -+ + py,

(T, 0) = > Nilpiv, pjo) = D _Aillpio]|* > 0

and so T is positive. Part 2) is proved similarly.[]

If 7 is a positive operator, with spectral resolution
T=MAp1+ -+ MNepr, Ai >0
then we may take the positive square root of 7,

V7=V p 4+ Vo

where / \; is the nonnegative square root of \;. It is clear that

(V7 =

251

and it is not hard to see that ﬁ is the only positive operator whose square is 7.
In other words, every positive operator has a unique positive square root.
Conversely, if 7 has a positive square root, that is, if 7 = o2, for some positive
operator o, then 7 is positive. Hence, an operator 7 is positive if and only if it

has a positive square root.

If 7 is positive, then \ﬁ is self-adjoint and so

VoINS

Conversely, if 7 = o*o for some operator o, then 7 is positive, since it is clearly

self-adjoint and

(tv,v) = {o*ov,v) = {ov,00) >0

Thus, 7 is positive if and only if it has the form 7 = "¢ for some operator o.
(A complex number z is nonnegative if and only if has the form z = ww for

some complex number w.)

Theorem 10.23 Let 7 € L(V).
1) 7 is positive if and only if it has a positive square root.

2) 7 is positive if and only if it has the form T = o*o for some operator o.l]

Here is an application of square roots.

Theorem 10.24 [f 7 and o are positive operators and To = o1, then 1o is

positive.
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Proof. Since 7 is a positive operator, it has a positive square root \ﬁ, which is

a polynomial in 7. A similar statement holds for o. Therefore, since 7 and o
commute, so do \ﬁ and \/E. Hence,

(Vo) = (VP Vo) =10

Since ﬁ and (/o are self-adjoint and commute, their product is self-adjoint
and so 7o is positive.[]

The Polar Decomposition of an Operator

It is well known that any nonzero complex number z can be written in the polar
form z = re’ | where r is a positive number and 6 is real. We can do the same
for any nonzero linear operator 7 on a finite-dimensional complex inner product
space.

Theorem 10.25 Let 7 be a nonzero linear operator on a finite-dimensional

complex inner product space V.

1) There exist a positive operator p and a unitary operator v for which
T = vp. Moreover, p is unique and if T is invertible, then v is also unique.

2) Similarly, there exist a positive operator o and a unitary operator | for
which T = ou. Moreover, o is unique and if T is invertible, then p is also
unique.

Proof. Let us suppose for a moment that 7 = vp. Then

T =(vp) =p v =pr7
and so
' = prtup = p?
Also, if v € V, then

Tv = v(pv)

These equations give us a clue as to how to define p and v.

Let us define p to be the unique positive square root of the positive operator
7*7. Then

lpvll* = (pv, pv) = (p*v,0) = (T"7v,0) = ||70]” (10.2)
Define v on im(p) by
v(pv) =Tv

for all v € V. Equation (10.2) shows that pz = py implies that 7 = 7y and so
this definition of v on im(p) is well-defined.

Moreover, v is an isometry on im(p), since (10.2) gives
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[v(po)ll = lI7vll = [[pv]

Thus, if B={by,...,b;} is an orthonormal basis for im(p), then
vB = {vby,...,vb;} is an orthonormal basis for v(im(p)) = im(7). Finally, we
may extend both orthonormal bases to orthonormal bases for V' and then extend
the definition of v to an isometry on V' for which 7 = vp.

As for the uniqueness, we have seen that p must satisfy p> = 7*7 and since p*
has a unique positive square root, we deduce that p is uniquely defined. Finally,
if 7 is invertible, then so is p since ker(p) C ker(7). Hence, v = 7p~! is
uniquely determined by 7.

Part 2) can be proved by applying the previous theorem to the map 7*, to get

T=(1)" = (wp) =pr = pp

where p is unitary.[d

We leave it as an exercise to show that any unitary operator ;¢ has the form
1 = €', where o is a self-adjoint operator. This gives the following corollary.

Corollary 10.26 (Polar decomposition) Let 7 be a nonzero linear operator on
a finite-dimensional complex inner product space. Then there is a positive
operator p and a self-adjoint operator o for which T has the polar
decomposition

T = pe'?
Moreover, p is unique and if T is invertible, then o is also unique..]

Normal operators can be characterized using the polar decomposition.

Theorem 10.27 Let 7 = pe'® be a polar decomposition of a nonzero linear
operator 7. Then T is normal if and only if po = op.
Proof. Since

T = peiae—i/fp _ p2
and
= ef’[,appez'a _ efio'pQQia
we see that 7 is normal if and only if

6720,02620 — p2
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or equivalently,
p2 eirr —_ eirf p2

Now, p is a polynomial in p? and ¢ is a polynomial in €’ and so this holds if
and only if po = gp.0d

Exercises

1. Lett e L£(U,V).If 7 is surjective, find a formula for the right inverse of 7
in terms of 7*. If 7 is injective, find a formula for a left inverse of 7 in terms
of 7*. Hint: Consider 77" and 7"7.

2. LetT € L(V) where V is a complex vector space and let

1 1
= 5(7’4—7’*) and 7 = 2—2,(7'—7*)

Show that 7 and 7 are self-adjoint and that
T=7+inand T =1 —in

What can you say about the uniqueness of these representations of 7 and
77

3. Prove that all of the roots of the characteristic polynomial of a skew-
Hermitian matrix are pure imaginary.

4. Give an example of a normal operator that is neither self-adjoint nor
unitary.

5. Prove that if ||7v|| = ||7*(v)]| for all v € V, where V' is complex, then 7 is
normal.

6. Let 7 be a normal operator on a complex finite-dimensional inner product
space V or a self-adjoint operator on a real finite-dimensional inner product
space.

a) Show that 7* = p(7), for some polynomial p(x) € Clx].
b) Show that for any o € L(V), o7 = 7o implies 07" = 7*0. In other
words, 7* commutes with all operators that commute with 7.

7. Show that a linear operator 7 on a finite-dimensional complex inner product
space V' is normal if and only if whenever S is an invariant subspace under
7,s01s S+,

8. Let V be a finite-dimensional inner product space and let 7 be a normal
operator on V.

a) Prove that if 7 is idempotent, then it is also self-adjoint.
b) Prove that if 7 is nilpotent, then 7 = 0.
¢) Prove that if 72 = 73, then 7 is idempotent.

9. Show that if 7 is a normal operator on a finite-dimensional complex inner
product space, then the algebraic multiplicity is equal to the geometric
multiplicity for all eigenvalues of 7.

10. Show that two orthogonal projections ¢ and p are orthogonal to each other
if and only if im(c) L im(p).



11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.
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Let 7 be a normal operator and let ¢ be any operator on V. If the
eigenspaces of T are o-invariant, show that 7 and o commute.

Prove that if 7 and o are normal operators on a finite-dimensional complex
inner product space and if 76 = fo for some operator  then 70 = fo*.
Prove that if two normal n x n complex matrices are similar, then they are
unitarily similar, that is, similar via a unitary matrix.

If v is a unitary operator on a complex inner product space, show that there
exists a self-adjoint operator o for which v = €.

Show that a positive operator has a unique positive square root.

Prove that if 7 has a square root, that is, if 7 = o2, for some positive
operator o, then 7 is positive.

Prove that if ¢ < 7 (that is, 7 — ¢ is positive) and if 0 is a positive operator
that commutes with both o and 7 then o0 < 76.

Using the QR factorization, prove the following result, known as the
Cholsky decomposition. An invertible linear operator 7 € £L(V') is positive
if and only if it has the form 7 = p*p where p is upper triangularizable.
Moreover, p can be chosen with positive eigenvalues, in which case the
factorization is unique.

Does every self-adjoint operator on a finite-dimensional real inner product
space have a square root?

Let 7 be a linear operator on C” and let Ay, ..., A, be the eigenvalues of 7,
each one written a number of times equal to its algebraic multiplicity. Show
that

Z\)\i|2 < tr(777)

1

where tr is the trace. Show also that equality holds if and only if 7 is
normal.

If 7 € L(V) where V is a real inner product space, show that the Hilbert
space adjoint satisfies (7°)C = (7C)*.
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Chapter 11
Metric Vector Spaces: The Theory of
Bilinear Forms

In this chapter, we study vector spaces over arbitrary fields that have a bilinear
form defined on them.

Unless otherwise mentioned, all vector spaces are assumed to be finite-
dimensional. The symbol F' denotes an arbitrary field and F, denotes a finite
field of size q.

Symmetric, Skew-Symmetric and Alternate Forms
We begin with the basic definition.
Definition Let V' be a vector space over F. A mapping (,):V XV — F is
called a bilinear form if it is linear in each coordinate, that is, if
(ax + By, z) = alx, z) + By, 2)
and
(2,02 + By) = afz,2) + B(z,y)

A bilinear form is
1) symmetric if’

(z,y) = (y, )

forallz, yeV.
2) skew-symmetric (or antisymmetric) if

<£U,y> = _<y7 £E>
forallz,y eV.
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3) alternate (or alternating) if’
<$7 .’E> =0

forallz e V.
A bilinear form that is either symmetric, skew-symmetric, or alternate is
referred to as an inner product and a pair (V,{,)), where V' is a vector space
and (,) is an inner product on V, is called a metric vector space or inner
product space. As usual, we will refer to V as a metric vector space when the
form is understood.
4) A metric vector space V' with a symmetric form is called an orthogonal
geometry over F'.
5) A metric vector space V with an alternate form is called a symplectic
geometry over F.[1

The term symplectic, from the Greek for “intertwined,” was introduced in 1939
by the famous mathematician Hermann Weyl in his book The Classical Groups,
as a substitute for the term complex. According to the dictionary, symplectic
means “relating to or being an intergrowth of two different minerals.” An
example is ophicalcite, which is marble spotted with green serpentine.

Example 11.1 Minkowski space 14 is the four-dimensional real orthogonal
geometry R* with inner product defined by

<617€1> = <62562> = <€3,€3> =1

<€4, €4> =-1
(ei,e;) = 0fori# j
where e1, ..., e4 is the standard basis for R*.[J

As is traditional, when the inner product is understood, we will use the phrase
“let V' be a metric vector space.”

The real inner products discussed in Chapter 9 are inner products in the present
sense and have the additional property of being positive definite—a notion that
does not even make sense if the base field is not ordered. Thus, a real inner
product space is an orthogonal geometry. On the other hand, the complex inner
products of Chapter 9, being sesquilinear, are not inner products in the present
sense. For this reason, we use the term metric vector space in this chapter, rather
than inner product space.

If S is a vector subspace of a metric vector space V/, then S inherits the metric
structure from V. With this structure, we refer to S as a subspace of V.

The concepts of being symmetric, skew-symmetric and alternate are not
independent. However, their relationship depends on the characteristic of the
base field F', as do many other properties of metric vector spaces. In fact, the
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next theorem tells us that we do not need to consider skew-symmetric forms per
se, since skew-symmetry is always equivalent to either symmetry or
alternateness.

Theorem 11.1 Let V' be a vector space over a field F'.
1) Ifchar(F) = 2, then

alternate = symmetric < skew-symmetric
2) Ifchar(F) # 2, then
alternate < skew-symmetric

Also, the only form that is both alternate and symmetric is the zero form:
(x,y) =0forall z,y € V.
Proof. First note that for an alternating form over any base field,

O:<x+y,m+y> = (J:,y>—|—<y,ac>
and so
<xay> = —<y,.’E>

which shows that the form is skew-symmetric. Thus, alternate always implies
skew-symmetric.

If char(F') =2, then —1 =1 and so the definitions of symmetric and skew-
symmetric are equivalent, which proves 1). If char(F') # 2 and the form is
skew-symmetric, then for any = € V, we have (z,z) = —(z, ) or 2(z, z) = 0,
which implies that (x,xz) = 0. Hence, the form is alternate. Finally, if the form
is alternate and symmetric, then it is also skew-symmetric and so
(u,v) = —(u,v) forall u,v € V, that is, (u,v) = 0 for all u,v € V.O

Example 11.2 The standard inner product on V' (n, ¢), defined by
(.1?1, ,.Z'") . (yl, 7yn) =1 +--+ TnlYn

is symmetric, but not alternate, since

(1,0,...,0)-(1,0,...,0) =1 #0 O

The Matrix of a Bilinear Form

If B=(by,...,b,) is an ordered basis for a metric vector space V, then a
bilinear form is completely determined by the n x n matrix of values

Mp = (aij) = ((bi,bj))

This is referred to as the matrix of the form (or the matrix of V') with respect to
the ordered basis B. Moreover, any n X n matrix over F' is the matrix of some
bilinear form on V.
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Note that if z = Xr;b; then

<b17 LU>
Mjglz]s = :
{bn, 33>
and
[z]zMp = ((2,b1) - (2,ba))
It follows that if y = > s;b;, then
[]sMglyls = ((z,b1) -+ (2,b2)) | 1 | = (2,9)

and this uniquely defines the matrix Mp, that is, if [z];Aly]z = (z,y) for all
x,y € V,then A = Mp.

A matrix is alternate if it is skew-symmetric and has 0's on the main diagonal.
Thus, we can say that a form is symmetric (skew-symmetric, alternate) if and
only if the matrix Mp is symmetric (skew-symmetric, alternate).

Now let us see how the matrix of a form behaves with respect to a change of
basis. Let C = (cy, ..., ¢,) be an ordered basis for V. Recall from Chapter 2 that
the change of basis matrix M 3, whose ith column is [¢;] s, satisfies

[v]s = Mc[v]c

Hence,
(z,y) = [a]z Ms[yls
= ([z]leM( 5 )YMs(Meslyle )
= [2]6(M¢ 5 MpMe )yl
and so

Me = Mgz MMe
This prompts the following definition.

Definition Two matrices A, B € M,,(F) are congruent if there exists an
invertible matrix P for which

A= P'BP

The equivalence classes under congruence are called congruence classes.[]
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Thus, if two matrices represent the same bilinear form on V', they must be
congruent. Conversely, if B = Mp represents a bilinear form on V' and

A= P'BP
where P is invertible, then there is an ordered basis C for V' for which
P =Mz
and so
A= Mct_’B MpMe

Thus, A = M represents the same form with respect to C.

Theorem 11.2 Let B = (by,...,b,) be an ordered basis for an inner product
space V', with matrix

Mp = ((bi, bj))
1) The form can be recovered from the matrix by the formula
(@,y) = [a]s Mslyls
2) IfC=(ci,...,cy,) is also an ordered basis for V, then
Me = ME’B MpMe
where Mc g is the change of basis matrix from C to B.
3) Two matrices A and B represent the same bilinear form on a vector space

V' if and only if they are congruent, in which case they represent the same
set of bilinear forms on V.1

In view of the fact that congruent matrices have the same rank, we may define
the rank of a bilinear form (or of V') to be the rank of any matrix that represents
that form.

The Discriminant of a Form
If A and B are congruent matrices, then
det(A) = det(P'BP) = det(P)*det(B)

and so det(A) and det(B) differ by a square factor. The discriminant A of a
bilinear form is the set of determinants of all of the matrices that represent the
form. Thus, if BB is an ordered basis for V', then

A = F*det(Mg) = {r’det(Mg) | 0 # r € F}
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Quadratic Forms
There is a close link between symmetric bilinear forms on V' and quadratic

forms on V.

Definition 4 quadratic form on a vector space V is a map Q:V — F with the
following properties:
Iy Forallre F,veV,

Q(rv) = r’Q(v)
2)  The map
(u,0)@ = Qu+v) — Qu) — Q(v)
is a (symmetric) bilinear form.C]
Thus, every quadratic form () on V' defines a symmetric bilinear form (u, v)g

on V. Conversely, if char(F) # 2 and if (,) is a symmetric bilinear form on V,
then the function
1

Qla) = 5z 2)

is a quadratic form (). Moreover, the bilinear form associated with @ is the
original bilinear form:

(u,v)g = Qu+v) = Qu) = Q(v)

1 1 1
= %<u—|—v,u1—&- v) — §<u,u> - 5(1},1})
= §<’LL7’U> + §<'U;U> = <u,v>

Thus, the maps (,) — @ and ) — (, )¢ are inverses and so there is a one-to-one
correspondence between symmetric bilinear forms on V' and quadratic forms on
V. Put another way, knowing the quadratic form is equivalent to knowing the
corresponding bilinear form.

Again assuming that char(F') # 2, if B = (vy,...,v,) is an ordered basis for an
orthogonal geometry V' and if the matrix of the symmetric form on V is
Mp = (aij), then for x = Xa;v;,

1 1 1
Qr) = §<$7$> = 5[33];3 Mplx|s = Zgai,jxixj
i,J

and so Q(x) is a homogeneous polynomial of degree 2 in the coordinates ;.
(The term “form” means homogeneous polynomial—hence the term quadratic

form.)
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Orthogonality

As we will see, not all metric vector spaces behave as nicely as real inner
product spaces and this necessitates the introduction of a new set of terminology
to cover various types of behavior. (The base field F' is the culprit, of course.)
The most striking differences stem from the possibility that (x,2) =0 for a
nonzero vector x € V.

The following terminology should be familiar.

Definition Let V' be a metric vector space. A vector x is orthogonal fo a vector
y, written x Ly, if (x,y) = 0. A vector x € V is orthogonal to a subset S of
V, written x L S, if (x,s) = 0 forall s € S. A subset S of V' is orthogonal 0 a
subset T of 'V, written S LT, if (s,t) =0 for all s€ S and t €T. The
orthogonal complement X' of a subset X of V is the subspace

Xt={weV|vlX} |

Note that regardless of whether the form is symmetric or alternate (and hence
skew-symmetric), orthogonality is a symmetric relation, that is, L y implies
y L x. Indeed, this is precisely why we restrict attention to these two types of
bilinear forms.

There are two types of degenerate behaviors that a vector may possess: It may
be orthogonal to itself or, worse yet, it may be orthogonal to every vector in V.
With respect to the former, we have the following terminology.

Definition Let V' be a metric vector space.

1) A nonzero x €V is isotropic (or null) if' (x,z) =0; otherwise it is
nonisotropic.

2) 'V is isotropic if it contains at least one isotropic vector. Otherwise, V is
nonisotropic (or anisotropic).

3) V s totally isotropic (that is, symplectic) if all vectors in V are
isotropic..]

Note that if v is an isotropic vector, then so is av for all @ € F'. This can be
expressed by saying that the set I of isotropic vectors in V' is a cone in V. (A

cone in V is a nonempty subset that is closed under scalar multiplication.)

With respect to the more severe forms of degeneracy, we have the following
terminology.

Definition Let V' be a metric vector space.
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1) A vector v €V is degenerate if v L V. The set V1 of all degenerate
vectors is called the radical of V' and denoted by rad(V'). Thus,

rad(V) = V*

2) V is nonsingular, or nondegenerate, ifrad(V') = {0}.
3) V issingular, or degenerate, if rad(V') # {0}.
4) V is totally singular, or totally degenerate, if rad(V') = V.0

Some of the above terminology is not entirely standard, so care should be
exercised in reading the literature.

Theorem 11.3 A metric vector space V is nonsingular if and only if all
representing matrices Mg are nonsingular.C]

A note of caution is in order. If S is a subspace of a metric vector space V/, then
rad(S) denotes the set of vectors in S that are degenerate in S, that is, rad(S) is
the radical of S, as a metric vector space in its own right. However, S* denotes
the set of all vectors in V' that are orthogonal to .S. Thus,

rad(S) = SN S+
Note also that
rad(S) = SN S+ C S+ NS+ =rad(SH)
and so if S is singular, then so is S*.
Example 11.3 Recall that V(n,q) is the set of all ordered n-tuples whose

components come from the finite field Fj,. (See Example 11.2.) It is easy to see
that the subspace

S = {0000, 1100,0011,1111}

of V(4,2) has the property that S = S*. Note also that V/ (4, 2) is nonsingular
and yet the subspace S is totally singular.(]

The following result explains why we restrict attention to symmetric or alternate
forms (which includes skew-symmetric forms).

Theorem 11.4 Let V' be a vector space with a bilinear form. The following are
equivalent:
1) Orthogonality is a symmetric relation, that is,

rly=ylx

2) The form on V is symmetric or alternate, that is, V is a metric vector
space.
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Proof. It is clear that orthogonality is symmetric if the form is symmetric or
alternate, since in the latter case, the form is also skew-symmetric.

For the converse, assume that orthogonality is symmetric. For convenience, let
2 X y mean that (x,y) = (y,z) and let X V mean that (z,v) = (v, x) for all
veV.Ifx XV forall z € V, then V' is orthogonal and we are done. So let us
examine vectors  with the property that z ¥ V.

We wish to show that
xWV = xisisotropic and (zXy=x Ly) (11.1)

Note that if the second conclusion holds, then since x X z, it follows that x is
isotropic. So suppose that x X y. Since x M V, there is a z € V for which
(x,z) # (z,x) and so L y if and only if

(,9)((z,2) — (2,2)) =0
Now,
(@, ) ((x, 2) = (z,3)) = (z,y)(z,2) — (2,y)(z,2)
Y

= (y,:v)(x,z) - <J§,
= <£C, <y7 x>z - y<Z,IL‘>>

But reversing the coordinates in the last expression gives
<<y) :L‘>Z - y(z, x>7 'T> = <y’ Z‘><Z, $> - <y7 $><Z, 33> =0
and so the symmetry of orthogonality implies that the last expression is 0 and so

we have proven (11.1).

Let us assume that V' is not orthogonal and show that all vectors in V' are
isotropic, whence V' is symplectic. Since V' is not orthogonal, there exist
u,v € V for which u ¥ v and so u ) V and v ¥ V. Hence, the vectors u and v
are isotropic and for ally € V,

yXu = ylu
yXov = ylo

Since all vectors w for which w ¥ V are isotropic, let w X V. Then w X u and
w X vandsow L uand w L v. Now write

w=(w—u)+u

where w —u L u, since u is isotropic. Since the sum of two orthogonal
isotropic vectors is isotropic, it follows that w is isotropic if w — u is isotropic.
But

(w+ u,v) = (u,v) # (v,u) = (v,w+ u)
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and so (w+u) ¥V, which implies that w + u is isotropic. Thus, w is also
isotropic and so all vectors in V' are isotropic.[d

Orthogonal and Symplectic Geometries

If a metric vector space is both orthogonal and symplectic, then the form is both
symmetric and skew-symmetric and so

(u,v) = (v,u) = —(u,v)

Therefore, when char(F') # 2, V is orthogonal and symplectic if and only if V'
is totally degenerate.

However, if char(F') = 2, then there are orthogonal symplectic geometries that
are not totally degenerate. For example, let V = span(u,v) be a two-
dimensional vector space and define a form on V' whose matrix is

0 1
=11 0)
Since M is both symmetric and alternate, so is the form.

Linear Functionals

The Riesz representation theorem says that every linear functional f on a finite-
dimensional real or complex inner product space V is represented by a Riesz
vector Ry € V, in the sense that

fv) = (v, Ry)

for all v € V. A similar result holds for nonsingular metric vector spaces.

Let V' be a metric vector space over F'. Let z € V' and define the inner product
map (-,z):V — F by

<~,3:>v: (v,x)

This is easily seen to be a linear functional and so we can define a linear map
7:V — V* by

T = < : ’:C>
The bilinearity of the form ensures that 7 is linear and the kernel of 7 is
ker(t) = {z € V | (V,2) = {0}} = V* =rad(V)

Hence, 7 is injective (and therefore an isomorphism) if and only if V is
nonsingular.

Theorem 11.5 (The Riesz representation theorem) Let V be a finite-
dimensional nonsingular metric vector space. The map 7:V — V* defined by
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Tr={-,x)

is an isomorphism from V to V*. It follows that for each f € V* there exists a
unique vector x € V for which

fv=(v,x)
forallve V.0

The requirement that V' be nonsingular is necessary. As a simple example, if V
is totally singular, then no nonzero linear functional could possibly be
represented by an inner product.

The Riesz representation theorem applies to nonsingular metric vector spaces.
However, we can also achieve something useful for singular subspaces S of a
nonsingular metric vector space. The reason is that any linear functional f € S*
can be extended to a linear functional f on V, where it has a Riesz vector, that
is,

?U: <1}va> = (- 7R?>’U

Hence, f also has this form, where its “Riesz vector” is an element of V/, but is
not necessarily in .S.

Theorem 11.6 (The Riesz representation theorem for subspaces) Let S be a

subspace of a metric vector space V. If either V or S is nonsingular, the linear
map T:'V — S* defined by

Tr=(-,x)|s

is surjective and has kernel S*. Hence, for any linear functional f € S*, there
is a (not necessarily unique) vector x € V for which fs = (s,x) for all s € S.
Moreover, if S is nonsingular, then x can be taken from S, in which case it is
unique.[]

Orthogonal Complements and Orthogonal Direct Sums

Definition A metric vector space V is the orthogonal direct sum of the
subspaces S and T, written

V=sSoT
ifV=S&Tand S L T.0O0
If S is a subspace of a real inner product space, the projection theorem says that

the orthogonal complement S+ of S is a true vector space complement of .S,
that is,

V=56S8"
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However, in general metric vector spaces, an orthogonal complement may not
be a vector space complement. In fact, Example 11.3 shows that in some cases
S+ =S. In other cases, for example, if v is degenerate, then (v): =V.
However, as we will see, the orthogonal complement of S is a vector space
complement if and only if either the sum is correct, V = S + S+, or the
intersection is correct, S N S+ = {0}. Note that the latter is equivalent to the
nonsingularity of S.

Many nice properties of orthogonality in real inner product spaces do carry over
to nonsingular metric vector spaces. Moreover, the next result shows that the
restriction to nonsingular spaces is not that severe.

Theorem 11.7 Let V' be a metric vector space. Then
V=rad(V)oS

where S is nonsingular and rad(V') is totally singular.
Proof. If S is any vector space complement of rad(V'), then rad(V') L S and so

V=rad(V)o® S
Also, S is nonsingular since rad(S) C rad(V).O

Here are some properties of orthogonality in nonsingular metric vector spaces.
In particular, if either V' or S is nonsingular, then the orthogonal complement of
S always has the expected dimension,

dim(S*) = dim(V) — dim(S)

even if S+ is not well behaved with respect to its intersection with S.

Theorem 11.8 Let S be a subspace of a finite-dimensional metric vector space
V.
1) Ifeither V or S is nonsingular, then

dim(S) + dim(S+) = dim(V')

Hence, the following are equivalent:

a) V=S5+5*
b) S is nonsingular, that is, S N S+ = {0}
c) V=S6oS8"
2) If'V is nonsingular, then
ay S+ =5

b) rad(S) = rad(S+)

c) S is nonsingular if and only if S* is nonsingular.
Proof. For part 1), the map 7:V — S* of Theorem 11.6 is surjective and has
kernel S*. Thus, the rank-plus-nullity theorem implies that
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dim(S*) + dim(S+) = dim(V)
However, dim(S*) = dim(.S) and so part 1) follows. For part 2), since
rad(S) = SN St C S NSt =rad(SH)

the nonsingularity of S+ implies the nonsingularity of S. Then part 1) implies
that

dim(S) + dim(S™) = dim(V)
and
dim(S+) + dim(S*+) = dim(V)
Hence, S+ = S and rad(S) = rad(S+).00
The previous theorem cannot in general be strengthened. Consider the two-
dimensional metric vector space V' = span(u, v) where
(u,u) =1, {u,vy =0, (v,0) =0

If S = span(u), then S = span(v). Now, S is nonsingular but S+ is singular
and so 2¢) does not hold. Also, rad(S) = {0} and rad(S*) = S+ and so 2b)
fails. Finally, S** = V # S and so 2a) fails.

Isometries

We now turn to a discussion of structure-preserving maps on metric vector
spaces.

Definition Let V' and W be metric vector spaces. We use the same notation ()
for the bilinear form on each space. A bijective linear map 7:V — W is called
an isometry if

(Tu, Tv) = (u,v)

for all vectors v and v in V. If an isometry exists from V to W, we say that V
and W are isometric and write V ~W. It is evident that the set of all
isometries from 'V to'V forms a group under composition.

If 'V is a nonsingular orthogonal geometry, an isometry of V is called an
orthogonal transformation. The set O(V') of all orthogonal transformations
on V' is a group under composition, known as the orthogonal group of V.

If 'V is a nonsingular symplectic geometry, an isometry of V is called a
symplectic transformation. The set Sp(V') of all symplectic transformations on
V' is a group under composition, known as the symplectic group of V.1
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Note that, in contrast to the case of real inner product spaces, we must include
the requirement that 7 be bijective since this does not follow automatically if V'
is singular. Here are a few of the basic properties of isometries.

Theorem 11.9 Let 7 € L(V,W) be a linear transformation between finite-

dimensional metric vector spaces V and W

1) Let B={vi,...,v,} bea basis for V. Then T is an isometry if and only if 7
is bijective and

(Tvi, Tv;) = (vi, vy)

forall i, j.
2) If'V is orthogonal and char(F') # 2, then T is an isometry if and only if it is
bijective and

(Tv, TV) = (v, V)

forallveV.
3) Suppose that T:V ~ W is an isometry and

V=S8t and W=T0oT"

IfTS =T, then 7(S*) = T+
Proof. We prove part 3) only. To see that 7(S*+) =T+, if z € St and t € T,
then since 7' = 7.5, we can write t = 7s for some s € S and so

(Tz,t) = (12,78) = (2,8) =0
whence 7(S1) C T*. But since the dimensions are equal, it follows that
(St =1+.0
Hyperbolic Spaces
A special type of two-dimensional metric vector space plays an important role in
the structure theory of metric vector spaces.
Definition Let V' be a metric vector space. A hyperbolic pair is a pair of
vectors u,v € V for which

<u7u> = <v,v> =0, <u,v> =1

Note that (v,u) =1 if' V is orthogonal and (v,u) = —1 if V is symplectic. In
either case, the subspace H = span(u,v) is called a hyperbolic plane and any
space of the form

H:H1®"'®Hk;

where each H; is a hyperbolic plane, is called a hyperbolic space. If (u;, v;) is
a hyperbolic pair for H;, then we refer to the basis

(ulavh 7“1.73’”].7)
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for 'H as a hyperbolic basis. (In the symplectic case, the usual term is
symplectic basis. )]

Note that any hyperbolic space H is nonsingular.

In the orthogonal case, hyperbolic planes can be characterized by their degree of
isotropy, so to speak. (In the symplectic case, all spaces are totally isotropic by
definition.) Indeed, we leave it as an exercise to prove that a two-dimensional
nonsingular orthogonal geometry V is a hyperbolic plane if and only if V
contains exactly two one-dimensional totally isotropic (equivalently, totally
degenerate) subspaces. Put another way, the cone of isotropic vectors is the
union of two one-dimensional subspaces of V.

Nonsingular Completions of a Subspace

Let U be a subspace of a nonsingular metric vector space V. If U is singular, it
is of interest to find a minimal nonsingular subspace of V' containing U .

Definition Let V' be a nonsingular metric vector space and let U be a subspace
of V. A subspace S of V for which U < S is called an extension of U. A
nonsingular completion of U is an extension of U that is minimal in the family
of all nonsingular extensions of U.[]

Theorem 11.10 Let V' be a nonsingular finite-dimensional metric vector space
over F. We assume that char(F) # 2 when V is orthogonal.
1) Let S be a subspace of V. If v is isotropic and the orthogonal direct sum

span(v) ® S
exists, then there is a hyperbolic plane H = span(v, z) for which
HoS

exists. In particular, if v is isotropic, then there is a hyperbolic plane
containing v.
2) Let U be a subspace of V' and let

U = span(vy,...,v) © W

where W is nonsingular and {vi,...,v} are linearly independent in
rad(U). Then there is a hyperbolic space Hyp = Hy©®---© Hy with
hyperbolic basis (v1, 21, . .., Uk, z) for which

U= He ©W
is a nonsingular proper extension of U. If {vi,..., v} is a basis for

rad(U), then
dim(U) = dim(U) + dim(rad(U))
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and we refer to U as a hyperbolic extension of U. If U is nonsingular, we
say that U is a hyperbolic extension of itself.
Proof. For part 1), the nonsingularity of V implies that S+ = S. Hence,
vé¢ S=5* and so there is an x € St for which (v,z) #0. If V is
symplectic, then all vectors are isotropic and so we can take z = (1/{v, x))x. If
V is orthogonal, let z = rv 4 sx. The conditions defining (v, z) as a hyperbolic
pair are (since v is isotropic)

1= {(v,2z) = (v,rv+ sx) = s(v, )
and
0= (z,2) = (rv+ sz,7v+ sz) = 2rs(v, ) + s*(x,x) = 2r + s*(z, )

Since (v,x) # 0, the first of these equations can be solved for s and since
char(F') # 2, the second equation can then be solved for . Thus, in either case,
there is a vector z € S+ for which H = span(v, z) C S* is hyperbolic. Hence,
S C S+t C H* and since H is nonsingular, that is, H N H* = {0}, we have
HnNS={0}andso H® S exists.

Part 2) is proved by induction on k. Note first that all of the vectors v; are
isotropic. If k = 1, then span(v;) ® W exists and so part 1) implies that there is
a hyperbolic plane H = span(vy, z) for which H ©® W exists.

Assume that the result is true for independent sets of size less than £ > 2. Since
span(v;) ® (span(ve, ..., v) @ W)

exists, part 1) implies that there exists a hyperbolic plane H; = span(vy, 21) for
which

H, © (span(va, ..., v;) © W)

exists. Since vy, ..., vy are in the radical of span(vs, ..., v;) @ W, the inductive
hypothesis implies that there is a hyperbolic space Ho ®---® Hj with
hyperbolic basis (vg, 22, ..., v, z;;) for which the orthogonal direct sum

Hy®o---0OH,0W
exists. Hence, H; @ --- @ Hj, ©® W also exists.[]

We can now prove that the hyperbolic extensions of U are precisely the minimal
nonsingular extensions of U'.

Theorem 11.11 (Nonsingular extension theorem) Let U be a subspace of a
nonsingular finite-dimensional metric vector space V. The following are
equivalent:

1) T ="H oW isahyperbolic extension of U

2) T is a minimal nonsingular extension of U
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3) T is a nonsingular extension of U and
dim(T") = dim(U) + dim(rad(U))

Thus, any two nonsingular completions of U are isometric.

Proof. If U < X <V where X is nonsingular, then we may apply Theorem
11.10 to U as a subspace of X, to obtain a hyperbolic extension L ® W of U
for which

UCKoWcCcX

Thus, every nonsingular extension of U contains a hyperbolic extension of U.
Moreover, all hyperbolic extensions of U have the same dimension:

dim(H ® W) = dim(U) 4 dim(rad(U))

and so no hyperbolic extension of U is properly contained in another hyperbolic
extension of U. This proves that 1)-3) are equivalent. The final statement
follows from the fact that hyperbolic spaces of the same dimension are
isometric.(]

Extending Isometries to Nonsingular Completions

Let V and V'’ be isometric nonsingular metric vector spaces and let
U=rad(U) ©W be a subspace of V, with nonsingular completion
U=HOoW.

If 7:U — 7U is an isometry, then it is a simple matter to extend 7 to an
isometry 7 from U onto a nonsingular completion of 7U. To see this, let
(u, 21, ..., ug, z;) be a hyperbolic basis for H. Since (uy,...,u;) is a basis for
rad(U), it follows that (Tuy, ..., Tuy) is a basis for rad(7U).

Hence, we can hyperbolically extend 7U = rad(7W) ® 7W to get
U=H oW

where H' has hyperbolic basis (Tuy, 1, ..., Tux, 2%). To extend 7, simply set
Tzi =x; foralli=1,... k.

Theorem 11.12 Let V and V' be isometric nonsingular metric vector spaces
and let U be a subspace of V, with nonsingular completion U. Any isometry
7:U — 7U can be extended to an isometry from U onto a nonsingular
completion of TU .0

The Witt Theorems: A Preview

There are two important theorems that are quite easy to prove in the case of real
inner product spaces, but require more work in the case of metric vector spaces
in general. Let V and V' be isometric nonsingular metric vector spaces over a
field F. We assume that char(F') # 2 if V' is orthogonal.
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The Witt extension theorem says that if S is a subspace of V, then any isometry
S —-7rScCV’

can be extended to an isometry from V' to V'. The Witt cancellation theorem
says that if

V=SSt and V' =TT
then
S~T=St~T"

We will prove these theorems in both the orthogonal and symplectic cases a bit
later in the chapter. For now, we simply want to show that it is easy to prove
one Witt theorem using the other.

Suppose that the Witt extension theorem holds and assume that
V=So8" and V' =ToT"

and S = T. Then any isometry 7: S — T can be extended to an isometry 7 from
V to V'. According to Theorem 11.9, we have 7(S+) = T+ and so S+ ~ T+.
Hence, the Witt cancellation theorem holds.

Conversely, suppose that the Witt cancellation theorem holds and let
7:58 — 758 C V'’ be an isometry. Since 7 can be extended to a nonsingular
completion of S, we may assume that .S is nonsingular. Then

V=SoS5*
Since 7 is an isometry, 75' is also nonsingular and we can write
V=750 (rS)*

Since S =~ 7S, Witt's cancellation theorem implies that S* ~ (79)*. If
w: St — (75)* is an isometry, then the map o: V' — V'’ defined by

ou+v)=71u+ pv

for u € S and v € S* is an isometry that extends 7. Hence Witt's extension
theorem holds.

The Classification Problem for Metric Vector Spaces

The classification problem for a class of metric vector spaces (such as the
orthogonal or symplectic spaces) is the problem of determining when two metric
vector spaces in the class are isometric. The classification problem is considered
“solved,” at least in a theoretical sense, by finding a set of canonical forms or a
complete set of invariants for matrices under congruence.
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To see why, suppose that 7: V' — W is an isometry and B = (vy,...,v,) is an
ordered basis for V. Then C = (7vy, ..., Tv,) is an ordered basis for W and

Mp(V) = ({vi,v;)) = ({Tvi, 7v;)) = Mc(W)

Thus, the congruence class of matrices representing V' is identical to the
congruence class of matrices representing .

Conversely, suppose that V' and W are metric vector spaces with the same
congruence class of representing matrices. Then if B = (vy,...,v,) is an
ordered basis for V, there is an ordered basis C = (wy, ..., w,) for W for which

((vi; v5)) = Mp(V') = Me(W) = ((wi, w;))

Hence, the map 7: V' — W defined by 7v; = w; is an isometry from V' to W.

We have shown that two metric vector spaces are isometric if and only if they
have the same congruence class of representing matrices. Thus, we can
determine whether any two metric vector spaces are isometric by representing
each space with a matrix and determining whether these matrices are congruent,
using a set of canonical forms or a set of complete invariants.

Symplectic Geometry

We now turn to a study of the structure of orthogonal and symplectic geometries
and their isometries. Since the study of the structure (and the structure itself) of
symplectic geometries is simpler than that of orthogonal geometries, we begin
with the symplectic case. The reader who is interested only in the orthogonal
case may omit this section.

Throughout this section, let V' be a nonsingular symplectic geometry.
The Classification of Symplectic Geometries

Among the simplest types of metric vector spaces are those that possess an
orthogonal basis. However, it is easy to see that a symplectic geometry V' has an
orthogonal basis if and only if it is totally degenerate and so no “interesting”
symplectic geometries have orthogonal bases.

Thus, in searching for an orthogonal decomposition of V, we turn to two-
dimensional subspaces and this puts us in mind of hyperbolic spaces. Let F be
the family of all hyperbolic subspaces of V', which is nonempty since the zero
subspace {0} is singular and so has a nonzero hyperbolic extension. Since V' is
finite-dimensional, 7 has a maximal member H. Since H is nonsingular, if

H # V, then
V=HoH"

where H* # {0}. But then if v € H™* is nonzero, there is a hyperbolic extension
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H ®H of H containing v, which contradicts the maximality of H. Hence,
V ="=H.

This proves the following structure theorem for symplectic geometries.

Theorem 11.13

1) A symplectic geometry has an orthogonal basis if and only if it is totally
degenerate.

2)  Any nonsingular symplectic geometry V is a hyperbolic space, that is,

V=HO0H O - ©H,

where each H; is a hyperbolic plane. Thus, there is a hyperbolic basis for
V, that is, a basis B for which the matrix of the form is

Yor, = -1 0

In particular, the dimension of V' is even.
3) Any symplectic geometry V' has the form

V=rad(V)OH

where H is a hyperbolic space and rad(V') is a totally degenerate space.
The rank of the form is dim(H) and V is uniquely determined up to
isometry by its rank and its dimension. Put another way, up to isometry,
there is precisely one symplectic geometry of each rank and dimension.[]

Symplectic forms are represented by alternate matrices, that is, skew-symmetric
matrices with zero diagonal. Moreover, according to Theorem 11.13, each
n X n alternate matrix is congruent to a matrix of the form

| Yo O
XQA:JL—?k - [ 0 On2]~7:|block

Since the rank of Xy, o, is 2k, no two such matrices are congruent.

Theorem 11.14 The set of n x n matrices of the form Xy, o is a set of
canonical forms for alternate matrices under congruence.[]

The previous theorems solve the classification problem for symplectic
geometries by stating that the rank and dimension of V' form a complete set of
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invariants under congruence and that the set of all matrices of the form Xy, ,,—os
is a set of canonical forms.

Witt's Extension and Cancellation Theorems
We now prove the Witt theorems for symplectic geometries.
Theorem 11.15 (Witt's extension theorem) Let V and V' be isometric
nonsingular symplectic geometries over a field F'. Then any isometry
S —-7rScCV’

on a subspace S of V' can be extended to an isometry from 'V to V',

Proof. According to Theorem 11.12, we can extend 7 to a nonsingular
completion of .S, so we may simply assume that S and 7.5 are nonsingular.
Hence,

V=S0S5"

and

V=156 (r9)*t
To complete the extension of 7 to V', we need only choose a hyperbolic basis

(er, i, eps fp)
for S+ and a hyperbolic basis

(€1 f1--- s € f)
for (7.5)* and define the extension by setting 7e¢; = ¢} and 7f; = f/.00
As a corollary to Witt's extension theorem, we have Witt's cancellation theorem.
Theorem 11.16 (Witt's cancellation theorem) Let V and V' be isometric
nonsingular symplectic geometries over a field F'. If

V=80S" ad V' =ToT"
then
S~T=St~T" O

The Structure of the Symplectic Group: Symplectic Transvections

Let us examine the nature of symplectic transformations (isometries) on a
nonsingular symplectic geometry V. Recall that for a real vector space, an
isometric isomorphism, which corresponds to an isometry in the present context,
is the same as an orthogonal map and orthogonal maps are products of
reflections (Theorem 10.17). Recall also that a reflection H, is defined as an
operator for which
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Hyw = —v, Hw = wforallw € (v)*

and that

In the present context, we do not dare divide by (v, v), since all vectors are
isotropic. So here is the next-best thing.

Definition Let V' be a nonsingular symplectic geometry over F. Let v €V be
nonzero and let a € F. The map 7,,:V — V defined by

Tpa(T) = + alz,v)v

is called the symplectic transvection determined by v and a.C]

Note that if @ = 0, then 7,, = ¢ and if a # 0, then 7,, is the identity precisely
on the subspace span(v)* of codimension 1. In the case of a reflection, H, is the
identity precisely on span(v)* and

V = span(v)* © span(v)

However, for a symplectic transvection, 7,, is the identity precisely on
span(v)™* (for a # 0) but span(v) C span(v)*. Here are the basic properties of
symplectic transvections.

Theorem 11.17 Let 7, , be a symplectic transvection on V. Then

1) Ty is a symplectic transformation (isometry).

2) Tyq=tifandonlyifa = 0.

3) Ifx L thent,,(x) =x. Fora#0,x Lvifandonly if 1, ,(x) = .
4) Tv,aTvb = Tv,a+b-

5) 7'1;} = Ty—a

6) For any symplectic transformation o,

-1
O0Typ,a0 = Tov,a
7) Forb € F*,
Thv,a = Tu,ab? O

Note that if U is a subspace of V' and if 7, , is a symplectic transvection on U,
then, by definition, u € U. However, the formula

Tua(®) = 2 + a(z, u)u

also defines a symplectic transvection on V', where = ranges over V. Moreover,
for any z € U, we have 7, ,2 = z and so 7, , is the identity on U*.
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We now wish to prove that any symplectic transformation on a nonsingular
symplectic geometry V' is the product of symplectic transvections. The proof is
not difficult, but it is a bit lengthy, so we break it up into parts. Our first goal is
to show that we can get from any hyperbolic pair to any other hyperbolic pair
using a product of symplectic transvections.

Let us say that two hyperbolic pairs (z,y) and (w, z) are connected if there is a
product 1 of symplectic transvections that carries = to w and y to z and write

i () = (w, 2)

or (z,y) < (w, z). It is clear that connectedness is an equivalence relation on
the set of hyperbolic pairs.

Theorem 11.18 In a nonsingular symplectic geometry V, every pair of
hyperbolic pairs are connected.
Proof. Note first that if (s, t) # 0, then s # ¢ and so

TsmtaS =S+ a(s,s—t)(s—t) =s—a(s, t)(s —t)

Taking a = 1/(s, t) gives T5_; 45 = t. Therefore, if (s, u) is hyperbolic, then we
can always find a vector = for which

(s,u) < (t,x)
namely, x = 7,_; qu. Also, if both (s, u) and (¢, u) are hyperbolic, then
(s,u) < (t,u)
since (s — ¢, u) = 0 and 50 Ty_; ,u = u.
Actually, these statements are still true if (s,¢) = 0. For in this case, there is a
nonzero vector y for which (s, y) # 0 and (¢,y) # 0. This follows from the fact

that there is an f € V* for which fs # 0 and ft # 0 and so the Riesz vector R
is such a vector. Therefore, if (s, u) is hyperbolic, then

(s,u) < (Y, Tomyatt) < (t Ty—t. Ts—yatt)
and if both (s, u) and (¢, u) are hyperbolic, then
(s,u) < (y,u) < (t,u)
Hence, transitivity gives the same result as in the case (s, t) # 0.
Finally, if (u,us) and (v1,v2) are hyperbolic, then there is a y for which
(u1,u) < (v1,y) < (v1,v2)

and so transitivity shows that (u1,us) < (v1,v2).0
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We can now show that the symplectic transvections generate the symplectic
group.

Theorem 11.19 Every symplectic transformation on a nonsingular symplectic
geometry V' is the product of symplectic transvections.

Proof. Let 1 be a symplectic transformation on V. We proceed by induction on
d=dim(V). If d =2, then V = H = span(u, z) is a hyperbolic plane and
Theorem 11.18 implies that there is a product 7 of symplectic transvections on
V' for which

7 (u, 2) = (jau, 12)
This proves the result if d = 2. Assume that the result holds for all dimensions
less than d and let dim(V') = d.
Now,
V=HOK

where H = span(u, z) and K is a symplectic geometry of dimension less than
that of V. As before, there is a product 7 of symplectic transvections on V' for
which

7: (u, 2) = (pu, pz)
and so
Tla = pla

Note that 7! H = H and so Theorem 11.9 implies that 7~ 'u(H*) = H*.
Since dim(H*) < dim(H), the inductive hypothesis applied to the symplectic
transformation 7!z on H* implies that there is a product 7 of symplectic
transvections on H' for which 7 = 77 'j. As remarked earlier, 7 is also a
product of symplectic transvections on V' that is the identity on H and so

wlg =ty and p=7ron H*

Thus, ;o = 7 on both H and on H* and so 1 = 77 is a product of symplectic
transvections on V.[0

The Structure of Orthogonal Geometries: Orthogonal Bases

We have seen that no interesting (that is, not totally degenerate) symplectic
geometries have orthogonal bases. By contrast, almost all interesting orthogonal
geometries V' have orthogonal bases.

To understand whys, it is convenient to group the orthogonal geometries into two
classes: those that are also symplectic and those that are not. The reason is that
all orthogonal nonsymplectic geometries have orthogonal bases, as we will see.
However, an orthogonal symplectic geometry has an orthogonal basis if and
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only if it is totally degenerate. Furthermore, we have seen that if char(F') # 2,
then all orthogonal symplectic geometries are totally degenerate and so all such
geometries have orthogonal bases. But if char(F') = 2, then there are orthogonal
symplectic geometries that are not totally degenerate and therefore do not have
orthogonal bases.

Thus, if we exclude orthogonal symplectic geometries when char(F) = 2, we
can say that every orthogonal geometry has an orthogonal basis.

If a metric vector space V' has an orthogonal basis, the natural next step is to
look for an orthonormal basis. However, if V' is singular, then there is a nonzero
vector v € V* and such a vector can never be a linear combination of vectors
from an orthonormal basis {uy, ..., u,}, since the coefficients in such a linear
combination are (v, u;) = 0.

However, even if V' is nonsingular, orthonormal bases do not always exist and
the question of how close we can come to such an orthonormal basis depends on
the nature of the base field. We will examine this issue in three cases:
algebraically closed fields, the field of real numbers and finite fields.

We should also mention that even when V' has an orthogonal basis, the Gram—
Schmidt orthogonalization process may not apply to produce such a basis,
because even nonsingular orthogonal geometries may have isotropic vectors,
and so division by (u, u) is problematic.

For example, consider an orthogonal hyperbolic plane H = span(u,v) and
assume that char(F') # 2. Thus, w and v are isotropic and (u,v) = 1. The
vector v cannot be extended to an orthogonal basis using the Gram—Schmidt
process, since {u, au + bv} is orthogonal if and only if b = 0. However, H does
have an orthogonal basis, namely, {u + v, u — v}.

Orthogonal Bases

Let V' be an orthogonal geometry. As we have discussed, if V' is also
symplectic, then V' has an orthogonal basis if and only if it is totally degenerate.
Moreover, when char(F') # 2, all orthogonal symplectic geometries are totally
degenerate and so all orthogonal symplectic geometries have an orthogonal
basis.

If V is orthogonal but not symplectic, then V' contains a nonisotropic vector w1,
the subspace span(u;) is nonsingular and

V = span(u;) ® V}
where Vi = span(u;)*. If Vi is not symplectic, then we may decompose it to get

V' = span(u1) © span(ug) © Vs
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This process may be continued until we reach a decomposition

V = span(u;) ® --- ©® span(uy) © U
where U is symplectic as well as orthogonal. (This includes the case U = {0}.)
Let B = (uy, ..., uyp).

If char(F') # 2, then U is totally degenerate. Thus, if C is a basis for U, then the
union BUC is an orthogonal basis for V. If char(F) =2, then
U =H ®rad(U), where H is hyperbolic and so

V =span(uy) ® --- © span(u;) © H @ rad(U)

where rad(U) is totally degenerate and the w; are nonisotropic. If
C=(x1,Y1,--- Tm,Ym) is a hyperbolic basis for H and D = (zy,..., 2,,) is an
ordered basis for rad(U ), then the union

E=BUCUD= (u17---7uk7x17y17"'7x77L7ym7217"~7Zm)
is an ordered orthogonal basis for V. However, we can do better (in some

sense).

The following lemma says that when char(F') = 2, a pair of isotropic basis
vectors, such as x;,y;, can be replaced by a pair of nonisotropic basis vectors,
when coupled with a nonisotropic basis vector, such as uy.

Lemma 11.20 Suppose that char(F) =2. Let W be a three-dimensional
orthogonal geometry of the form
W = span(v) © span(z,y)
where v is nonisotropic and Hy = span(x,y) is a hyperbolic plane. Then
W = span(v;) ® span(vq) © span(vs)

where each v; is nonisotropic.
Proof. It is straightforward to check that if (v, v) = a, then the vectors

v =u+xr+y
V9 = U + ax
vp=u+(l—a)zr+y

are linearly independent and mutually orthogonal. Details are left to the
reader.[]

Using the previous lemma, we can replace the vectors {ug,xy,y;} with the
nonisotropic vectors {v, Ug41, Vr+2}, while retaining orthogonality. Moreover,
the replacement process can continue until the isotropic vectors are absorbed,
leaving an orthogonal basis of nonisotropic vectors.
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Let us summarize.

Theorem 11.21 Let V' be an orthogonal geometry.

1) If'V is also symplectic, then V' has an orthogonal basis if and only if it is
totally ~ degenerate. When char(F) # 2, all orthogonal symplectic
geometries have an orthogonal basis, but this is not the case when
char(F) = 2.

2) If 'V is not symplectic, then V has an ordered orthogonal basis
B = (up,... Uk, 21,...,2m) for which (u;,u;) =a; #0 and {z;,z;) = 0.
Hence, Mp has the diagonal form

a1

a
Mg = k

with k = tk(Mpg) nonzero entries on the diagonal.(]
As a corollary, we get a nice theorem about symmetric matrices.

Corollary 11.22 Let M be a symmetric matrix and assume that M is not
alternate if char(F') = 2. Then M is congruent to a diagonal matrix.C]

The Classification of Orthogonal Geometries: Canonical
Forms

We now want to consider the question of improving upon Theorem 11.21. The
diagonal matrices of this theorem do not form a set of canonical forms for

congruence. In fact, if 1, ..., r; are nonzero scalars, then the matrix of V' with
respect to the basis C = (r1uy, ..., "gln, 21, ..., Zm) 1S
_T%al i
r2ak
M, = k=k (11.2)
0
L O -

Hence, Mp and M are congruent diagonal matrices. Thus, by a simple change
of basis, we can multiply any diagonal entry by a nonzero square in F'.

The determination of a set of canonical forms for symmetric (nonalternate when
char(F') = 2) matrices under congruence depends on the properties of the base
field. Our plan is to consider three types of base fields: algebraically closed
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fields, the real field R and finite fields. Here is a preview of the forthcoming
results.

1) When the base field F' is algebraically closed, there is an ordered basis B

for which

MB = Zk:,m -

0

If V is nonsingular, then Mp is an identity matrix and V has an
orthonormal basis.
2) Over the real base field, there is an ordered basis B for which

1

Mg = Zp,m,k =

3) If F is a finite field, there is an ordered basis B for which

1

Mp = Zkt,m(d) = d

0

where d is unique up to multiplication by a square and if char(F') = 2, then
we can take d = 1.

Now let us turn to the details.
Algebraically Closed Fields

If F is algebraically closed, then for every r € F, the polynomial > — r has a
root in F, that is, every element of F' has a square root in F'. Therefore, we may
choose r; =1/ \/a7 in (11.2), which leads to the following result.
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Theorem 11.23 Let V' be an orthogonal geometry over an algebraically closed
field F. Provided that V is not symplectic as well when char(F') = 2, then V
has an ordered orthogonal basis B = (uy,...,uk,21,...,2y) for which
(uj, u;) =1 and (z;, z;) = 0. Hence, Mg has the diagonal form

1

MB - Zk,m =

0

with k ones and m zeros on the diagonal. In particular, if 'V is nonsingular,
then V' has an orthonormal basis.(]

The matrix version of Theorem 11.23 follows.

Theorem 11.24 Let S, be the set of all n x n symmetric matrices over an

algebraically closed field F. If char(F') =2, we restrict S, to the set of all

symmetric matrices with at least one nonzero entry on the main diagonal.

1) Any matrix M in S, is congruent to a unique matrix of the form Zj ,, in
fact, k = tk(M) and m = n — tk(M).

2) The set of all matrices of the form Zj, , for k +m = n is a set of canonical
forms for congruence on S,,.

3) The rank of a matrix is a complete invariant for congruence on S,,.]

The Real Field R
If F =R, we can choose r; = 1/1/|a;|, so that all nonzero diagonal elements in

(11.2) will be either 0, 1 or —1.

Theorem 11.25 (Sylvester's law of inertia) Any real orthogonal geometry V
has an ordered orthogonal basis

B = (U1, Up, U1y ey Uy 215 o 5 2k)

Sfor which (u;,u;) =1, (v;,v;) = —1 and (z;, z;) = 0. Hence, the matrix Mg has
the diagonal form
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MB = Zp,m,k =

with p ones, m negative ones and k zeros on the diagonal. [
Here is the matrix version of Theorem 11.25.

Theorem 11.26 Let S,, be the set of all n x n symmetric matrices over the real

field R.

1) Any matrix in S, is congruent to a unique matrix of the form Zy,, ., for
somep, mandk =n—p—m.

2) The set of all matrices of the form Zy,, . for p+m+k =nis a set of
canonical forms for congruence on S,,.

3) Let M €S, and let M be congruent to Z,,,, .. Then p+ m is the rank of
M and p — m is the signature of M and the triple (p,m, k) is the inertia
of M. The pair (p,m), or equivalently the pair (p+m,p—m), is a
complete invariant under congruence on S,.

Proof. We need only prove the uniqueness statement in part 1). Let

B = (Ui, .oy Up, U1y ey Urpy 21, - -5 2k)
and
/

! ! / /! !/
C= (Upy ey Uy Vs s U 21,55 21)

be ordered bases for which the matrices Mg and M¢ have the form shown in
Theorem 11.25. Since the rank of these matrices must be equal, we have
p+m=p +m andsok =k

If x € span(uq, ..., u,) and = # 0, then
(x,z) = <Zr,;u,;, eruj> = Zr,;r]-<u,;,u]-) = Zrirjé,;,]- = Zr? >0
] ]
On the other hand, if y € span(v],..., /) and y # 0, then
(y,y) = <Z«9z‘v;, ZSJU;-> = Zsisj@;:ﬂ);) = _Zsisj(svi,j = —ZS? <0
i, ]

/

Hence, if y € span(v}, ..., v, 21, ..., 2},) then (y,y) < 0. It follows that
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/

span(uy, ..., u,) Nspan(vy, ..., v, 21,..., z1,) = {0}

and so
pt(n—p)<n

that is, p < p/. By symmetry, p’ < p and so p = p/. Finally, since k = k’, it
follows that m = m’.0

Finite Fields

To deal with the case of finite fields, we must know something about the
distribution of squares in finite fields, as well as the possible values of the
scalars (v, v).

Theorem 11.27 Let F,, be a finite field with q elements.

1) Ifchar(F,) = 2, then every element of F, is a square.

2) If char(F,) # 2, then exactly half of the nonzero elements of F, are
squares, that is, there are (q — 1)/2 nonzero squares in F,. Moreover, if x
is any nonsquare in F,, then all nonsquares have the form r’z, for some
r € Iy

Proof. Write ' = F|, let F* be the subgroup of all nonzero elements in F' and

let

(F') = {a®|ac F')

be the subgroup of all nonzero squares in F. The Frobenius map
¢: F* — (F*)? defined by ¢(a) = a? is a surjective group homomorphism, with
kernel

ker(¢p) ={a€ Fla* =1} ={-1,1}

If char(F') = 2, then ker(¢) = {1} and so ¢ is bijective and |F*| = |(F*)?],
which proves part 1). If char(F') # 2, then |ker(¢)| = 2 and so |F*| = 2|(F*)?|,
which proves the first part of part 2). We leave proof of the last statement to the
reader.[]

Definition A bilinear form on V' is universal if for any nonzero ¢ € F there
exists a vector v € V' for which (v,v) = ¢.O0

Theorem 11.28 Let V' be an orthogonal geometry over a finite field F with
char(F') # 2 and assume that V' has a nonsingular subspace of dimension at
least 2. Then the bilinear form of 'V is universal.

Proof. Theorem 11.21 implies that V' contains two linearly independent vectors
u and v for which

(u,u) =a #0, (v,v) =b#0, (u,v) =0



290 Advanced Linear Algebra

Given any ¢ € F', we want to find o and ( for which
c = {au + fv, au + Bv) = aa® + b3
or
aa? = ¢ —b5?

If A= {ac® | a € F}, then |A| = (g + 1)/2, since there are (¢ — 1)/2 nonzero
squares o, along with o = 0. If B= {c — b3 | B € F}, then for the same
reasons |B| = (¢ + 1)/2. It follows that A N B cannot be the empty set and so
there exist o and 3 for which aa® = ¢ — b3%.00

Now we can proceed with the business at hand.

Theorem 11.29 Let V' be an orthogonal geometry over a finite field F' and
assume that V' is not symplectic if char(F) = 2. If char(F) # 2, then let d be a
fixed nonsquare in F. For any nonzero a € F, write

1

where tk(X}.(a)) = k.

1) Ifchar(F) = 2, then there is an ordered basis B for which Mg = X;,(1).

2) If char(F) # 2, then there is an ordered basis B for which Mp equals
Xi(1) or Xj(d).

Proof. We can dispose of the case char(F') = 2 quite easily: Referring to (11.2),

since every element of F' has a square root, we may take r; = (\/CTZ‘)_l.

If char(F') # 2, then Theorem 11.21 implies that there is an ordered orthogonal
basis

B = (U1, ey Uy 21,y Zm)
for which (u;, u;) = a; # 0 and (z;, z;) = 0. Hence, Mp has the diagonal form

ai

aj
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Now consider the nonsingular orthogonal geometry V; = span(ug,us).
According to Theorem 11.28, the form is universal when restricted to V.
Hence, there exists a v; € V; for which (vq,v1) = 1.

Now, v; = ruj + sug for r, s € F' not both 0, and we may swap u; and uy if
necessary to ensure that r = 0. Hence,

Bl = (U17u27"'7uk7217"'>zm)

is an ordered basis for V' for which the matrix Mp, is diagonal and has a 1 in the
upper left entry. We can repeat the process with the subspace V5 = span(ve, vs).
Continuing in this way, we can find an ordered basis

C= (V1,02 ..., Vk, 21y -+ Zm)

for which My = Xj.(a) for some nonzero a € F. Now, if a is a square in F,
then we can replace vy, by (1/\/5)1);47 to get a basis D for which Mp = X, (1). If
a is not a square in F, then a = r?d for some r € F' and so replacing v;, by
(1/r)vy. gives a basis D for which Mp = X;.(d).0

Theorem 11.30 Let S,, be the set of all n x n symmetric matrices over a finite
field F. If char(F') = 2, we restrict S,, to the set of all symmetric matrices with
at least one nonzero entry on the main diagonal.

1) Ifchar(F) = 2, then any matrix in S,, is congruent to a unique matrix of the
form Xi(1) and the matrices {X;(1) |k =0,...,n} form a set of
canonical forms for S, under congruence. Also, the rank is a complete
invariant.

2) If char(F') # 2, let d be a fixed nonsquare in F. Then any matrix S, is
congruent to a unique matrix of the form Xj(1) or Xi(d). The set
{Xi(1), Xi(d) | E=0,...,n} is a set of canonical forms for congruence
on S,. (Thus, there are exactly two congruence classes for each rank k.)O

The Orthogonal Group

Having “settled” the classification question for orthogonal geometries over
certain types of fields, let us turn to a discussion of the structure-preserving
maps, that is, the isometries.

Rotations and Reflections

We begin by examining the matrix of an orthogonal transformation. If 5 is an
ordered basis for V, then for any =,y € V,

(@,y) = [=]sMslyls
and so if 7 € L(V), then
(ra, 7y) = [r2]sMplryls = [=]([7]sMs[]5)y]s

Hence, 7 is an orthogonal transformation if and only if
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[r]sMplr]s = M3
Taking determinants gives
det(Mp) = det([]5)*det( M)
Therefore, if V' is nonsingular, then
det([r]p) = =1

Since the determinant is an invariant under similarity, we have the following
theorem.

Theorem 11.31 Let 7 be an orthogonal transformation on a nonsingular
orthogonal geometry V.
1) det([7]p) is the same for all ordered bases BB for V and

det([T}B) = =+1

This determinant is called the determinant of T and denoted by det().

2) If det(r) =1, then 7 is called a rotation and if det(7) = —1, then T is
called a reflection.

3) The set O (V') of rotations is a subgroup of the orthogonal group O(V')
and the determinant map det: O(V') — {—1,1} is an epimorphism with
kernel O* (V). Hence, if char(F') # 2, then O (V) is a normal subgroup
of O(V) of index 2.00

Symmetries

Recall again that for a real inner product space, a reflection H, is defined as an
operator for which

Hou = —u, Hw = w forall w € (u)*
and that
Hax=x— 2z, u)
(u, u)

In particular, if char(F') # 2 and w € V is nonisotropic, then span(u) is
nonsingular and so

V = span(u) ® span(u)*

Then the reflection H,, is well-defined and, in the context of general orthogonal
geometries, is called the symmetry determined by u and we will denote it by
o,. We can also write 0, = —t ® ¢, that is,

ou(z+y)=—r+y

for all z € span(u) and y € span(u)*.
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For real inner product spaces, Theorem 10.16 says that if ||v|| = |Jw]|| # 0, then
H,_, is the unique reflection sending v to w, that is, H,_,(v) = w. In the
present context, we must be careful, since symmetries are defined for
nonisotropic vectors only. Here is what we can say.

Theorem 11.32 Let V' be a nonsingular orthogonal geometry over a field F,
with char(F) # 2. If u,v € V are nonisotropic vectors with the same (nonzero)
“length,” that is, if

(u,u) = (v,0) #0
then there exists a symmetry o for which
ou=uv or ou=-—U

Proof. Since v and v are nonisotropic, one of v — v or u + v must also be
nonisotropic, for otherwise, since u — v and u + v are orthogonal, their sum 2u
would also be isotropic. If u + v is nonisotropic, then

Ouro(u+v) = —(u+v)

and
Oupp(u—v) =u—v
and so 0,,u = —v. On the other hand, if v — v is nonisotropic, then
Oyt —v) = —(u—0)
and

oup(u+v)=u+v

and so o,_,u = v.0d

Recall that an operator on a real inner product space is unitary if and only if it is
a product of reflections. Here is the generalization to nonsingular orthogonal
geometries.

Theorem 11.33 Let V' be a nonsingular orthogonal geometry over a field F
with char(F) # 2. A linear transformation T on V is an orthogonal
transformation if and only if T is the product of symmetries on V.

Proof. The proof is by induction on d = dim(V'). If d = 1, then V' = span(v)
where (v,v) # 0. Let 7o = o for o € F'. Since 7 is unitary

o?{v,v) = {av, av) = (Tv, TV) = (v, V)

and so a = +1. If a = 1, then 7 is the identity, which is equal to 0. On the
other hand, if &« = —1 then 7 = ¢, In either case, 7 is a product of symmetries.
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Assume now that the theorem is true for dimensions less than d and let
dim(V') = d. Let v € V be nonisotropic. Since (7v, 7v) = (v, v) # 0, Theorem
11.32 implies the existence of a symmetry o on V' for which

o(tv) = ev

where € = + 1. Thus, o7 = % on span(v). Since Theorem 11.9 implies that
span(v)’ is or-invariant, we may apply the induction hypothesis to o7 on
span(v)* to get

07|span(1,v)i = O, " Owy, = P

where w; € span(v)* and each o, is a symmetry on span(v)*. But each o, can
be extended to a symmetry on V by setting o, v = v. Assume that p is the
extension of p to V, where p = ¢ on span(v). Hence, o7 = 5 on span(v)* and
oT = €p on span(v).

If e=1, then o7 =p on V and so 7 = op, which completes the proof. If
€ = —1, then o7 = 0,p on span(v)* since o, is the identity on span(v)* and
oT = o,p on span(v). Hence, o7 = o,pon V and so 7 = oo,p on V.OO

The Witt Theorems for Orthogonal Geometries

We are now ready to consider the Witt theorems for orthogonal geometries.

Theorem 11.34 (Witt's cancellation theorem) Let V and W be isometric
nonsingular orthogonal geometries over a field F' with char(F') # 2. Suppose
that

V=SSt and W=T0oT"
Then
S~T=St~T"

Proof. First, we prove that it is sufficient to consider the case V' = W. Suppose
that the result holds when V' = W and that y: V' — W is an isometry. Then

pS)OuSH =uSeoSH) =W =w=To1"
Furthermore, 1S ~ S ~ T. We can therefore apply the theorem to W to get
St a (St ~ Tt
as desired. To prove the theorem when V' = W, assume that
V=Sost=ToT"

where S and T are nonsingular and S ~ 7. Let 7: S — T be an isometry. We
proceed by induction on dim(S).
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Suppose first that dim(S) = 1 and that S = span(s). Since
(rs,78) = (s,5) 0

Theorem 11.32 implies that there is a symmetry o for which os = eTs where
€ = £ 1. Hence, o is an isometry of V for which 7' = ¢S and Theorem 11.9
implies that T+ = o(S™). Thus, o|g: is the desired isometry.

Now suppose the theorem is true for dim(S) < & and let dim(S) = k. Let
7:5 — T be an isometry. Since S is nonsingular, we can choose a nonisotropic
vector s € S and write S = span(s) ® U, where U is nonsingular. It follows
that

V=805 =span(s) oU © S*

and

V =T®T*+ = r(span(s)) ©7U ® T+
Now we may apply the one-dimensional case to deduce that

UeSt=tUoTt

Ifo:U ® S+ — 17U ® T+ is an isometry, then

oU®o(ST)=c(U oS =10 T+
But oU ~ 7U and since dim(cU) = dim(U) < k, the induction hypothesis
implies that S* ~ o(S+) ~ T+.00

As we have seen, Witt's extension theorem is a corollary of Witt's cancellation
theorem.

Theorem 11.35 (Witt's extension theorem) Let V and V' be isometric
nonsingular orthogonal geometries over a field F, with char(F') # 2. Suppose
that U is a subspace of V and

U —-71tUCV'
is an isometry. Then T can be extended to an isometry from V to V'.0O0
Maximal Hyperbolic Subspaces of an Orthogonal Geometry
We have seen that any orthogonal geometry 1/ can be written in the form
V=U®o®rad(V)

where U is nonsingular. Nonsingular spaces are better behaved than singular
ones, but they can still possess isotropic vectors.
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We can improve upon the preceding decomposition by noticing that if u € U is
isotropic, then Theorem 11.10 implies that span(u) can be “captured” in a
hyperbolic plane H = span(u, x). Then we can write

V=H®H" orad(V)

where H'U is the orthogonal complement of H in U and has “one fewer”
isotropic vector. In order to generalize this process, we first discuss maximal
totally degenerate subspaces.

Maximal Totally Degenerate Subspaces

Let V' be a nonsingular orthogonal geometry over a field F', with char(F') # 2.
Suppose that U and U’ are maximal totally degenerate subspaces of V. We
claim that dim(U') = dim(U"). For if dim(U) < dim(U’), then there is a vector
space isomorphism 7: U — 7U C U’, which is also an isometry, since U and
U’ are totally degenerate. Thus, Witt's extension theorem implies the existence
of an isometry 7:V — V that extends 7. In particular, 7' (U’) is a totally
degenerate space that contains U and so 7 '(U’) = U, which shows that
dim(U) = dim(U").

Theorem 11.36 Let V' be a nonsingular orthogonal geometry over a field F,

with char(F) # 2.

1) All maximal totally degenerate subspaces of V' have the same dimension,
which is called the Witt index of V' and is denoted by w(V').

2)  Any totally degenerate subspace of V' of dimension w(V') is maximal.(]

Maximal Hyperbolic Subspaces

We can prove by a similar argument that all maximal hyperbolic subspaces of V'
have the same dimension. Let

Hop = Hy ©--- O Hj,
and
IC?IIL:K1®"'®KNL

be maximal hyperbolic subspaces of V' and suppose that H; = span(u;,v;) and
K; = span(x;,y;). We may assume that dim(H) < dim(K).

The linear map 7: H — K defined by

TU; = iy, TV = Yi

is clearly an isometry from H to 7H. Thus, Witt's extension theorem implies the
existence of an isometry 7:V — V that extends 7. In particular, 77! (K) is a
hyperbolic space that contains H and so 7 (K) = H. It follows that dim(K)
= dim(H).
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It is not hard to see that the maximum dimension i (V') of a hyperbolic subspace
of V is 2w(V'), where w(V') is the Witt index of V. First, the nonsingular
extension of a maximal totally degenerate subspace U,, of V is a hyperbolic
space of dimension 2w (V') and so h(V') > 2w(V'). On the other hand, there is a
totally degenerate subspace U}, contained in any hyperbolic space Hyi and so
E<w(V), that is, dim(Ha;) <2w(V). Hence h(V) <2w(V) and so
h(V) =2w(V).

Theorem 11.37 Let V' be a nonsingular orthogonal geometry over a field F,
with char(F') # 2.

1) All maximal hyperbolic subspaces of V' have dimension 2w(V').

2)  Any hyperbolic subspace of dimension 2w(V') must be maximal.

3) The Witt index of a hyperbolic space Hoy. is k.[1

The Anisotropic Decomposition of an Orthogonal Geometry

If 'H is a maximal hyperbolic subspace of V', then
V=HoH"

Since ‘H is maximal, H* is anisotropic, for if u € H* were isotropic, then the
nonsingular extension of H ® span(u) would be a hyperbolic space strictly
larger than H.

Thus, we arrive at the following decomposition theorem for orthogonal
geometries.

Theorem 11.38 (The anisotropic decomposition of an orthogonal geometry)
Let V = U ©rad(V') be an orthogonal geometry over F, with char(F') # 2. Let
H be a maximal hyperbolic subspace of U, where H = {0} if U has no
isotropic vectors. Then

V=SoOHOorad(V)

where S is anisotropic, H is hyperbolic of dimension 2w(V') and rad(V') is
totally degenerate.l]

Exercises

1. LetU,W be subspaces of a metric vector space V. Show that
a) UCW=WtCcU*
by UCU
C) UL — ULLL
2. Let U, W be subspaces of a metric vector space V. Show that
a) (U+wW)t=utnwt
by (UNnW)t=U'+Ww+t
3. Prove that the following are equivalent:
a) V is nonsingular
b) (u,z) = (v,z) forall z € V implies u = v
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Show that a metric vector space V is nonsingular if and only if the matrix
Myp of the form is nonsingular, for every ordered basis 5.

Let V be a finite-dimensional vector space with a bilinear form (, ). We do
not assume that the form is symmetric or alternate. Show that the following
are equivalent:

a) {veV|(v,w)=0forallweV} =0

b) {veV |{wv)y=0forallweV}=0

Hint: Consider the singularity of the matrix of the form.

Find a diagonal matrix congruent to

1 2 3
2 0 1
3 1 -1

Prove that the matrices

IQ:[(l) ?]and M:[g g}

are congruent over the base field FF = Q of rational numbers. Find an

invertible matrix P such that P'I,P = M.

Let V' be an orthogonal geometry over a field F' with char(F') # 2. We

wish to construct an orthogonal basis O = (uy, ..., u,) for V, starting with

any generating set G = (vy, ..., v,). Justify the following steps, essentially

due to Lagrange. We may assume that V' is not totally degenerate.

a) If (v;,v;) # 0 for some i, then let u; = v;. Otherwise, there are indices
i # j for which (v;,v;) # 0. Let u; = v; + v;.

b) Assume we have found an ordered set of vectors O = (uq,...,uy)
that form an orthogonal basis for a subspace V), of V' and that none of
the w;'s are isotropic. Then V =V, ® V.

¢) Foreachwv; € G, let

Then the vectors w; span V- If V- is totally degenerate, take any
basis for V- and append it to O. Otherwise, repeat step a) on V- to
get another vector w1 and let O 1 = (uq, ..., ur41). Eventually, we
arrive at an orthogonal basis O,, for V.
Prove that orthogonal hyperbolic planes may be characterized as two-
dimensional nonsingular orthogonal geometries that have exactly two one-
dimensional totally isotropic (equivalently: totally degenerate) subspaces.
Prove that a two-dimensional nonsingular orthogonal geometry is a
hyperbolic plane if and only if its discriminant is F*( — 1).
Does Minkowski space contain any isotropic vectors? If so, find them.
Is Minkowski space isometric to Euclidean space R*?
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If (,) is a symmetric bilinear form on V and char(F) # 2, show that
Q(x) = (x,x)/2 is a quadratic form.

Let V be a vector space over a field F', with ordered basis B = (vy,...,v,).
Let p(x1,...,x,) be a homogeneous polynomial of degree d over F, that is,
a polynomial each of whose terms has degree d. The d-form defined by p
is the function from V' to F' defined as follows. If v = Xa;v;, then

p(U) = p<a'17 cee 70171,)

(We use the same notation for the form and the polynomial.) Prove that 2-
forms are the same as quadratic forms.

Show that 7 is an isometry on V' if and only if Q(7v) = Q(v) where @ is
the quadratic form associated with the bilinear form on V. (Assume that
char(F) # 2.)

Show that a quadratic form @ on V satisfies the parallelogram law:

Qz+y)+ Qzr —y) =2[(Q(x) + Q(y)]

Show that if V' is a nonsingular orthogonal geometry over a field F', with
char(F) # 2, then any totally isotropic subspace of V is also a totally
degenerate space.

Is it true that V = rad(V) ® rad(V)*?

Let V' be a nonsingular symplectic geometry and let 7,, be a symplectic
transvection. Prove that

a) Tv,aTv,b = Tu,a+b

b) For any symplectic transformation o,

-1
OTpa0 = Tova

c¢) Forb e F~,

Tov,a = Tu,ab?

d) For a fixed v # 0, the map a+ 7,, is an isomorphism from the
additive group of F onto the group {7,, | a € F'} C Sp(V).

Prove that if x is any nonsquare in a finite field F, then all nonsquares

have the form r?z, for some 7 € F. Hence, the product of any two

nonsquares in Fy, is a square.

Formulate Sylvester's law of inertia in terms of quadratic forms on V.

Show that a two-dimensional space is a hyperbolic plane if and only if it is

nonsingular and contains an isotropic vector. Assume that char(F') # 2.

Prove directly that a hyperbolic plane in an orthogonal geometry cannot

have an orthogonal basis when char(F') = 2.

a) Let U be a subspace of V. Show that the inner product
(x+U,y+U) = (z,y) on the quotient space V /U is well-defined if
and only if U C rad(V').

b) IfU Crad(V), when is V' /U nonsingular?

LetV = N ® S, where N is a totally degenerate space.
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a) Prove that N = rad(V) if and only if S is nonsingular.

b) If S is nonsingular, prove that S ~ V' /rad(V).

Let dim(V) =dim(W). Prove that V/rad(V) = W /rad(W) implies
V=W.

Let V' =5 ©T. Prove that

a) rad(V) =rad(S) ® rad(T)

b) V/rad(V) =~ S/rad(S) ® T /rad(T)

¢) dim(rad(V)) = dim(rad(S)) + dim(rad(7T))

d) V is nonsingular if and only if S and 7" are both nonsingular.

Let V be a nonsingular metric vector space. Because the Riesz
representation theorem is valid in V', we can define the adjoint 7* of a linear
map 7 € L(V) exactly as in the case of real inner product spaces. Prove
that 7 is an isometry if and only if it is bijective and unitary (that is,
T =1).

If char(F') # 2, prove that 7 € L(V,W) is an isometry if and only if it is
bijective and (v, 7v) = (v,v) forallv € V.

Let B={vy,...,v,} be a basis for V. Prove that 7 € L(V,W) is an
isometry if and only if it is bijective and (7v;, Tv;) = (v;,v;) for all 4, j.

Let 7 be a linear operator on a metric vector space V. Let B = (vq,...,v,)
be an ordered basis for V' and let Mg be the matrix of the form relative to
B. Prove that 7 is an isometry if and only if

(7] Mglr]s = Mp

Let V be a nonsingular orthogonal geometry and let 7 € £L(V) be an

isometry.

a) Show that dim(ker(: — 7)) = dim(im(: — 7)%).

b) Show that ker(: —7)=1im(: —7)*. How would you describe
ker(v — 7) in words?

¢) If7is a symmetry, what is dim(ker(¢ — 7))?

d) Can you characterize symmetries by means of dim(ker(c — 7))?

A linear transformation 7 € £(V') is called unipotent if 7 — ¢ is nilpotent.

Suppose that V' is a nonisotropic metric vector space and that 7 is unipotent

and isometric. Show that 7 = .

Let V' be a hyperbolic space of dimension 2m and let U be a hyperbolic

subspace of V' of dimension 2k. Show that for each k£ < j < m, there is a

hyperbolic subspace Hy; of V' for which U C Hy; C V.

Let char(F') # 2. Prove that if X is a totally degenerate subspace of an

orthogonal geometry V, then dim(X) < dim(V)/2.

Prove that an orthogonal geometry V' of dimension n is a hyperbolic space

if and only if V is nonsingular, n is even and V contains a totally

degenerate subspace of dimension n/2.

Prove that a symplectic transformation has determinant equal to 1.



Chapter 12
Metric Spaces

The Definition

In Chapter 9, we studied the basic properties of real and complex inner product
spaces. Much of what we did does not depend on whether the space in question
is finite-dimensional or infinite-dimensional. However, as we discussed in
Chapter 9, the presence of an inner product and hence a metric, on a vector
space, raises a host of new issues related to convergence. In this chapter, we
discuss briefly the concept of a metric space. This will enable us to study the
convergence properties of real and complex inner product spaces.

A metric space is not an algebraic structure. Rather it is designed to model the
abstract properties of distance.

Definition A metric space is a pair (M,d), where M is a nonempty set and
d:M x M — R is a real-valued function, called a metric on M, with the
following properties. The expression d(x,y) is read “the distance from x to y.”
1) (Positive definiteness) For all x,y € M,

d(z,y) >0

and d(x,y) = 0 if and only if x = y.
2) (Symmetry) Forall x,y € M,

d(z,y) = d(y,x)
3) (Triangle inequality) For all x,y,z € M,
d(z,y) < d(z,2) +d(z,y) O

As is customary, when there is no cause for confusion, we simply say “let M be
a metric space.”
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Example 12.1 Any nonempty set M is a metric space under the discrete
metric, defined by

_JO ifx=y
Example 12.2
1) The set R" is a metric space, under the metric defined for x = (x1,...,z,)

andy = (y1,...,Yn) by
d(z,y) = \/(ml —y1)? 4 (T — yn)?

This is called the Euclidean metric on R". We note that R" is also a metric
space under the metric

d1($7y) = |.’E1 _y1| +oeee |CII" _yn|

Of course, (R", d) and (R", d;) are different metric spaces.
2) The set C" is a metric space under the unitary metric

d(l‘,y) = \/lajl - yl|2 +oeee |xn - yn|2

where © = (21,...,2,) and y = (y1,...,y,) are in C™. O

Example 12.3
1) The set C'[a, b] of all real-valued (or complex-valued) continuous functions
on [a, b] is a metric space, under the metric

d(f,9) = sup [f(z) — g(x)]

z€[ab]

We refer to this metric as the sup metric.
2) The set Cla, b] of all real-valued (or complex-valued) continuous functions
on [a, b] is a metric space, under the metric

b
0(f(x), g(x)) = / (@) - g()] da 0

Example 12.4 Many important sequence spaces are metric spaces. We will
often use boldface italic letters to denote sequences, as in z = (z,) and
Y = (yn)-
1) The set {3’ of all bounded sequences of real numbers is a metric space

under the metric defined by

d(z,y) = sup|z, — Y|
n
The set £ of all bounded complex sequences, with the same metric, is also

a metric space. As is customary, we will usually denote both of these spaces
by £,
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For p > 1, let 7 be the set of all sequences z = (x,,) of real (or complex)
numbers for which

o0
Z |z,|7 < 0o
n=1

We define the p-norm of = by
00 1/p
Il = (Z w)
n=1

Then ¢? is a metric space, under the metric

00 1/p
d@wﬁ=m—ym=<z]%—%ﬁ>
n=1

The fact that ¢7 is a metric follows from some rather famous results about
sequences of real or complex numbers, whose proofs we leave as (well-
hinted) exercises.

Holder's inequality Let p,g > 1 and p+q=pq. If z € {? and y € {9,
then the product sequence zy = (2,,y,) is in /! and

lzyll, < ll=l,[l¥ll,
that is,
. o Ur 7/ & 1/q
Z |mnyn| < <Z |xn|p> (Z yn|q>
n=1 n=1 n=1

A special case of this (with p = ¢ = 2) is the Cauchy—Schwarz inequality

o0 o0 o0
2 2
S ol < \/Dm @ o
n=1 n=1 n=1

Minkowski's inequality For p > 1, if =,y € (¢ then the sum =+ y
= (2, + ypn) is in £P and

Iz +yll, < ll=ll, + Iy,

that is,

00 L/p . 1/p ~ 1/p
(z 2, +yn|ff> < (Zm") N (z |yn|p> .
n=1 n=1 n=1
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If M is a metric space under a metric d, then any nonempty subset S of M is
also a metric under the restriction of d to S x S. The metric space S thus
obtained is called a subspace of M.

Open and Closed Sets

Definition Let M be a metric space. Let xo € M and let v be a positive real
number.
1) The open ball centered at x, with radius r, is

B(zg,7) ={x € M | d(x,zy) < r}

2) The closed ball centered at x,, with radius r, is

B(xzg,r) ={z e M| d(z,zo) <7}
3) The sphere centered at x, with radius r, is
S(xg,7r) ={x € M |d(x,z) =r} O

Definition A4 subset S of a metric space M is said to be open if each point of S
is the center of an open ball that is contained completely in S. More
specifically, S is open if for all x € S, there exists an r >0 such that
B(x,r) CS. Note that the empty set is open. A set T C M is closed if its
complement T in M is open..]

It is easy to show that an open ball is an open set and a closed ball is a closed
set. If v € M, we refer to any open set S containing x as an open
neighborhood of z. It is also easy to see that a set is open if and only if it
contains an open neighborhood of each of its points.

The next example shows that it is possible for a set to be both open and closed,
or neither open nor closed.

Example 12.5 In the metric space R with the usual Euclidean metric, the open
balls are just the open intervals

B(zg,7r) = (wg — 7,0 + 1)

and the closed balls are the closed intervals

B(xg,r) = [0 — 1,20 + 7]

Consider the half-open interval S = (a, b], for a < b. This set is not open, since
it contains no open ball centered at b € S and it is not closed, since its
complement S¢ = (—oo, a] U (b, c0) is not open, since it contains no open ball
about a.
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Observe also that the empty set is both open and closed, as is the entire space R.
(Although we will not do so, it is possible to show that these are the only two
sets that are both open and closed in R.)O

It is not our intention to enter into a detailed discussion of open and closed sets,
the subject of which belongs to the branch of mathematics known as topology.
In order to put these concepts in perspective, however, we have the following
result, whose proof is left to the reader.

Theorem 12.1 The collection O of all open subsets of a metric space M has the
following properties.

N 0eO MecO

2) IfS,TeOthen SNT €O

3) If{S;|ie K} isany collection of open sets, then | ), S; € O.00

These three properties form the basis for an axiom system that is designed to
generalize notions such as convergence and continuity and leads to the
following definition.

Definition Let X be a nonempty set. A collection O of subsets of X is called a
topology for X ifit has the following properties:
) PeO, XeO
2y IfS, TeOthen SNT €O
3) If{S;| i€ K} is any collection of sets in O, then|J S; € O.
ieK
We refer to subsets in O as open sets and the pair (X, O) as a topological
space.[]

According to Theorem 12.1, the open sets (as we defined them earlier) in a
metric space M form a topology for M, called the topology induced by the
metric.

Topological spaces are the most general setting in which we can define concepts
such as convergence and continuity, which is why these concepts are called
topological concepts. However, since the topologies with which we will be
dealing are induced by a metric, we will generally phrase the definitions of the
topological properties that we will need directly in terms of the metric.

Convergence in a Metric Space

Convergence of sequences in a metric space is defined as follows.

Definition 4 sequence (x,,) in a metric space M converges to x € M, written
() — x, if

lim d(x,,z) =0

n—od

Equivalently, (x,) — x if for any € > 0, there exists an N > 0 such that
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n>N=d(z,,z) <e

or equivalently,
n>N = x, € B(z,¢)

In this case, x is called the limit of the sequence (x,,). |

If M is a metric space and S is a subset of M, by a sequence in S, we mean a
sequence whose terms all lie in S. We next characterize closed sets and
therefore also open sets, using convergence.

Theorem 12.2 Let M be a metric space. A subset S C M is closed if and only if
whenever (x,,) is a sequence in S and (x,) — x, then x € S. In loose terms, a
subset S is closed if it is closed under the taking of sequential limits.

Proof. Suppose that S is closed and let (x,) — =, where =, € S for all n.
Suppose that z ¢ S. Then since = € S and S* is open, there exists an € > 0 for
which z € B(x,€) C S°. But this implies that

B(z,e)N{z,} =0

which contradicts the fact that (x,,) — x. Hence, x € S.

Conversely, suppose that S is closed under the taking of limits. We show that
S¢ is open. Let z € S¢ and suppose to the contrary that no open ball about x is
contained in S¢. Consider the open balls B(x,1/n), for all n > 1. Since none of
these balls is contained in S¢, for each n, there is an =, € SN B(x,1/n). It is
clear that (x,) — « and so z € S. But x cannot be in both S and S°. This
contradiction implies that S¢ is open. Thus, S is closed.[d

The Closure of a Set

Definition Let S be any subset of a metric space M. The closure of S, denoted
by cl(S), is the smallest closed set containing S.[]

We should hasten to add that, since the entire space M is closed and since the
intersection of any collection of closed sets is closed (exercise), the closure of
any set S does exist and is the intersection of all closed sets containing S. The
following definition will allow us to characterize the closure in another way.

Definition Let S be a nonempty subset of a metric space M. An element z € M
is said to be a limit point, or accumulation point, of S if every open ball
centered at x meets S at a point other than x itself. Let us denote the set of all
limit points of S by £(S).O

Here are some key facts concerning limit points and closures.
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Theorem 12.3 Let S be a nonempty subset of a metric space M.

Iy x € l(S) if and only if there is a sequence (x,,) in S for which x,, # x for
alln and (z,) — .

2) S is closed if and only if £(S) C S. In words, S is closed if and only if it
contains all of its limit points.

3) cl(S)=S5uUeDs).

4) x € cl(9) if and only if there is a sequence (x,,) in S for which (x,) — .

Proof. For part 1), assume first that = € £(.S). For each n, there exists a point

@, # x such that z,, € B(x,1/n) N S. Thus, we have

d(zn,z) <1/n

and so (x,) — «. For the converse, suppose that (z,) — x, where = # x, € S.
If B(x,r) is any ball centered at x, then there is some N such that n > N
implies x,, € B(z,r). Hence, for any ball B(z,r) centered at x, there is a point
x, # x such that ,, € S N B(x,r). Thus, z is a limit point of S.

As for part 2), if S is closed, then by part 1), any x € £(S) is the limit of a
sequence (x,) in S and so must be in S. Hence, ¢(S) C S. Conversely, if
£(S) C S, then S is closed. For if (z,,) is any sequence in S and (x,,) — x, then
there are two possibilities. First, we might have z,, = x for some n, in which
case x = x, € S. Second, we might have z, # x for all n, in which case
(z,) — « implies that x € £(S) C S. In either case, x € S and so S is closed
under the taking of limits, which implies that .S is closed.

For part 3), let T =S U/(S). Clearly, S C T. To show that T is closed, we
show that it contains all of its limit points. So let « € ¢(T"). Hence, there is a
sequence (z,) € T for which z, # x and (x,) — z. Of course, each z,, is
either in S, or is a limit point of S. We must show that x € T, that is, that z is
either in S or is a limit point of .S

Suppose for the purposes of contradiction that « ¢ S and = ¢ £(S). Then there
is a ball B(z,r) for which B(z,r) N S # (. However, since (z,) — x, there
must be an x,, € B(z, ). Since x,, cannot be in S, it must be a limit point of S.
Referring to Figure 12.1, if d(x,,z) =d <r, then consider the ball
B(x,,, (r—d)/2). This ball is completely contained in B(z,r) and must contain
an element y of S, since its center z, is a limit point of S. But then
y € SN B(x,r), a contradiction. Hence, x € S or x € ¢(S). In either case,
x €T =5UL(S)and so T is closed.

Thus, T is closed and contains S and so cl(S) C T. On the other hand,
T=SUlS)Ccl(S)andsocl(S)=T.
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Figure 12.1

For part 4), if « € cl(S), then there are two possibilities. If = € S, then the
constant sequence (), with z;,, = x for all x, is a sequence in S that converges
to z. If © ¢ S, then = € £(S) and so there is a sequence (x,) in S for which
2, # x and (z,) — . In either case, there is a sequence in S converging to x.
Conversely, if there is a sequence (z,) in S for which (x,) — =, then either
x, = x for some n, in which case x € S C cl(S), or else z;,, # « for all n, in
which case x € £(S) C cl(S).0

Dense Subsets

The following concept is meant to convey the idea of a subset S C M being
“arbitrarily close” to every point in M.

Definition A subset S of a metric space M is dense in M if cl(S) =M. A
metric space is said to be separable if it contains a countable dense subset.[]

Thus, a subset S of M is dense if every open ball about any point z € M
contains at least one point of .S.

Certainly, any metric space contains a dense subset, namely, the space itself.
However, as the next examples show, not every metric space contains a
countable dense subset.

Example 12.6

1) The real line R is separable, since the rational numbers Q form a countable
dense subset. Similarly, R" is separable, since the set Q" is countable and
dense.

2) The complex plane C is separable, as is C" for all n.

3) A discrete metric space is separable if and only if it is countable. We leave
proof of this as an exercise.[]
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Example 12.7 The space ¢ is not separable. Recall that £> is the set of all
bounded sequences of real numbers (or complex numbers) with metric

d(way) = Sup‘l‘n - yn‘

n
To see that this space is not separable, consider the set S of all binary sequences
S ={(x,) | z;=0o0r1forall i}

This set is in one-to-one correspondence with the set of all subsets of N and so
is uncountable. (It has cardinality 2% > X;.) Now, each sequence in S is
certainly bounded and so lies in £*°. Moreover, if = # y € £*°, then the two
sequences must differ in at least one position and so d(z,y) = 1.

In other words, we have a subset .S of £ that is uncountable and for which the
distance between any two distinct elements is 1. This implies that the balls in the
uncountable collection {B(s,1/3)|s € S} are mutually disjoint. Hence, no
countable set can meet every ball, which implies that no countable set can be
dense in ¢>°.0

Example 12.8 The metric spaces ¢? are separable, for p > 1. The set S of all
sequences of the form

s=(q,--,qn,0,...)

for all n > 0, where the ¢;'s are rational, is a countable set. Let us show that it is
dense in ¢*. Any x € (7 satisfies

oo
Z |z |P < oo
n=1

Hence, for any € > 0, there exists an /V such that

[e°]

€
> lml" <3

n=N+1

Since the rational numbers are dense in R, we can find rational numbers ¢; for
which

|z — Qi|p < oN

foralli=1,..., N.Hence, if s = (q1,...,qn,0,...), then
N 00 € €
d P = n ’er "p 5 5=
(x,5) Z\x q|—|—z |.T|<2+2 €
n=1 n=N+1

which shows that there is an element of .S arbitrarily close to any element of /7.
Thus, S is dense in 7 and so ¢? is separable.[]
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Continuity

Continuity plays a central role in the study of linear operators on infinite-
dimensional inner product spaces.

Definition Let f: M — M’ be a function from the metric space (M,d) to the
metric space (M',d'). We say that f is continuous at x, € M if for any € > 0,
there exists a 6 > 0 such that

d(z,20) < 8= d'(f(z), f(w)) <e

or, equivalently,
£ (B@o,®)) € B(f(@).¢)

(See Figure 12.2.) A function is continuous if it is continuous at every
Xy € M.O

Figure 12.2

We can use the notion of convergence to characterize continuity for functions
between metric spaces.

Theorem 12.4 A function f: M — M’ is continuous if and only if whenever
(xn) is a sequence in M that converges to xy € M, then the sequence (f(xy))
converges to f (aco) in short,

Proof. Suppose first that f is continuous at z, and let (z,,) — x. Then, given
e > 0, the continuity of f implies the existence of a 6 > 0 such that

f (B(:E(Jaé)) - B(f(xO)a 6)

Since (x,) — «, there exists an N > 0 such that z;,, € B(x, ) for n > N and
SO

n> N = f(x,) € B(f(z0),€)

Thus, f(xn> - f(xo)

Conversely, suppose that (z,,) — xo implies (f(z,)) — f(xo). Suppose, for the
purposes of contradiction, that f is not continuous at xj. Then there exists an
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€ > 0 such that for all 6 > 0,
f (B(@0,8)) € B(f(@0),€)

Thus, for all n > 0,
£ (B0 1)) £ B0,

and so we may construct a sequence (z,,) by choosing each term x, with the
property that

€ B(azo, i),butf(mn) ¢ B(f(x0), ¢)

Hence, (x,,) — x¢, but f(x,) does not converge to f(xg). This contradiction
implies that f must be continuous at zy.01

The next theorem says that the distance function is a continuous function in both
variables.

Theorem 12.5 Let (M ,d) be a metric space. If (x,) — x and (y,) — vy, then

d('an yn) - d(xﬂ y)
Proof. We leave it as an exercise to show that

|d(zn, yn) — d(@,y)| < d(zn, ) + d(yn,y)

But the right side tends to 0 as n — oo and so d(z,, y,) — d(x,y).0
Completeness
The reader who has studied analysis will recognize the following definitions.
Definition 4 sequence (x,,) in a metric space M is a Cauchy sequence if for
any € > 0, there exists an N > 0 for which

n,m >N = d(x,,z,) <e O
We leave it to the reader to show that any convergent sequence is a Cauchy

sequence. When the converse holds, the space is said to be complete.

Definition Let M be a metric space.

1) M is said to be complete if every Cauchy sequence in M converges in M.

2) A subspace S of M is complete if it is complete as a metric space. Thus, S
is complete if every Cauchy sequence (s,) in S converges to an element in

s.d

Before considering examples, we prove a very useful result about completeness
of subspaces.
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Theorem 12.6 Let M be a metric space.

1) Any complete subspace of M is closed.

2) If M is complete, then a subspace S of M is complete if and only if it is
closed.

Proof. To prove 1), assume that S is a complete subspace of M. Let (z,) be a

sequence in S for which (z,,) — = € M. Then (x,,) is a Cauchy sequence in S

and since S is complete, (x,,) must converge to an element of S. Since limits of

sequences are unique, we have x € S. Hence, S is closed.

To prove part 2), first assume that S is complete. Then part 1) shows that S is
closed. Conversely, suppose that S is closed and let (x,,) be a Cauchy sequence
in S. Since (z,) is also a Cauchy sequence in the complete space M, it must
converge to some x € M. But since S is closed, we have (x,) — « € S. Hence,
S is complete.[]

Now let us consider some examples of complete (and incomplete) metric spaces.

Example 12.9 It is well known that the metric space R is complete. (However, a
proof of this fact would lead us outside the scope of this book.) Similarly, the
complex numbers C are complete.[]

Example 12.10 The Euclidean space R" and the unitary space C" are complete.
Let us prove this for R”. Suppose that () is a Cauchy sequence in R”, where
Ty = (Th1s- - Thn)

Thus,

n
d(mkv xnz)? = Z(ajk,z’ - xm,i)Q — 0ask,m — oo
=1

and so, for each coordinate position 7,
R )2 < d 2 0
(:L'k,v, xm,l) >~ (xlm mm) >

which shows that the sequence (xy;)i=12, .. of ith coordinates is a Cauchy
sequence in R. Since R is complete, we must have
(xri) = yiask — oo
Ify = (y1,...,yn), then
n

d(zr,y)? = (23— ) — 0ask — oo
i=1

and so (x,) — y € R™. This proves that R" is complete.[]
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Example 12.11 The metric space (Cla,b],d) of all real-valued (or complex-
valued) continuous functions on [a, b], with metric

d(f,g9) = sup |f(z) —g(z)|

x€la,b]

is complete. To see this, we first observe that the limit with respect to d is the
uniform limit on [a, b], that is d(f,,, f) — 0 if and only if for any € > 0, there is
an N > 0 for which

n>N =|f,(z)— f(z)| < eforallz € [a,b]

Now let (f,,) be a Cauchy sequence in (C'la, b], d). Thus, for any € > 0, there is
an N for which

m,n >N = |f.(x) — f(z)| < eforall z € [a,b] (12.1)

This implies that, for each = € [a, ], the sequence (f,,(z)) is a Cauchy sequence
of real (or complex) numbers and so it converges. We can therefore define a
function f on [a, b] by

f(z) = lim f,(z)

Letting m — oo in (12.1), we get
n>N=|f.(x) — f(z)] < eforallz € [a,D]

Thus, f,(z) converges to f(z) uniformly. It is well known that the uniform
limit of continuous functions is continuous and so f(z) € Cla,b]. Thus,
(fu(2)) — f(z) € Cla,b] and so (Cla, b],d) is complete.[]

Example 12.12 The metric space (C'[a,b],d;) of all real-valued (or complex-
valued) continuous functions on [a, b], with metric

b
di(f(x),9(x)) = [ |f(z) — g(x)|dz

is not complete. For convenience, we take [a,b] = [0,1] and leave the general
case for the reader. Consider the sequence of functions f,, (z) whose graphs are
shown in Figure 12.3. (The definition of f,,(x) should be clear from the graph.)
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Figure 12.3

We leave it to the reader to show that the sequence (f,,(z)) is Cauchy, but does
not converge in (C[0, 1], d;). (The sequence converges to a function that is not
continuous.)d

Example 12.13 The metric space ¢* is complete. To see this, suppose that (z;,)
is a Cauchy sequence in £°°, where

Tp = (wn,lu Lp2y--- )
Then, for each coordinate position i, we have

|0, — Ty i| < sUp |@pj — T j| — 0 @S, M — 00 (12.2)
J

Hence, for each 7, the sequence (x,,;) of ith coordinates is a Cauchy sequence in
R (or C). Since R (or C) is complete, we have

(xni) — yiasn — oo
for each coordinate position 7. We want to show that y = (y;) € £>° and that
Letting m — oo in (12.2) gives

sup |z, ; — yj| — 0asn — oo (12.3)
J

and so, for some n,

|2,,; — y;] < 1 forall j
and so

lyj| <1+ |z, | forall j

But since x,, € £, it is a bounded sequence and therefore so is (y;). That is,
y=(y;) € *. Since (12.3) implies that (z,) — y, we see that (> is
complete.[]
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Example 12.14 The metric space ¢ is complete. To prove this, let (x,,) be a
Cauchy sequence in ¢7, where

Tp = (mmla Tp2y--- )

Then, for each coordinate position ¢,

[oe]
|$n,i - xmﬂ?|p < Z|x71,‘j - -Tm,,j|p = d(xm xm)p —0

J=1

which shows that the sequence (x, ;) of ith coordinates is a Cauchy sequence in
R (or C). Since R (or C) is complete, we have

(xni) — yiasn — oo

We want to show that y = (y;) € ¢ and that (z,,) — y.

To this end, observe that for any € > 0, there is an /N for which
,
n,m> N = Z|xm— —xmil’ <e
i=1

for all » > 0. Now we let m — oo, to get
T
n>N= le’” -y’ <e
=1

for all » > 0. Letting » — oo, we get, for any n > N,

o0
Z|In,i - y1|p <€
=1

which implies that (x,) —y € ¢? and so y =y — (z,) + (z,) € {7 and in
addition, (z,) — y.OI

As we will see in the next chapter, the property of completeness plays a major
role in the theory of inner product spaces. Inner product spaces for which the
induced metric space is complete are called Hilbert spaces.

Isometries

A function between two metric spaces that preserves distance is called an
isometry. Here is the formal definition.

Definition Let (M, d) and (M’, d’) be metric spaces. A function f: M — M’ is
called an isometry if

d'(f(x), f(y)) = d(z,y)
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for all z,y € M. If f: M — M’ is a bijective isometry from M to M’, we say
that M and M’ are isometric and write M ~ M'.[J

Theorem 12.7 Let f: (M,d) — (M’',d’) be an isometry. Then

1) fisinjective

2) f is continuous

3) f L f(M)— M is also an isometry and hence also continuous.
Proof. To prove 1), we observe that

fla)=f(y) & d(f(x), f(y) =0&dzy)=0cr=y
To prove 2), let () — « in M. Then
d'(f(zn), f(2)) = d(zy,x) — 0asn — oo
and so (f(z,)) — f(x), which proves that f is continuous. Finally, we have
d(f7H(f (@), FH(f(y) = d(a,y) = d'(f(x), f(y))
and so f~1: f(M) — M is an isometry.]
The Completion of a Metric Space

While not all metric spaces are complete, any metric space can be embedded in
a complete metric space. To be more specific, we have the following important
theorem.

Theorem 12.8 Let (M, d) be any metric space. Then there is a complete metric
space (M',d") and an isometry T: M — 7M C M’ for which 7M is dense in
M'. The metric space (M',d") is called a completion of (M,d). Moreover,
(M',d') is unique, up to bijective isometry.

Proof. The proof is a bit lengthy, so we divide it into various parts. We can
simplify the notation considerably by thinking of sequences (z,) in M as
functions f: N — M, where f(n) = z,.

Cauchy Sequences in M

The basic idea is to let the elements of M’ be equivalence classes of Cauchy
sequences in M. So let CS(M) denote the set of all Cauchy sequences in M. If
f,g9 € CS(M), then, intuitively speaking, the terms f(n) get closer together as
n — oo and so do the terms g(n). Therefore, it seems reasonable that
d(f(n),g(n)) should approach a finite limit as n — oo. Indeed, since

|d(f(n), g9(n)) = d(f(m), g(m))| < d(f(n), f(m)) + d(g(n), g(m)) — 0

as n,m — oo it follows that d(f(n),g(n)) is a Cauchy sequence of real
numbers, which implies that
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lim d(f(n),g(n)) < co (12.4)

(That is, the limit exists and is finite.)
Equivalence Classes of Cauchy Sequences in M
We would like to define a metric d’ on the set CS(M) by

d'(f.9) = limd(f(n). g(n)
However, it is possible that

lim d(f(n),g(n)) = 0

n—oQo

for distinct sequences f and g, so this does not define a metric. Thus, we are led
to define an equivalence relation on CS(M) by

f~ g limd(f(n),g(n) =0

Let CS(M) be the set of all equivalence classes of Cauchy sequences and
define, for f, g € CS(M),
d'(f,9) = limd(f(n),g(n)) (12.5)

n—oo

where f € fandg € 3.
To see that d’ is well-defined, suppose that f’ € f and ¢ € g. Then since
f''~ fand g ~ g, we have
|d(f'(n), g (n)) = d(f(n),9(n))| < d(f'(n), f(n)) +d(d'(n), g(n)) — 0
as n — oo. Thus,
J~ Fandg ~ g = lim d(/'(n),g/(w) = lim d(f(n),g(n)
= d'(f'.g)=d(f.9)

which shows that d’ is well-defined. To see that d’ is a metric, we verify the
triangle inequality, leaving the rest to the reader. If f,g and h are Cauchy
sequences, then

d(f(n), g(n)) < d(f(n),h(n)) + d(h(n), g(n))
Taking limits gives

Tim d((n), g(n)) < lim d(f(n), h(n)) + lim d(h(n), g(n))

n—oo
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and so

d'(f,9) <d'(f,h) +d'(h,3)

Embedding (M ,d) in (M',d")

For each x € M, consider the constant Cauchy sequence [z], where [z](n) = =
for all n. The map 7: M — M’ defined by

Q|

T = [2]

is an isometry, since

d'(rz,7y) = d'([z], [y]) = lim d([z](n), [y](n)) = d(z,y)

n—oo

Moreover, 7M is dense in M’. This follows from the fact that we can
approximate any Cauchy sequence in M by a constant sequence. In particular,
let f € M’. Since f € f is a Cauchy sequence, for any € > 0, there exists an N
such that

n,m > N = d(f(n), f(m)) <e
Now, for the constant sequence [f(N)] we have
(V] F) = limd(F(N), f(n)) < e
and so 7M is dense in M.
(M',d") Is Complete
Suppose that

Ji o fo o

is a Cauchy sequence in M’. We wish to find a Cauchy sequence g in M for
which

d'(fr,9) = lim d(fx(n),g(n)) — 0ask — oo
n—00
Since f; € M’ and since 7M is dense in M’, there is a constant sequence
[Ck] = (Ck, Cky--- )

for which

| =

d'(fi, lex]) <
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We can think of ¢;, as a constant approximation to fj, with error at most 1/k.
Let g be the sequence of these constant approximations:

g(k) = ck

This is a Cauchy sequence in M. Intuitively speaking, since the f;'s get closer
to each other as k£ — oo, so do the constant approximations. In particular, we
have

"([ex]

d(ci,cj) =

es))
(@7 k) + dl(ﬁ7 7]) + dl(?]ﬁ @)
+w@ﬂp+ﬁao

INA
ISURESH

~

AN
El

as k, j — oo. To see that f;, converges to g, observe that

() < d Gl + 4 ([, 9) < 3+ limd(ci, g(n)

n—oo

1
= —+ limd(c, )

k  n—oo
Now, since g is a Cauchy sequence, for any € > 0, there is an [V such that
k,n> N = d(cg,cn) <€
In particular,

k>N = limd(c,c,) <e

n—oo

and so
— 1
k2 N=d(fi9) < +e

which implies that f, — g, as desired.
Uniqueness

Finally, we must show that if (M’ ,d") and (M",d") are both completions of
(M, d), then M’ ~ M". Note that we have bijective isometries

M —7MCM ando:M — oM C M"
Hence, the map
p=or TM — oM

is a bijective isometry from 7M onto oM, where TM is dense in M’. (See
Figure 12.4.)
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Our goal is to show that p can be extended to a bijective isometry p from M’ to
M.

Let x € M’. Then there is a sequence (a,) in 7M for which (a,) — . Since
(ay) is a Cauchy sequence in 7M, (p(a,)) is a Cauchy sequence in oM C M”
and since M” is complete, we have (p(a,)) — y for some y € M". Let us
define p(x) = y.

To see that p is well-defined, suppose that (a,) — « and (b,) — x, where both
sequences lie in 7M. Then

d"(p(a,), p(bn)) = d'(an,b,) — 0asn — oo

and so (p(a,)) and (p(b,)) converge to the same element of M, which implies
that p(x) does not depend on the choice of sequence in 7M converging to x.
Thus, p is well-defined. Moreover, if a € 7M, then the constant sequence [a]
converges to a and so p(a) =limp(a) = p(a), which shows that p is an
extension of p.

To see that p is an isometry, suppose that (a,) — x and (b,) — y. Then
(p(an)) — p(x) and (p(b,)) — p(y) and since d” is continuous, we have

d"(p(x),p(y)) = nhjgodﬁ(p(&")’ p(bn)) = 7}Lrgod/(ana ba) = d'(2,y)

Thus, we need only show that p is surjective. Note first that
oM =im(p) C im(p). Thus, if im(p) is closed, we can deduce from the fact
that oM is dense in M” that im(p) = M". So, suppose that (p(z,)) is a
sequence in im(p) and (p(x,)) — z. Then (p(z,)) is a Cauchy sequence and
therefore so is (x;). Thus, (z,) — x € M’'. But p is continuous and so
(p(x,)) — p(x), which implies that p(x) = z and so z € im(p). Hence, p is
surjective and M’ ~ M".O0
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Exercises
1. Prove the generalized triangle inequality
d(x1,2,) < d(x1,m) + d(x9,23) + -+ + d(Xp—1,2p)
2. a) Use the triangle inequality to prove that
|d(z,y) — d(a,b)| < d(x,a) + d(y,b)
b) Prove that
|d(z, ) — d(y, 2)| < d(z,y)

3. Let S C ¢ be the subspace of all binary sequences (sequences of 0's and
1's). Describe the metric on S.

4. Let M ={0,1}" be the set of all binary n-tuples. Define a function
h:S x S — R by letting h(x,y) be the number of positions in which = and
y differ. For example, 2[(11010), (01001)] = 3. Prove that h is a metric. (It
is called the Hamming distance function and plays an important role in
the theory of error-correcting codes.)

5. Letl <p<oo.
a) Ifz = (x,) € (P show thatz,, — 0
b) Find a sequence that converges to 0 but is not an element of any ¢” for

1 <p<oo.

6. a) Show thatifz = (z,) € (7, then z € (% for all ¢ > p.
b) Find a sequence ¢ = (z,,) that is in £” for p > 1, but is not in /1.

7. Show that a subset S’ of a metric space M is open if and only if S contains
an open neighborhood of each of its points.

8. Show that the intersection of any collection of closed sets in a metric space
is closed.

9. Let (M,d) be a metric space. The diameter of a nonempty subset S C M
is

6(S) = sup d(z,y)

x,yes

A set S is bounded if §(5) < co.
a) Prove that S is bounded if and only if there is some z € M and r € R
for which S C B(z,r).
b) Prove that §(S) = 0 if and only if S consists of a single point.
¢) Prove that S C T implies 6(S) < 6(T).
d) If S and T are bounded, show that .S U T is also bounded.
10. Let (M, d) be a metric space. Let d’ be the function defined by

d(,y)

d/(%y) = m
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14.

15.

16.

17.

18.
19.
20.
21.

22.

23.
24.
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a) Show that (M, d’) is a metric space and that M is bounded under this
metric, even if it is not bounded under the metric d.

b) Show that the metric spaces (M, d) and (M,d’) have the same open
sets.

If S and T are subsets of a metric space (M,d), we define the distance

between S and T by

p(S,T) = inf d(zy)

a) Isittrue that p(S,T) = 0 if and only if S = T? Is p a metric?

b) Show that z € cl(S) if and only if p({z},S) = 0.

Prove that z € M is a limit point of S C M if and only if every

neighborhood of x meets S in a point other than x itself.

Prove that x € M is a limit point of S C M if and only if every open ball

B(x,r) contains infinitely many points of S.

Prove that limits are unique, that is, (z,) — =, (x,) — y implies that

x=y.

Let S be a subset of a metric space M. Prove that = € cl(S) if and only if

there exists a sequence (x,,) in S that converges to x.

Prove that the closure has the following properties:

a) S Ccl(S)

b) cl(cl(S)) =S

c) c(SUT)=cl(S)ucl(T)

d)y c(SNT)Cecl(S)Necl(T)

Can the last part be strengthened to equality?

a) Prove that the closed ball B(z,r) is always a closed subset.

b) Find an example of a metric space in which the closure of an open ball
B(x,r) is not equal to the closed ball B(x, 7).

Provide the details to show that R" is separable.

Prove that C" is separable.

Prove that a discrete metric space is separable if and only if it is countable.

Prove that the metric space B[a, b] of all bounded functions on [a, b], with

metric

d(f,9) = sup [f(x) — g(x)]

z€la,b)

is not separable.

Show that a function f: (M,d) — (M',d’) is continuous if and only if the
inverse image of any open set is open, that is, if and only if
Y (U)={x € M| f(z) € U} is open in M whenever U is an open set
in M'.

Repeat the previous exercise, replacing the word open by the word closed.
Give an example to show that if f:(M,d) — (M',d') is a continuous
function and U is an open set in M, it need not be the case that f(U) is
open in M’.
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Show that any convergent sequence is a Cauchy sequence.

If (z,) — x in a metric space M, show that any subsequence (., ) of (z,)

also converges to x.

Suppose that (z,,) is a Cauchy sequence in a metric space M and that some

subsequence (z,,) of (z,) converges. Prove that (x,) converges to the

same limit as the subsequence.

Prove that if (z,,) is a Cauchy sequence, then the set {z,,} is bounded. What

about the converse? Is a bounded sequence necessarily a Cauchy sequence?

Let (x,,) and (y,) be Cauchy sequences in a metric space M. Prove that the

sequence d,, = d(x,,y,) converges.

Show that the space of all convergent sequences of real numbers (or

complex numbers) is complete as a subspace of £°°.

Let P denote the metric space of all polynomials over C, with metric
d(p,q) = sup |p(x) — q(x)]

z€la,b)]

Is P complete?

Let S C ¢ be the subspace of all sequences with finite support (that is,
with a finite number of nonzero terms). Is S complete?

Prove that the metric space 7Z of all integers, with metric
d(n,m) = |n —mj|, is complete.

Show that the subspace S of the metric space C'[a, b] (under the sup metric)
consisting of all functions f € C|[a, b] for which f(a) = f(b) is complete.
If M =~ M’ and M is complete, show that M’ is also complete.

Show that the metric spaces C'[a, b] and C|c, d], under the sup metric, are
isometric.

Prove Hélder's inequality

00 00 Up /s o 1/q
[@nyn] < (Z |:cn,|p) (Z |yn|Q>
1 n=1 n=1

n=
as follows:
a) Showthats = t/! = ¢ = 547!
b) Let u and v be positive real numbers and consider the rectangle R in
R? with corners (0,0), (u,0), (0,v) and (u,v), with area uv. Argue
geometrically (that is, draw a picture) to show that

uvﬁ/ tp_ldt—i—/ s97lds
0 0

and so

¢) Now let X = X|z,|” < oo and Y = X|y,|? < co. Apply the results of
part b) to
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_ |er| N |yn|

X’ v= Y1/q

and then sum on n to deduce Hélder's inequality.
38. Prove Minkowski's inequality

00 1/p 0 1/p o0 1/p
( ‘mn + y71,|p> S (Z |xn|p> + <Z |yn|p>
n=1 n=1 n=1

as follows:
a) Prove it for p = 1 first.
b) Assume p > 1. Show that

0 A Yal” < |2allzn + yul” 4 lyallzn + yal?

¢) Sum this from n = 1 to £ and apply Hélder's inequality to each sum on
the right, to get

k
Z|xn + yn|p
n=1

k 1/p k 1/p k 1/q
<{(8er) " (8) o)

Divide both sides of this by the last factor on the right and let n — oo to
deduce Minkowski's inequality.
39. Prove that /7 is a metric space.



Chapter 13
Hilbert Spaces

Now that we have the necessary background on the topological properties of
metric spaces, we can resume our study of inner product spaces without
qualification as to dimension. As in Chapter 9, we restrict attention to real and
complex inner product spaces. Hence F' will denote either R or C.

A Brief Review

Let us begin by reviewing some of the results from Chapter 9. Recall that an
inner product space V over F' is a vector space V, together with an inner
product (,):V xV — F. If F =R, then the inner product is bilinear and if
F = C, the inner product is sesquilinear.

An inner product induces a norm on V, defined by
[[oll = /{v, v)

We recall in particular the following properties of the norm.

Theorem 13.1
1) (The Cauchy-Schwarz inequality) For all u,v € V,

[{w, 0)| < [l o]

with equality if and only if u = rv for somer € F.
2) (The triangle inequality) For all u,v € V,

lw + ol < Jlull + o]l

with equality if and only if u = rv for some r € F.
3) (The parallelogram law)

e+ 0l* + [l — o = 2][ul|* + 2jv]* O

We have seen that the inner product can be recovered from the norm, as follows.
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Theorem 13.2
1) If'V is a real inner product space, then

1 2 2
(w,v) = Z(lu+o" = lu =l
2) If'V is a complex inner product space, then
1 1. . .
{w,0) = 7 (lu+ ol = flu— olf*) + 7w+ iwl* = |lu—iv|*) O

The inner product also induces a metric on V' defined by
d(u,v) = [lu— vl
Thus, any inner product space is a metric space.
Definition Let V and W be inner product spaces and let T € L(V , ).
1) 7 is an isometry if it preserves the inner product, that is, if
(Tu, vy = (U, V)

forallu,veV.

2) A bijective isometry is called an isometric isomorphism. When 7:V — W
is an isometric isomorphism, we say that V. and W are isometrically
isomorphic.]

It is easy to see that an isometry is always injective but need not be surjective,
evenif V =W.

Theorem 13.3 4 linear transformation T € L(V, W) is an isometry if and only
if it preserves the norm, that is, if and only if

[7oll = [lv]l
forallve V.0

The following result points out one of the main differences between real and
complex inner product spaces.

Theorem 13.4 Let V' be an inner product space and let 7 € L(V).

I If(rv,w) =0 forallv, w eV, thent =0.

2) If'V is a complex inner product space and Q.(v) = (tv,v) =0 for all
veV, thent =0.

3) Part 2) does not hold in general for real inner product spaces..]

Hilbert Spaces

Since an inner product space is a metric space, all that we learned about metric
spaces applies to inner product spaces. In particular, if (x,) is a sequence of
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vectors in an inner product space V', then

(zn) — x ifand only if ||z, — z|| = 0asn — oo

The fact that the inner product is continuous as a function of either of its
coordinates is extremely useful.

Theorem 13.5 Let V' be an inner product space. Then

D) (xn) =z, (Yn) = Y = (T, Yn) — (T,Y)
2) (zn) = 2= [lza| — (2] O

Complete inner product spaces play an especially important role in both theory
and practice.

Definition An inner product space that is complete under the metric induced by
the inner product is said to be a Hilbert space.[]

Example 13.1 One of the most important examples of a Hilbert space is the
space /2. Recall that the inner product is defined by

00
<$, y> = ang’n
n=1

(In the real case, the conjugate is unnecessary.) The metric induced by this inner
product is

0 1/2
d((L’,y) = Hw - y||2 = <Z|mn - yn|2>

n=1

which agrees with the definition of the metric space ¢? given in Chapter 12. In
other words, the metric in Chapter 12 is induced by this inner product. As we
saw in Chapter 12, this inner product space is complete and so it is a Hilbert
space. (In fact, it is the prototype of all Hilbert spaces, introduced by David
Hilbert in 1912, even before the axiomatic definition of Hilbert space was given
by John von Neumann in 1927.)0

The previous example raises the question whether the other metric spaces ¢P
(p # 2), with distance given by

0 1/p
d(z,y) = [lz -y, = (Z £ —ynl”> (13.1)
n=1

are complete inner product spaces. The fact is that they are not even inner
product spaces! More specifically, there is no inner product whose induced
metric is given by (13.1). To see this, observe that, according to Theorem 13.1,
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any norm that comes from an inner product must satisfy the parallelogram law
2 2 2 2
lz+yl” +llz —yl” = 2[=l” + 2[lyll

But the norm in (13.1) does not satisfy this law. To see this, take
z=(1,1,0,...)andy = (1,—1,0,...). Then

and
o]l = 2"/, Jlyll, = 2"/

Thus, the left side of the parallelogram law is 8 and the right side is 4 - 2%/7,
which equals 8 if and only if p = 2.

Just as any metric space has a completion, so does any inner product space.

Theorem 13.6 Let V' be an inner product space. Then there exists a Hilbert
space H and an isometry 7: V' — H for which 7V is dense in H. Moreover, H
is unique up to isometric isomorphism.

Proof. We know that the metric space (V',d), where d is induced by the inner
product, has a unique completion (V', d’), which consists of equivalence classes
of Cauchy sequences in V. If (z,,) € (z,) € V" and (y,,) € (y,) € V', then we
set

(#0) + (yn) = (@0 + yn), r(z0) = (ran)

and

<(mn)> (yn» = Ln'olc<xm yn>

T

It is easy to see that since (x,,) and (y,,) are Cauchy sequences, so are (x, + y»)
and (rx,). In addition, these definitions are well-defined, that is, they are
independent of the choice of representative from each equivalence class. For

instance, if (Z,,) € (x,), then

lim ||z, — T = 0

n—oo
and so
|<$717y71> - <§C\717y71>| = |<xn - fﬁ\naynH < ||13n - /x\n””yn” — 0

(The Cauchy sequence (y,,) is bounded.) Hence,

<(xn)7 (yn)> = lim <$na yn> = nli_)n;o<§n7 yn> = <(§n)) (yn)>

n—o0

We leave it to the reader to show that V' is an inner product space under these
operations.
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Moreover, the inner product on V' induces the metric d’, since

(Zn=Un), (T = n)) = lim (2, — Y, Try — Yn)

n—oo

= nlirrolod(xrzv yn)2
= d'((z4), (yn))*

Hence, the metric space isometry 7:V — V' is an isometry of inner product
spaces, since

<T$,Ty> = d/(T.Ii,Ty)Q = d(x7y)2 - <13,y>

Thus, V' is a complete inner product space and 7V is a dense subspace of V'
that is isometrically isomorphic to V. We leave the issue of uniqueness to the
reader.[]

The next result concerns subspaces of inner product spaces.

Theorem 13.7

1) Any complete subspace of an inner product space is closed.

2) A subspace of a Hilbert space is a Hilbert space if and only if it is closed.

3) Any finite-dimensional subspace of an inner product space is closed and
complete.

Proof. Parts 1) and 2) follow from Theorem 12.6. Let us prove that a finite-

dimensional subspace S of an inner product space V is closed. Suppose that

(x,) is a sequence in S, (z,) — = and x ¢ S. Let B={by,...,b,} be an

orthonormal Hamel basis for S. The Fourier expansion

m

§= Z<xv bl>bz

i=1
in S has the property that x — s # 0 but

(x = 8,bj) = (,b;) — (s,b;) =0
Thus, if we write y = 2 — s and y,, = ©,, — s € S, the sequence (y,,), which is

in .S, converges to a vector y that is orthogonal to S. But this is impossible,
because y,, L y implies that

2 2 2 2
lyn =yl = llynll” + lylI” = [lyll” # 0
This proves that S is closed.
To see that any finite-dimensional subspace S of an inner product space is

complete, let us embed S (as an inner product space in its own right) in its
completion S’. Then S (or rather an isometric copy of .S) is a finite-dimensional
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subspace of a complete inner product space S’ and as such it is closed.
However, S is dense in S and so S = S’, which shows that S is complete.[]

Infinite Series

Since an inner product space allows both addition of vectors and convergence of
sequences, we can define the concept of infinite sums, or infinite series.

Definition Let V' be an inner product space. The nth partial sum of the
sequence (xy) in V is

Sp =21+ -tz
If the sequence (s,,) of partial sums converges to a vector s € V/, that is, if

Isp, — s|]] = 0asn — oo

then we say that the series ) _ x,, converges to s and write

[o°]

We can also define absolute convergence.

Definition 4 series Y, xy; is said to be absolutely convergent if the series

00
> Mzl
n=1

converges.[]

The key relationship between convergence and absolute convergence is given in
the next theorem. Note that completeness is required to guarantee that absolute
convergence implies convergence.

Theorem 13.8 Let V' be an inner product space. Then V' is complete if and only
if absolute convergence of a series implies convergence.

Proof. Suppose that V' is complete and that > ||z || < oo. Then the sequence s,
of partial sums is a Cauchy sequence, for if n > m, we have

< D lal—o0

k=m+1

n

2,

k=m+1

[0 — smll =

Hence, the sequence (s,,) converges, that is, the series Y x;, converges.

Conversely, suppose that absolute convergence implies convergence and let
(x,) be a Cauchy sequence in V. We wish to show that this sequence
converges. Since (x,,) is a Cauchy sequence, for each k > 0, there exists an Ny,
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with the property that
0,5 > N = || — 2] < ok
Clearly, we can choose N; < N, < ---, in which case
1
”INAH - xNk-H < 27

and so

00 < 1
Z||me+l - xNk” < Z? <00
k=1 k=1

Thus, according to hypothesis, the series

E : x\kﬂ x\A

converges. But this is a telescoping series, whose nth partial sum is

o0
k=

—

TNy — TNy

331

and so the subsequence (zy, ) converges. Since any Cauchy sequence that has a
convergent subsequence must itself converge, the sequence (z) converges and

so V' is complete.(]

An Approximation Problem

Suppose that V' is an inner product space and that S is a subset of V. It is of
considerable interest to be able to find, for any = € V, a vector in S that is
closest to x in the metric induced by the inner product, should such a vector

exist. This is the approximation problem for V.

Suppose that z € V and let
§ = inf|lz — |
Then there is a sequence s,, for which
b=z —su|| — 6

as shown in Figure 13.1.
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\Y

Figure 13.1

Let us see what we can learn about this sequence. First, if we let y, = x — sy,
then according to the parallelogram law,

2 2 2 2
lye +yill” + llye — yill” = 2C0yell” + llysll)

or

2
Yr + Yj

2

(13.2)

2 2 2
i — w3l1? = 20w + 1| >—4\

Now, if the set S is convex, that is, if
ryeS=re+(1—rjyeSforall0<r<1
(in words, S contains the line segment between any two of its points), then

(si+s5)/2 € Sandso
Thus, (13.2) gives

2 2 2
lye = yill* < 2(llywll” + llysl7) — 46° — 0

Yk + Yj

>
5 0

_ 5k+5j
s

as k,j — oo. Hence, if S is convex, then the sequence (y,) = (v —s,) is a
Cauchy sequence and therefore so is (s,,).

If we also require that S be complete, then the Cauchy sequence (s,,) converges
to a vector Z € .S and by the continuity of the norm, we must have ||z — Z|| = 6.
Let us summarize and add a remark about uniqueness.

Theorem 13.9 Let V' be an inner product space and let S be a complete convex
subset of V. Then for any x € V, there exists a unique T € S for which

|z — Z|| = inf|lz — 5|
seS

The vector T is called the best approximation fo x in S.
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Proof. Only the uniqueness remains to be established. Suppose that
e -2 =6=z—2a|
Then, by the parallelogram law,
~ 2 2
12 —2'I" = ll(z — 2') — (z = D)
= 2|}z — 2|* + 2o — 2'|]” ~ |22 — & — o'

N 2
T+

:mm—ﬂﬁ+mm—fW—4&—

<9282 4+28%—48%2=0

andso 7 = 2’.00

Since any subspace S of an inner product space V' is convex, Theorem 13.9
applies to complete subspaces. However, in this case, we can say more.

Theorem 13.10 Let V' be an inner product space and let S be a complete
subspace of V. Then for any x € V, the best approximation to x in S is the
unique vector ' € S for whichx —x' 1 S.
Proof. Suppose that x — 2’ 1 S, where 2’ € S. Then for any s € S, we have
z—x' 1L s—a andso

2 2 2 2

lz = slI” = lle = '|" + [l" = s|I” > [lo — /||

Hence 2/ = 7 is the best approximation to x in S. Now we need only show that
xr — % L S, where T is the best approximation to = in .S. For any s € 5, a little
computation reminiscent of completing the square gives

|z —rs||* = (x —rs,z — rs)

2 - —1lall2
= [l]” =7z, s) —r{s, ) +17]s]]

=Hﬂf+nﬂﬁc*—rf”?—r“*®>

NETE
@\ (. @\ )P
=nﬂF+nﬂF<r— 28 N iy
Il Il sl
w5 (s
T, S T, S
S R ] P g G
Il sl

Now, this is smallest when
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in which case

(@, 5)|”

2
5]l

2 2
[z = ros|” = [l =

Replacing x by x — T gives

A2
e =& — ros? = o — & — (T
5]l
But 7 is the best approximation to = in .S and since T — rys € S we must have
lz =& = ros|* > || - 2|

Hence,

or equivalently,

Hence, z — 2 1 5.0
According to Theorem 13.9, if S is a complete subspace of an inner product
space V, then for any = € V', we may write
=T+ (x —7)
where 7 € S and x — 2 € S*. Hence, V = S + S* and since SN S+ = {0},

we also have V = S ® S*. This is the projection theorem for arbitrary inner
product spaces.

Theorem 13.11 (The projection theorem) [f S is a complete subspace of an
inner product space V., then

V=So8"
In particular, if S is a closed subspace of a Hilbert space H, then
H=SoS8" a

Theorem 13.12 Let S, T and T' be subspaces of an inner product space V.

) IfV=S0TthenT = S*.

2y IfSOT=S0T thenT =T

Proof. If V = S ® T, then T C S* by definition of orthogonal direct sum. On
the other hand, if z € S+, then z = s + t, for some s € S and ¢t € T. Hence,

0={(z,8) = (s,8) + (t,s) = (s, )
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and so s = 0, implying that z = ¢ € T Thus, S+ C T'. Part 2) follows from part
nH.0O

Let us denote the closure of the span of a set S of vectors by cspan(.5).

Theorem 13.13 Let H be a Hilbert space.
1) If Ais a subset of H, then

cspan(A) = A+t
2) If S is a subspace of H, then
cl(S) = S+
3) If K is a closed subspace of H, then
K — KM
Proof. We leave it as an exercise to show that [cspan(A)]* = AL, Hence
H = cspan(A) ® [cspan(A)]- = cspan(A4) © A*
But since A~ is closed, we also have
H= At o ALt
and so by Theorem 13.12, cspan(A4) = AL, The rest follows easily from part
1).0

In the exercises, we provide an example of a closed subspace K of an inner
product space V for which K # K. Hence, we cannot drop the requirement
that H be a Hilbert space in Theorem 13.13.

Corollary 13.14 If A is a subset of a Hilbert space H, then span(A) is dense in
H ifand only if A+ = {0}.
Proof. As in the previous proof,

H = cspan(A) © A*
and so A+ = {0} ifand only if H = cspan(A).00
Hilbert Bases

We recall the following definition from Chapter 9.

Definition 4 maximal orthonormal set in a Hilbert space H is called a Hilbert
basis for H.[O

Zorn's lemma can be used to show that any nontrivial Hilbert space has a Hilbert
basis. Again, we should mention that the concepts of Hilbert basis and Hamel
basis (a maximal linearly independent set) are quite different. We will show
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later in this chapter that any two Hilbert bases for a Hilbert space have the same
cardinality.

Since an orthonormal set O is maximal if and only if O+ = {0}, Corollary
13.14 gives the following characterization of Hilbert bases.

Theorem 13.15 Let O be an orthonormal subset of a Hilbert space H. The
following are equivalent:

1) O is a Hilbert basis

2) 0o+t={0}

3) O is atotal subset of H, that is, cspan(O) = H.O

Part 3) of this theorem says that a subset of a Hilbert space is a Hilbert basis if
and only if it is a total orthonormal set.

Fourier Expansions

We now want to take a closer look at best approximations. Our goal is to find an
explicit expression for the best approximation to any vector x from within a
closed subspace S of a Hilbert space H. We will find it convenient to consider
three cases, depending on whether S has finite, countably infinite, or
uncountable dimension.

The Finite-Dimensional Case

Suppose that O = {uy,...,u,} is an orthonormal set in a Hilbert space H.
Recall that the Fourier expansion of any = € H, with respect to O, is given by

n

z= Z(ﬂfaw:)w«

k=1
where (x, u) is the Fourier coefficient of = with respect to uy,. Observe that
(x — Z,ug) = (w,ur) — (T,ug) =0

and so z —Z L span(Q). Thus, according to Theorem 13.9, the Fourier
expansion Z is the best approximation to x in span(Q). Moreover, since
r— 2 L T, we have

2 2 12 2
1217 = llzlI” = lz — 2" < ||zl
and so
12l < ||l

with equality if and only if 2 = Z, which happens if and only if 2 € span(O).
Let us summarize.
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Theorem 13.16 Let O = {uy,...,u,} be a finite orthonormal set in a Hilbert
space H. For any x € H, the Fourier expansion T of x is the best
approximation to x in span(Q). We also have Bessel's inequality

IZ[ < [l

or equivalently,

n

D Nz u)* <l (13.3)

k=1
with equality if and only if x € span(0).O0
The Countably Infinite-Dimensional Case

In the countably infinite case, we will be dealing with infinite sums and so
questions of convergence will arise. Thus, we begin with the following.

Theorem 13.17 Let O = {uq, us, ... } be a countably infinite orthonormal set in
a Hilbert space H. The series

> g (13.4)
k=1

converges in H if and only if the series
> Il (13.5)
k=1

converges in R. If these series converge, then they converge unconditionally
(that is, any series formed by rearranging the order of the terms also
converges). Finally, if the series (13.4) converges, then

2

o0 o0
2
D o] =Y |l
5= [

Proof. Denote the partial sums of the first series by s,, and the partial sums of
the second series by p,,. Then form < n

n
E TEUk

k=m+1

2

n
2
= Z |Tk| :|pn—pm|

k=m+1

Hsn - 3771,”2 =

Hence (s,,) is a Cauchy sequence in H if and only if (p,) is a Cauchy sequence
in R. Since both H and R are complete, (s,) converges if and only if (p,)
converges.

If the series (13.5) converges, then it converges absolutely and hence
unconditionally. (A real series converges unconditionally if and only if it
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converges absolutely.) But if (13.5) converges unconditionally, then so does
(13.4). The last part of the theorem follows from the continuity of the norm.[J

Now let O = {uy,us,...} be a countably infinite orthonormal set in H. The
Fourier expansion of a vector z € H is defined to be the sum

T = Z X, Up)U (13.6)

o0
=

—

To see that this sum converges, observe that for any n > 0, (13.3) gives

n
> e un)* < Jlz)?
k=1

and so

o0

> N u)” <l

k=1

which shows that the series on the left converges. Hence, according to Theorem
13.17, the Fourier expansion (13.6) converges unconditionally.

Moreover, since the inner product is continuous,
<.’E - x7uk> = <xauk> - <$auk> =0

and so z — 7 € [span(Q)]* = [cspan(O)]*+. Hence, 7 is the best approximation
to « in cspan(Q). Finally, since x — Z L T, we again have

2 2 112 2
121" = llzlI” = llz — 2[]" < ||zl
and so
1Z] < [l=|l

with equality if and only if 2 = Z, which happens if and only if z € cspan(O).
Thus, the following analog of Theorem 13.16 holds.

Theorem 13.18 Let O = {uy, us, ... } be a countably infinite orthonormal set in
a Hilbert space H. For any © € H, the Fourier expansion

P 3w

of = converges unconditionally and is the best approximation to x in cspan(Q).
We also have Bessel's inequality

o0
k=

—

12 < [l
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or equivalently,

[o°]

> e u) < le)”

k=1
with equality if and only if € cspan(©).O
The Arbitrary Case

To discuss the case of an arbitrary orthonormal set O = {u;, | k € K}, let us
first define and discuss the concept of the sum of an arbitrary number of terms.
(This is a bit of a digression, since we could proceed without all of the coming
details — but they are interesting.)

Definition Let £ = {z;, | kK € K} be an arbitrary family of vectors in an inner
product space V. The sum
D

keK

is said to converge to a vector x € V' and we write

T=)Y mp (13.7)

keK
if for any € > 0, there exists a finite set S C K for which

E Ty — &

keT

T > S, T finite = <e O

For those readers familiar with the language of convergence of nets, the set
Po(K) of all finite subsets of K is a directed set under inclusion (for every
A, B € Py(K) there is a C' € Py(K) containing A and B) and the function

S_)ka

keS

is a net in H. Convergence of (13.7) is convergence of this net. In any case, we
will refer to the preceding definition as the net definition of convergence.

It is not hard to verify the following basic properties of net convergence for
arbitrary sums.

Theorem 13.19 Let K = {xy, | k € K} be an arbitrary family of vectors in an

inner product space V. If
Zxk =z and Zyk =y
keK keK

then
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1) (Linearity)

Z (rop + syy) = rT + sy
ke K

foranyr,s e F
2) (Continuity)

Z<xk7y> = <33,y> andz<ya xk> = <y7 £U> o

keK keK
The next result gives a useful “Cauchy-type” description of convergence.
Theorem 13.20 Let K = {z}, | k € K} be an arbitrary family of vectors in an

inner product space V.
1) If'the sum

S

ke K
converges, then for any € > 0, there exists a finite set I C K such that

>

keJ

JNI =40, J finite = <e

2) If'V is a Hilbert space, then the converse of 1) also holds.
Proof. For part 1), given € > 0, let S C K, S finite, be such that

S

keT

T > S, T finite = g%

If J NS =1, J finite, then

sz = H(Zxk + Za:k, —x)— (ka —x)

7 7 S S

ka—x Zxk—w <
S

JUS
As for part 2), for each n > 0, let I,, C K be a finite set for which

> | <

jed

< + +

NS )
NS )

JNI,=10, J finite =

S

and let

Yn = Zxk

kel,
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Then (y,) is a Cauchy sequence, since

E Ty — § Tk
In ITW/
D ar|| | > w

I—=1p, In—1I,

||yn - ym” =

§ Ty — § Tk
n I

=1, I —1I,

IN

1 1
+ < —+=—0
m n

Since V is assumed complete, we have (y,,) — ¥.

Now, given € > 0, there exists an [V such that

€
n>N= |y, -yl = Zxk—y <3
Setting n = max{NN,2/e} gives for T' O I,,, T finite,
Dom=y| = > =yt > w
T In Tﬁ]n
e 1
S Ty — + Ty §7+*§6

and so ), - converges to y.[1

The following theorem tells us that convergence of an arbitrary sum implies that
only countably many terms can be nonzero so, in some sense, there is no such
thing as a nontrivial uncountable sum.

Theorem 13.21 Let K = {x}. | k € K} be an arbitrary family of vectors in an
inner product space V. If the sum
>

keK

converges, then at most a countable number of terms xj, can be nonzero.
Proof. According to Theorem 13.20, for each n > 0, we can let [, C K, I,
finite, be such that

JNI, =0, J finite = <

S

PO

jed

Let I =J,I,. Then I is countable and

1
k¢ l={k}nI,=0foralln= || < —foralln = 2,=0 a
n
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Here is the analog of Theorem 13.17.

Theorem 13.22 Let O = {uy, | k € K} be an arbitrary orthonormal family of
vectors in a Hilbert space H. The two series

Zrkuk and Z|rk|2

keK keK

converge or diverge together. If these series converge, then

2
2
> rf =D Il

keK keK

Proof. The first series converges if and only if for every € > 0, there exists a
finite set I C K such that

2

JNI=40, J finite = <é

E TEUk

keJ

or equivalently,

JNI=0,J finite =Y |ry|” < €
keJ

and this is precisely what it means for the second series to converge. We leave
proof of the remaining statement to the reader.[]

The following is a useful characterization of arbitrary sums of nonnegative real
terms.

Theorem 13.23 Let {ry, | k € K} be a collection of nonnegative real numbers.
Then

> or=sup Y (13.8)

kek T ked

provided that either of the preceding expressions is finite.
Proof. Suppose that

sup g r, =R < o0
J finii
/,/S;ekEJ

Then, for any € > 0, there exists a finite set S C K such that

RZZrkZR—e
keS
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Hence, if " C K is a finite set for which 7" D S, then since r;, > 0,

RZZWZZWZR—G

keT keS

and so

R—ZTk

keT

<e

which shows that Y rj converges to R. Finally, if the sum on the left of (13.8)
converges, then the supremum on the right is finite and so (13.8) holds.[d

The reader may have noticed that we have two definitions of convergence for
countably infinite series: the net version and the traditional version involving
the limit of partial sums. Let us write

Z x, and io: Tk
=1

keNt k

for the net version and the partial sum version, respectively. Here is the
relationship between these two definitions.

Theorem 13.24 Let H be a Hilbert space. If xi, € H, then the following are
equivalent:

1) > xp converges (net version) to ©
keN*
o0

2) Y my, converges unconditionally to x

k=1

Proof. Assume that 1) holds. Suppose that 7 is any permutation of N*. Given
any € > 0, there is a finite set S C N for which

T >S5, T finite = Zxk—m <e
keT
Let us denote the set of integers {1,...,n} by I, and choose a positive integer n

such that 7(I,,) D S. Then for m > n we have

m

Z l‘,r(k) — T

k=1

w(Iy) Dn(l,) DS =

= Z rr— x| <€

kETr(IWl)

and so 2) holds.
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Next, assume that 2) holds, but that the series in 1) does not converge. Then
there exists an ¢ > 0 such that for any finite subset I C N, there exists a finite
subset J with J N I = () for which

>

keJ

> €

From this, we deduce the existence of a countably infinite sequence J, of
mutually disjoint finite subsets of N* with the property that

maX(Jn) =M, <mu4 = min(‘]n-&-l)

and

Z:L‘k > €

k€Jn

Now we choose any permutation m: N* — N with the following properties
1) 7T([mn, MnD - [mn, Mn]
2) ifJy = {jn1,- s Jnu, > then

7T<mn) = jn,l: 7T('rnn + 1) = jn.,Zv cee 77T(mn + u, — 1) = jn,un

The intention in property 2) is that for each n, 7 takes a set of consecutive
integers to the integers in .J,,.

For any such permutation 7, we have

my+u,—1

= > €

S

ked,

Lr(k)

k=m,,

which shows that the sequence of partial sums of the series

is not Cauchy and so this series does not converge. This contradicts 2) and
shows that 2) implies at least that 1) converges. But if 1) converges to y € H,
then since 1) implies 2) and since unconditional limits are unique, we have
y = z. Hence, 2) implies 1).00

Now we can return to the discussion of Fourier expansions. Let
O ={uy | k € K} be an arbitrary orthonormal set in a Hilbert space H. Given
any x € H, we may apply Theorem 13.16 to all finite subsets of O, to deduce
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that

sup Y [(z, ) [* < ||z
keJ

J finite 7.
JCK

and so Theorem 13.23 tells us that the sum

> e un)?

keK

converges. Hence, according to Theorem 13.22, the Fourier expansion

T = Z(x, Up YU

keK
of x also converges and

121" =Y, wl®

keK
Note that, according to Theorem 13.21, Z is a countably infinite sum of terms of
the form (x, uy)uy and so is in cspan(O).
The continuity of infinite sums with respect to the inner product (Theorem
13.19) implies that
(x — T, up) = (w,up) — (T,ug) =0

and so z — 2 € [span(O)]* = [cspan(O)]*. Hence, Theorem 3.9 tells us that &
is the best approximation to z in cspan(Q). Finally, since x — T L T, we again
have

121° = lll* = l|lz — 2* < [|=]
and so
2] < [zl
with equality if and only if # = Z, which happens if and only if 2 € cspan(Q).

Thus, we arrive at the most general form of a key theorem about Hilbert spaces.

Theorem 13.25 Let O = {uy, | k € K} be an orthonormal family of vectors in
a Hilbert space H. For any x € H, the Fourier expansion

= Z(m,uk>uk

keK

of x converges in H and is the unique best approximation to x in cspan(O).
Moreover, we have Bessel's inequality

120 < 1l
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or equivalently,

D e un)* < el

keK
with equality if and only if © € cspan(Q).O
A Characterization of Hilbert Bases

Recall from Theorem 13.15 that an orthonormal set O = {uy |k € K} in a
Hilbert space H is a Hilbert basis if and only if

cspan(0) = H

Theorem 13.25, then leads to the following characterization of Hilbert bases.

Theorem 13.26 Let O = {uy | k € K} be an orthonormal family in a Hilbert
space H. The following are equivalent:

1) O is a Hilbert basis (a maximal orthonormal sef)

2) Ot ={0}

3) O is total (that is, cspan(O) = H)

4) x==Tforallx € H

5) Equality holds in Bessel's inequality for all x € H, that is,

~

]l = N1l

forallxz € H
6) Parseval's identity

(z,y) = (Z,7)
holds for all x,y € H, that is,
<Jf, y> = Z<m7 uk> <y7 u/\>

keK

Proof. Parts 1), 2) and 3) are equivalent by Theorem 13.15. Part 4) implies part
3), since T € cspan(Q) and 3) implies 4) since the unique best approximation of
any z € cspan(Q) is itself and so x = Z. Parts 3) and 5) are equivalent by
Theorem 13.25. Parseval's identity follows from part 4) using Theorem 13.19.
Finally, Parseval's identity for y = = implies that equality holds in Bessel's
inequality.[]

Hilbert Dimension

We now wish to show that all Hilbert bases for a Hilbert space H have the same
cardinality and so we can define the Hilbert dimension of H to be that
cardinality.
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Theorem 13.27 All Hilbert bases for a Hilbert space H have the same
cardinality. This cardinality is called the Hilbert dimension of H, which we
denote by hdim(H).

Proof. If H has a finite Hilbert basis, then that set is also a Hamel basis and so
all finite Hilbert bases have size dim(H ). Suppose next that B = {b;, | k € K}
and C = {c¢; | j € J} are infinite Hilbert bases for H. Then for each by, we have

b=y (b cj)e;

JET,

where Jj, is the countable set {j | (by,c;) # 0}. Moreover, since no ¢; can be
orthogonal to every by, we have xJr = J. Thus, since each J; is countable,
we have

|J| =

U

keK

<W|K| = |K]|

By symmetry, we also have |K| < |.J| and so the Schréder—Bernstein theorem
implies that |.J| = | K|.00

Theorem 13.28 Two Hilbert spaces are isometrically isomorphic if and only if
they have the same Hilbert dimension.
Proof. Suppose that hdim(H;) = hdim(Hs). Let O; = {uy |k € K} be a
Hilbert basis for Hy and Oy = {v; | k € K} a Hilbert basis for Hy. We may
define a map 7: H; — H, as follows:

T(E Tkuk-) = E TLUL
keK keK

We leave it as an exercise to verify that 7 is a bijective isometry. The converse
is also left as an exercise.[d

A Characterization of Hilbert Spaces

We have seen that any vector space V' is isomorphic to a vector space (F'?) of
all functions from B to F' that have finite support. There is a corresponding
result for Hilbert spaces. Let K be any nonempty set and let

AE) = {1 K~ |31k < o}

keK

The functions in /?(K) are referred to as square summable functions. (We can
also define a real version of this set by replacing C by R.) We define an inner
product on /2(K') by

(f,9) = f(k)g(k)

keK

The proof that ¢/*(K) is a Hilbert space is quite similar to the proof that
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¢ = (*(N) is a Hilbert space and the details are left to the reader. If we define
o € ﬁQ(K) by

s == {4 1051
then the collection
O={6;| ke K}
is a Hilbert basis for £>( K), of cardinality | K|. To see this, observe that
(6i,07) = > _6i(k)6;(k) = 65
kex

and so O is orthonormal. Moreover, if f € (2(K), then f(k) # 0 for only a
countable number of k € K, say {ki, ko, ... }. If we define f by

= Zf(ki)éki
in1

then f’ € cspan(O) and f'(j) = f(j) for all j € K, which implies that f = f’.
This shows that £?(K) = cspan(O) and so O is a total orthonormal set, that is, a
Hilbert basis for £%(K).

Now let H be a Hilbert space, with Hilbert basis B = {u;. | k € K}. We define
amap ¢: H — (?(K) as follows. Since B is a Hilbert basis, any x € H has the

form
T = Z(x, Up YU

keK
Since the series on the right converges, Theorem 13.22 implies that the series
2
>l u)]
keK

converges. Hence, another application of Theorem 13.22 implies that the
following series converges:

$(w) =Y (w,up)o

keK

It follows from Theorem 13.19 that ¢ is linear and it is not hard to see that it is
also bijective. Notice that ¢(uy) = ¢ and so ¢ takes the Hilbert basis B for H
to the Hilbert basis O for £*(K).
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Notice also that
2

2
= [l

l6(@)[* = (@(x), d(a)) = YNz, w) | =

keK

Z(az, Ug)ug

keK

and so ¢ is an isometric isomorphism. We have proved the following theorem.

Theorem 13.29 I H is a Hilbert space of Hilbert dimension x and if K is any
set of cardinality k, then H is isometrically isomorphic to ¢*(K).OJ

The Riesz Representation Theorem

We conclude our discussion of Hilbert spaces by discussing the Riesz
representation theorem. As it happens, not all linear functionals on a Hilbert
space have the form “take the inner product with...,” as in the finite-
dimensional case. To see this, observe that if y € H, then the function

fy(x) = (2,y)

is certainly a linear functional on H. However, it has a special property. In
particular, the Cauchy—Schwarz inequality gives, for all z € H,

|£y (@) = [{z, )| < llz[l]lyll
or, for all x # 0,
|fy(@)]

]

<yl

Noticing that equality holds if x = y, we have

fy(x
sup T _
e

This prompts us to make the following definition, which we do for linear
transformations between Hilbert spaces (this covers the case of linear
functionals).

Definition Let 7: H — Hj be a linear transformation from Hy to Hy. Then T is
said to be bounded if’

[l
up

< 0
w0 |||

If the supremum on the left is finite, we denote it by ||7|| and call it the norm of
.00
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Of course, if f: H — F'is a bounded linear functional on H, then

11 = supl 7N
R Tl

The set of all bounded linear functionals on a Hilbert space H is called the
continuous dual space, or conjugate space, of H and denoted by H*. Note
that this differs from the algebraic dual of H, which is the set of all linear
functionals on H. In the finite-dimensional case, however, since all linear
functionals are bounded (exercise), the two concepts agree. (Unfortunately,
there is no universal agreement on the notation for the algebraic dual versus the
continuous dual. Since we will discuss only the continuous dual in this section,
no confusion should arise.)

The following theorem gives some simple reformulations of the definition of
norm.

Theorem 13.30 Let 7: H — H, be a bounded linear transformation.

D il = sup [
z||=1
2) |7l = sup [j7z]]
llz]<1
3) |7l = inf{c € R| ||rz|| < c||z]|| forall x € H} O

The following theorem explains the importance of bounded linear
transformations.

Theorem 13.31 Let 7: Hy — Hy be a linear transformation. The following are
equivalent:

1) 7 is bounded

2) T is continuous at any point xy € H

3) T is continuous.

Proof. Suppose that 7 is bounded. Then

l72 = rxol| = [[7(z — @) || < [I7lllz — 2ol — 0

as x — xy. Hence, 7 is continuous at xy. Thus, 1) implies 2). If 2) holds, then
for any y € H, we have

Iz =yl = lI7(z — y + z0) — (o) = 0

as r — y, since T is continuous at xy and x — y + o — x( as y — x. Hence, 7
is continuous at any y € H and 3) holds. Finally, suppose that 3) holds. Thus, 7
is continuous at 0 and so there exists a 6 > 0 such that

[zl <& = llref <1
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In particular,

|7zl _ 1
2|l =6 = <<
lzll =6
and so
[r(0z)] _ 1 _ |lrz| _ 1
z||=1= |[6x|| =6 = < - = < -
]| [[6|| Tozll =57 a] =3

Thus, 7 is bounded.]
Now we can state and prove the Riesz representation theorem.

Theorem 13.32 (The Riesz representation theorem) Let H be a Hilbert
space. For any bounded linear functional f on H, there is a unique zy € H
such that

f(x) = (z, 20)

Sor all x € H. Moreover, ||z = || f]|.
Proof. If f =0, we may take z; =0, so let us assume that f # 0. Hence,
K =ker(f) # H and since f is continuous, K is closed. Thus

H=K®K*+

Now, the first isomorphism theorem, applied to the linear functional f: H — F,
implies that H /K ~ F (as vector spaces). In addition, Theorem 3.5 implies that
H/K ~ K+ and so K* ~ F. In particular, dim(K*) = 1.

Forany z € K+, we have
reK= f(x)=0= (x,2)
Since dim(K*) = 1, all we need do is find 0 # 2z € K* for which
f(2) =(z,2)

for then f(rz)=rf(z)=r(z,z) = (rz,z) for all r e F, showing that
f(x) = (x,2) forx € K as well.

Butif 0 # z € K+, then

f(2)
(2,2)

has this property, as can be easily checked. The fact that ||zo|| = ||f] has
already been established.[]

zZ0 — z
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Exercises

1.

10.

11.

12.

Prove that the sup metric on the metric space Cfa,b] of continuous
functions on [a, b] does not come from an inner product. Hint: let f(¢) = 1
and ¢(t) = (t — a)/(b — a) and consider the parallelogram law.

Prove that any Cauchy sequence that has a convergent subsequence must
itself converge.

Let V' be an inner product space and let A and B be subsets of V. Show
that

a) ACB= B+cCAl

b) A"t isaclosed subspace of V

c) [cspan(A)]t = A+

Let V' be an inner product space and S C V. Under what conditions is
SLLL — SLQ

Prove that a subspace S of a Hilbert space H is closed if and only if
S =gt

Let V be the subspace of > consisting of all sequences of real numbers
with the property that each sequence has only a finite number of nonzero
terms. Thus, V' is an inner product space. Let K be the subspace of V'
consisting of all sequences x = (x,) in V with the property that
Y, /n = 0. Show that K is closed, but that K+t # K. Hint: For the latter,
show that K- = {0} by considering the sequences u = (1,...,—n,...),
where the term —n is in the nth coordinate position.

Let O = {uy,us,...} be an orthonormal set in H. If x = Xrjuy converges,
show that

o0
2 2
[EE
k=1

Prove that if an infinite series

converges absolutely in a Hilbert space H, then it also converges in the
sense of the “net” definition given in this section.

Let {ry | k € K} be a collection of nonnegative real numbers. If the sum
on the left below converges, show that

Z’I“k = sup Z Tk

- J finite
keK e e

Find a countably infinite sum of real numbers that converges in the sense of
partial sums, but not in the sense of nets.

Prove that if a Hilbert space H has infinite Hilbert dimension, then no
Hilbert basis for H is a Hamel basis.

Prove that ¢?(K) is a Hilbert space for any nonempty set K.



13.

14.
15.
16.
17.
18.

19.
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Prove that any linear transformation between finite-dimensional Hilbert
spaces is bounded.

Prove that if f € H*, then ker(f) is a closed subspace of H.

Prove that a Hilbert space is separable if and only if hdim(H) < Ry.

Can a Hilbert space have countably infinite Hamel dimension?

What is the Hamel dimension of ¢*(N)?

Let 7 and o be bounded linear operators on H. Verify the following:

a) [rrll = Il

b) |7+l <7/l + |

) ol <lillllo]l

Use the Riesz representation theorem to show that H* ~ H for any Hilbert
space H.



Chapter 14
Tensor Products

In the preceding chapters, we have seen several ways to construct new vector
spaces from old ones. Two of the most important such constructions are the
direct sum U @V and the vector space £L(U, V') of all linear transformations
from U to V. In this chapter, we consider another very important construction,
known as the tensor product.

Universality

We begin by describing a general type of universality that will help motivate the
definition of tensor product. Our description is strongly related to the formal
notion of a universal pair in category theory, but we will be somewhat less
formal to avoid the need to formally define categorical concepts. Accordingly,
the terminology that we shall introduce is not standard, but does not contradict
any standard terminology.

Referring to Figure 14.1, consider a set A and two functions f and g, with
domain A.

f

A\

X < O

A

a

Figure 14.1

Suppose that there exists a function 7: S — X for which this diagram
commutes, that is,

g=T1of

This is sometimes expressed by saying that g can be factored through f. What
does this say about the relationship between the functions f and g?
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Let us think of the “information” about A contained in a function h: A — B as
the way in which h distinguishes elements of A using labels from B. The
relationship above implies that

g(a) # g(b) = f(a) # f(b)

and this can be phrased by saying that whatever ability g has to distinguish
elements of A is also possessed by f. Put another way, except for labeling
differences, any information about A that is contained in g is also contained in

f.

If 7 happens to be injective, then the only difference between f and g is the
values of the labels. That is, the two functions have the same information about
A. However, in general, 7 is not required to be injective and so f may contain
more information than g.

Now consider a family S of sets and a family
F={gA—-X]|XeS}

Assume that S € S and f: A — S € F. If the diagram in Figure 14.1 commutes
for all g € F, then the information contained in every function in F is also
contained in f. Moreover, since f € F, the function f cannot contain more
information than is contained in the entire family and so we conclude that f
contains exactly the same information as is contained in the entire family F. In
this sense, f: A — S is universal among all functions g: A — X in F.

In this way, a single function f: A — S, or more precisely, a single pair (S, f),
can capture a mathematical concept as described by a family of functions. Some
examples from linear algebra are basis for a vector space, quotient space, direct
sum and bilinearity (as we will see).

Let us make a formal definition.

Definition Referring to Figure 14.2, let A be a set and let S be a family of sets.
Let
F={gA—X]|XeS}

be a family of functions, all of which have domain A and range a member of S.
Let

H={rX-Y|X,YeS}

be a family of functions with domain and range in S. We assume that H has the
following structure:
1) 'H contains the identity function g for each member of S.
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2) H is closed under composition of functions, which is an associative
operation.

3) Forany T € Hand f € F, the composition T o f is defined and belongs to
F.

A > S, 2
, .,
f; S,
Figure 14.2

We refer to 'H as the measuring family and its members as measuring
functions.

A pair (S, f: A — S), where S € S and f € F has the universal property for
the family F as measured by H, or is a universal pair for (F,H), if for every
g A— X in F, there is a unique 7: S — X in 'H for which the diagram in
Figure 14.1 commutes, that is, for which

g=r7of

or equivalently, any g € F can be factored through f. The unique measuring
function T is called the mediating morphism for g.[1

Note the requirement that the mediating morphism 7 be unique. Universal pairs
are essentially unique, as the following describes.

Theorem 14.1 Let (S, f: A — S) and (T,g: A — T) be universal pairs for
(F,H). Then there is a bijective measuring function p € H for which uS = T.
In fact, the mediating morphism of f with respect to g and the mediating
morphism of g with respect to f are isomorphisms.

Proof. With reference to Figure 14.3, there are mediating morphisms 7: S — T’
and o: T — S for which

g=Tof
f=o00yg

Hence,

g=(r00)og
f=(coT)of

However, referring to the third diagram in Figure 14.3, both o o 7:.S — S and
the identity map ¢: S — S are mediating morphisms for f and so the uniqueness
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of mediating morphisms implies that o o 7 = ¢. Similarly 7 o ¢ = ¢ and so 7 and
o are inverses of one another, making 7 the desired bijection.[]

f g f
A——>S A—>T A———>S
T e | GT=1
g ! f ! f !
A\ \4 Y
T S S
Figure 14.3

Examples of Universality

Now let us look at some examples of the universal property. Let Vect(F") denote
the family of all vector spaces over the base field F'. (We use the term family
informally to represent what in set theory is formally referred to as a class. 4
class is a “collection” that is too large to be considered a set. For example,
Vect(F) is a class.)

Example 14.1 (Bases) Let B be a nonempty set and let

1) S = Vect(F)
2) F = set functions from 5 to members of F
3) 'H = linear transformations

If Vg is a vector space with basis 5, then the pair (Vg, j: B — V3), where j is
the inclusion map jv = v, is universal for (F,H). To see this, note that the
condition that g € F can be factored through j,

g=T1oj

is equivalent to the statement that 7v = gv for each basis vector v € . But this
uniquely defines a linear transformation 7.

In fact, the universality of the pair (Vg, j) is precisely the statement that a linear
transformation 7 is uniquely determined by assigning its values arbitrarily on a
basis B, the function g doing the arbitrary assignment in this context. Note also
that Theorem 14.1 implies that if (W, k: B — W) is also universal for (F, H),
then there is a bijective mediating morphism from Vg to W, that is, W and Vj
are isomorphic.O]

Example 14.2 (Quotient spaces and canonical projections) Let V' be a vector
space and let K be a subspace of V. Let

1) S = Vect(F)
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2) F = linear maps with domain V', whose kernels contain K
3) 'H = linear transformations

Theorem 3.4 says precisely that the pair (V/K,m:V — V/K), where 7 is the
canonical projection map, has the universal property for F as measured by H.O

Example 14.3 (Direct sums) Let U and V' be vector spaces over F'. Let

1) S = Vect(F)
2) F = ordered pairs (f: U — W,g:V — W) of linear transformations
3) 'H = linear transformations

Here we have a slight variation on the definition of universal pair: In this case,
F is a family of pairs of functions. For 7 € H and (f,g) € F, we set

To(f,9)=(rof,Toyg)
Then the pair (U BV, (41, j2): (U, V) — U BV), where
jiuw=(u,0) and jov= (0,v)

are called the canonical injections, has the universal property for (F, H). To
see this, observe that for any pair (f, g): (U, V) — W in F, the condition

(f19) =70 (1, J2)
is equivalent to
(f,9) = (10 j1,702)
or
7(u,0) = f(u) and 7(0,v) = g(v)

But these conditions define a unique linear transformation 7: U BV — W.O

Thus, bases, quotient spaces and direct sums are all examples of universal pairs
and it should be clear from these examples that the notion of universal property
is, well, universal. In fact, it happens that the most useful definition of tensor
product is through a universal property, which we now explore.

Bilinear Maps

The universality that defines tensor products rests on the notion of a bilinear
map.

Definition Let U, V and W be vector spaces over F. Let U x V be the
cartesian product of U and V' as sets. A set function

ffUXV =W
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is bilinear if it is linear in both variables separately, that is, if
flru+ su',v) = rf(u,v) + sf(u,v)
and
flu,rv+ sv') = rf(u,v) + sf(u,v)

The set of all bilinear functions from U xV to W is denoted by
homp(U,V;W). A4 bilinear function f:U xV — F with values in the base
field F is called a bilinear form on U x V.[I

Note that bilinearity can also be expressed in matrix language as follows: If
a=(a,...,a,) € F", b=(by,...,b,) € F"
and
u=(ug,...,up) €U", v=(v1,...,0,) € V"
then f:U x V — W is bilinear if
flau',bv") = aFb!
where F' = [f(u;,vj)]i ;.

It is important to emphasize that, in the definition of bilinear function, U x V is
the cartesian product of sets, not the direct product of vector spaces. In other
words, we do not consider any algebraic structure on U x V' when defining
bilinear functions, so expressions like

(z,y) + (z,w) and r(z,y)

are meaningless.

In fact, if V' is a vector space, there are two classes of functions from V' x V' to
W: the linear maps L(V x V, W), where V xV =V BV is the direct
product of vector spaces, and the bilinear maps hom(V, V; W), where V x V is
just the cartesian product of sets. We leave it as an exercise to show that these
two classes have only the zero map in common. In other words, the only map
that is both linear and bilinear is the zero map.

We made a thorough study of bilinear forms on a finite-dimensional vector
space V' in Chapter 11 (although this material is not assumed here). However,
bilinearity is far more important and far-reaching than its application to metric
vector spaces, as the following examples show. Indeed, both multiplication and
evaluation are bilinear.

Example 14.4 (Multiplication is bilinear) If A is an algebra, the product map
A x A — A defined by



Tensor Products 361

n(a,b) = ab

is bilinear, that is, multiplication is linear in each position.[]

Example 14.5 (Evaluation is bilinear) If V' and W are vector spaces, then the
evaluation map ¢: L(V, W) x V. — W defined by

o(f,v) = fu

is bilinear. In particular, the evaluation map ¢:V* x V — F defined by
¢(f,v) = fovis abilinear form on V* x V.O

Example 14.6 If V and W are vector spaces, and f € V* and g € W*, then the
product map ¢: V' x W — F defined by

¢(v,w) = f(v)g(w)

is bilinear. Dually, if v € V and w € W, then the map \:V* x W* — F
defined by

A(f,9) = fv)g(w)

is bilinear.d

It is precisely the tensor product that will allow us to generalize the previous
example. In particular, if 7 € L(U,W) and o € L(V, W), then we would like
to consider a “product” map ¢: U x V — W defined by

¢(u,v) = 7(u) ? 7(v)

The tensor product ® is just the thing to replace the question mark, because it
has the desired bilinearity property, as we will see. In fact, the tensor product is
bilinear and nothing else, so it is exactly what we need!

Tensor Products

Let U and V be vector spaces. Our guide for the definition of the tensor product
U ® V will be the desire to have a universal property for bilinear functions, as
measured by linearity. Referring to Figure 14.4, we want to define a vector
space 1" and a bilinear map ¢:U x V' — T so that any bilinear map f with
domain U x V can be factored through ¢. Intuitively speaking, ¢ is the most
“general” or “universal” bilinear map with domain U x V: It is bilinear and
nothing more.
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t bilinear

UXVv —> T

1
! .
T linear

v
w

f biinear

Figure 14.4

Definition Let U x V' be the cartesian product of two vector spaces over F'. Let
S = Vect(F). Let

F = J{homp(U,V; W) | W € S}
W

be the family of all bilinear maps from U XV to any vector space W. The
measuring family ‘H is the family of all linear transformations.

A pair (T,t:U xV — T) is universal for bilinearity if it is universal for
(F,H), that is, if for every bilinear map f:U xV — W, there is a unique
linear transformation 7:'T — W for which

f=T1ot

The map T is called the mediating morphism for .00
We can now define the tensor product via this universal property.

Definition Let U and V' be vector spaces over a field F. Any universal pair
(T,t:U x V — T) for bilinearity is called a tensor product of U and V. The
vector space T' is denoted by U @ V' and sometimes referred to by itself as the
tensor product. The map t is called the tensor map and the elements of U @ V
are called tensors.

It is customary to use the symbol ® to denote the image of any ordered pair
(u,v) under the tensor map, that is,

u®v=t(u,v)

for any we U and veV. A tensor of the form u®v is said to be
decomposable, that is, the decomposable tensors are the images under the
tensor map.[]

Since universal pairs are unique up to isomorphism, we may refer to “the”
tensor product of vector spaces. Note also that the tensor product ® is not a
product in the sense of a binary operation on a set. In fact, even when V' = U,
the tensor product u ® u is not in U, but rather in U ® U.
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As we will see, there are other, more constructive ways to define the tensor
product. Since we have adopted the universal pair definition, the other ways to
define tensor product are, for us, constructions rather than definitions. Let us
examine some of these constructions.

Construction I: Intuitive but Not Coordinate Free

The universal property for bilinearity captures the essence of bilinearity and the
tensor map is the most “general” bilinear function on U x V. To see how this
universality can be achieved in a constructive manner, let {¢; | ¢ € I} be a basis
for U and let {f; | j € J} be a basis for V. Then a bilinear map ¢t on U x V is
uniquely determined by assigning arbitrary values to the “basis” pairs (e;, f;)
and extending by bilinearity, that is, if u = ) c;e; and v = )3, f;, then

tu,0) = (D aien Y Bif) = 3 aiditle 1)

Now, the tensor map ¢, being the most general bilinear map, must do this and
nothing more. To achieve this goal, we define the tensor map ¢ on the pairs
(ei, fj) in such a way that the images t(e;, f;) do not interact, and then extend
by bilinearity.

In particular, for each ordered pair (e;, f;), we invent a new formal symbol,
written e; ® f;, and define 1" to be the vector space with basis
D={e;® fjlicl,jeJ}

The tensor map is defined by setting t(e;, f;) =e; ® f; and extending by
bilinearity. Thus,

t(u,v) = t(z a;e;, Z'Bffj) = Z(){jﬁj(ej ® fj)

To see that the pair (7', t) is the tensor product of U and V,if g: U x V — W is
bilinear, the universality condition g = 7 o t is equivalent to

7(e; ® f;) = g(ei, f5)

which does indeed uniquely define a linear map 7: T — W. Hence, (T,t) has
the universal property for bilinearity and so we can write 7' = U ® V and refer
to t as the tensor map.

Note that while the set D = {e; ® f;} is a basis for T (by definition), the set
{u@v|luelU,veV}

of decomposable tensors spans 7', but is not linearly independent. This does
cause some initial confusion during the learning process. For example, one
cannot define a linear map on U ® V' by assigning values arbitrarily to the
decomposable tensors, nor is it always easy to tell when a tensor ) u; ® v; is
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equal to 0. We will consider the latter issue in some detail a bit later in the
chapter.

The fact that D is a basis for U ® V' gives the following.

Theorem 14.2 For finite-dimensional vector spaces U and V,

dim(U ® V) = dim(U) - dim(V) |

Construction I1: Coordinate Free

The previous construction of the tensor product is reasonably intuitive, but has
the disadvantage of not being coordinate free. The following approach does not
require the choice of a basis.

Let Fyr«v be the vector space over F with basis U x V. Let S be the subspace
of Fyr v generated by all vectors of the form

r(u,w) + s(v,w) — (ru + sv,w) (14.1)
and

r(u,v) + s(u,w) — (u, v + sw) (14.2)

where r,s € ' and u,v and w are in the appropriate spaces. Note that these
vectors are precisely what we must “identify” as the zero vector in order to
enforce bilinearity. Put another way, these vectors are 0 if the ordered pairs are
replaced by tensors according to our previous construction.

Accordingly, the quotient space

is also sometimes taken as the definition of the tensor product of U and V.
(Strictly speaking, we should not be using the symbol U ® V' until we have
shown that this is the tensor product.) The elements of U ® V have the form

(D oritus o)) + 8 = Y ril(ws, v3) + 8]

However, since r(u,v) — (ru,v) € S and r(u,v) — (u,rv) € S, we can absorb
the scalar in either coordinate, that is,

rl(u,v) + S] = (ru,v) + S = (u,7v) + S
and so the elements of U ® V can be written simply as
> l(ui,v) + 5]

It is customary to denote the coset (u,v) + S by u ® v, and so any element of
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U ® V has the form

Zui X v;

as in the previous construction.

The tensormap t: U x V' — U ® V is defined by
t(u,v) =u®@v=(u,v)+ S
This map is bilinear, since

t(au + bv,w) = (ru + sv,w) + S

[r(u, w) + s(v,w)] + S
[r(u, w) + S] + [s(v,w) + 5]
rt(u, w) + st(v, w)

and similarly for the second coordinate.

We next prove that the pair (U® V,t:U xV — U ® V) is universal for
bilinearity when U ® V is defined as a quotient space Fy;yy/S.

Theorem 14.3 Let U and V' be vector spaces. The pair
UV, t:UxV -URV)
is the tensor product of U and V.

Proof. Consider the diagram in Figure 14.5. Here Fy v is the vector space with
basis U x V.

t
j A T Ny,
U XV > Fyxv > U®V
f EG ///r
\ e
w
Figure 14.5
Since
o j(u,v) = m(u,v) = (u,v) + S =u®v = t(u,v)

we have

t=moyj

The universal property of vector spaces described in Example 14.1 implies that
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there is a unique linear transformation o: Fyyy — W for which
coj=f

Note that o sends the vectors (14.1) and (14.2) that generate .S to the zero vector
and so S C ker(o). For example,

o[r(u,w) + s(v,w) — (ru + sv,w)]
= o[rj(u, w) + sj(v,w) — j(ru + sv,w)]
= roj(u,w) + soj(v,w) — oj(ru + sv,w)
=rf(u,w) + sf(v,w) — f(ru+ sv,w)
=0
and similarly for the second coordinate. Hence, Theorem 3.4 (the universal

property described in Example 14.2) implies that there exists a unique linear
transformation 7: U ® V' — W for which

Tom=o0
Hence,
Tot=Tomoj=co0j=f
As to uniqueness, if 7’ o t = f, then
[(u,v) + S] = f(u,v) = 7[(u,v) + 5]

and since the cosets (u,v) + S generate Fy«y /S, we conclude that 7/ = 7.
Thus, 7 is the mediating morphism and (U ® V/, t) is universal for bilinearity.[]

Let us take a moment to compare the two previous constructions. Let
{e;|i€I}and {f;|je€ J} bebases for U and V, respectively. Let (1”,t') be
the tensor product as constructed using these two bases and let
(T,t) = (Fyxv/S,t) be the tensor product construction using quotient spaces.

Since both of these pairs are universal for bilinearity, Theorem 14.1 implies that
the mediating morphism 7 for ¢ with respect to t/, that is, the map 7: 7" — T
defined by

T(e; ® fj) = (e, f}) + S

is a vector space isomorphism. Therefore, the basis {(e; ® f;)} of T" is sent to
the set {(e;, f;) + S}, which is therefore a basis for T'.

In other words, given any two bases {e; | i € I'} and {f; | j€ J} for U and V,
respectively, the tensors e; ® f; form a basis for U ® V, regardless of which
construction of the tensor product we use. Therefore, we are free to think of
e; ® f; either as a formal symbol belonging to a basis for U @ V' or as the coset
(e, fj) + S belonging to a basis for U @ V.
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Bilinearity on U X V' Equals Linearityon U QV

The universal property for bilinearity says that to each bilinear function
f:U xV — W, there corresponds a unique /inear function 7:U @ V' — W,
called the mediating morphism for f. Thus, we can define the mediating
morphism map

¢:hom(U, V; W) — LUV, W)
by setting ¢ f = 7. In other words, ¢ f is the unique linear map for which
(@f)(u®v) = f(u,v)
Observe that ¢ is itself linear, since if f, g € hom(U, V; W), then
[ro(f) + s6(9)l(u @ v) = 7f(u,v) + sg(u,v) = (rf + 59)(u,v)
and so r¢(f) + s¢(g) is the mediating morphism for rf + sg, that is,
ro(f) + 59(g9) = o(rf + s9)

Also, ¢ is surjective, since if 7:U ® V — W is any linear map, then
f=710t:U xV — W is bilinear and has mediating morphism 7, that is,
¢f = 7. Finally, ¢ is injective, for if ¢f =0, then f = ¢f ot =0. We have
established the following result.

Theorem 14.4 Let U, V and W be vector spaces over F. Then the mediating
morphism map ¢:hom(U,V; W) — L(U @ V,W), where ¢f is the unique
linear map satisfying f = ¢ f ot, is an isomorphism and so

¢:hom(U,V; W)= LUV, W) O

When Is a Tensor Product Zero?

Armed with the universal property of bilinearity, we can now discuss some of
the basic properties of tensor products. Let us first consider the question of
when a tensor ) u; ® v; is zero.
The bilinearity of the tensor product gives

Iv=0+0)®v=0Qv+0®v

and so 0 ® v = 0. Similarly, v ® 0 = 0. Now suppose that
Z U @v; =0

where we may assume that none of the vectors u; and wv; are 0. Let
f:UxV — W be a bilinear map and let :U @ V' — W be its mediating
morphism, that is, 7 o ¢ = f. Then
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0= T(Zu,; ®U¢) = Z(Tot)(unw) = Zf(uiavi)

7

The key point is that this holds for any bilinear function f:U xV — W. In
particular, let « € U* and 8 € V *and define f by

f(u,v) = a(u)b(v)

which is easily seen to be bilinear. Then the previous display becomes

> a(u)B(vi) =0

i

If, for example, the vectors u; are linearly independent, we can take « to be a
dual vector uj, to get

0= ZuZ(ufz)ﬂ(vi) = B(vk)

and since this holds for all linear functionals 5 € V*, it follows that v, = 0. We
have proved the following useful result.

Theorem 14.5 If wuy,...,u, are linearly independent vectors in U and
vy, ..., U, are arbitrary vectors in'V, then

Zm@vi:O = v, =0foralli
In particular, w ® v = 0 if and only if u = 0 orv = 0.0

Coordinate Matrices and Rank

If B={u;|ieI}isabasis for U and C = {v; | j € J} is a basis for V, then
any vector z € U ® V has a unique expression as a sum

2= miilui ®v))
i€l jeJ

where only a finite number of the coefficients 7; ; are nonzero. In fact, for a
fixed z € U ® V, we may reindex the bases so that

a b
2=y > rijwi®u)
=1 =1

where none of the rows or columns of the matrix R = (r; ;) consists only of 0's.
The matrix R = (r; ;) is called a coordinate matrix of z with respect to the
bases 3 and C.

Note that a coordinate matrix R is determined only up to the order of its rows
and columns. We could remove this ambiguity by considering ordered bases,
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but this is not necessary for our discussion and adds a complication, since the
bases may be infinite.

Suppose that W = {w; | i € I} and X = {z; | j € J} are also bases for U and
V', respectively, and that

c d

z= Z s j(w; @ )
1

=1 j=

where S = (s, ;) is a coordinate matrix of z with respect to these bases. We
claim that the coordinate matrices R and S have the same rank, which can then
be defined as the rank of the tensor z ¢ U @ V.

Each wy,...,w. is a finite linear combination of basis vectors in B, perhaps
involving some of w1, ..., u, and perhaps involving other vectors in B. We can
further reindex B so that each wj; is a linear combination of the vectors
B' = (uy,...,u,), where a < n and set

U, = span(uy, ..., Uy)
Next, extend (wy,...,w.) to a basis W = (w1, ..., We, Wei1, ..., wy,) for U,.
(Since we no longer need the rest of the basis VW, we have commandeered the
symbols w41, . .. , wy,, for simplicity.) Hence

n
w; = E a;pup fori=1,....n
h=1

where A = (a; ;) is invertible of size n x n.

Now repeat this process on the second coordinate. Reindex the basis C so that

the subspace V,,, = span(vy,...,v,,) contains x1,...,x, and extend to a basis
X' =(x1,..., 24, Tas1, .-, Tyy) Tor Vp,. Then
m
T = bjrvpforj=1,...,m
k=1

where B = (b;,) is invertible of size m x m.

Next, write

n m

2= Y rig(ui ® )
i=1 j=1

by setting r; ; = 0 for ¢ > @ or j > b. Thus, the n x m matrix R, = (r; j) comes
from R by adding n — a rows of 0's to the bottom and then m — b columns of
0's. In particular, R; and R have the same rank.
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The expression for z in terms of the basis vectors wy, ..., w, and x1,...,x4 can
also be extended using 0 coefficients to

n m
2=y Y sij(wi®))
=1 j=1
where the n x m matrix S; = (s; ;) has the same rank as S.

Now at last, we can compute. First, bilinearity gives

n m

wi @z =YY ainbjk(un @)
h=1k=1

z= sijwi@z) =Y ") 57]( Y " ainbjx(un @ vk))
Y. L L -
= ( (az‘.,hsi.,j)bj,k> (up ® vy

(Atsl)}L,jbjA,k) (up, @ vg)

Thus

n m n 3

ZZ rij(w @) =z = i (A"S1B)x(un & vr)

and so R; = A'S) B. Since A and B are invertible, we deduce that
tk(R) = rk(Ry) = 1k(S1) = rk(S5)

as desired. Moreover, in block matrix terms, we can write

R = [10% 8 and S = [g 8]
J block block
and if we write
Al = [AZ’C | and B= [Bd’b *}
* K Jplock * % ] block

then R; = A'S| B implies that
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R = Al .SBy,

a,c

We shall soon have use for the following special case. If
ZIZU{@U;‘:ZIU1®$1 (14.3)
=1 =1
then R = S = I, and so

T
w; = E aipup fori=1,...,r
h=1

and
xT;= bjrvpforj=1,...,r
=1
where if A, , = (a; ;) and B,., = (b;x), then
I, = Aﬁver

The Rank of a Decomposable Tensor

Recall that a tensor of the form u ® v is said to be decomposable. If {u; | i € I'}
is a basis for U and {v; | j € J} is a basis for 1, then any decomposable vector
has the form

URV = Z risj(u; ® v;)

]

Hence, the rank of a decomposable vector is 1, since the rank of a matrix whose
(4, 7)th entry is r;s; is 1.

Characterizing Vectors in a Tensor Product

There are several useful representations of the tensors in U @ V.

Theorem 14.6 Let {u; | i € I} be a basis for U and let {v; | j € J} be a basis
for V. By an “essentially unique” sum, we mean unique up to order and

presence of zero terms.
1) Every z€ U ®V has an essentially unique expression as a finite sum of

the form
Z T jUq ® Uj

i

where r; j € F' and the tensors u; ® v; are distinct.



372 Advanced Linear Algebra

2) Every z€ U ®V has an essentially unique expression as a finite sum of

the form
Zui ® yi
i

where y; € V and the w;'s are distinct.
3) Every z € U ®V has an essentially unique expression as a finite sum of

the form

where x; € U and the v;'s are distinct.
4) Every nonzero z € U @V has an expression of the form

n
2= w0y
i=1

where the x;'s are distinct, the y;'s are distinct and the sets {x;} C U and
{y;} C V are linearly independent. As to uniqueness, n is the rank of z and
so it is unique. Also, the equation

r T
Zfﬂz‘@yz‘ = sz‘@«zi
i=1 i=1

where the w;'s are distinct, the z's are distinct and {w;} CU and
{2} CV are linearly independent, holds if and only if there exist invertible
r x r matrices A = (a; ;) and B = (b; ;) for which A'B = I and

T r
w; = E Q; T and Zi = E bj’jy]'
J=1 J=1

forv=1,...,r
Proof. Part 1) merely expresses the fact that {u; ® v;} is a basis for U @ V.
From part 2), we write

E T Ui Q@ Vj = E
i,J i

K3

U; & Zri,jvj = Zul ® y;
J i

Uniqueness follows from Theorem 14.5. Part 3) is proved similarly. As to part
4), we start with the expression from part 2):

n
Zui  Yi
i=1

where we may assume that none of the y;'s are 0. If the set {y;} is linearly
independent, we are done. If not, then we may suppose (after reindexing if
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necessary) that

n—1
Yn = § TiYi
=1

Then

n n—1 n—1
Zui Qyi = Zui ®yit+ (Un ® Zﬁ‘%‘)
o ::11 n—1 -
= Zui ®yi+ Z(ﬁun ®Yi)
i—1 i—1

n—1

= Z(Uz + riu,) @ yi
i=1
But the vectors {u; + rju, |1 <i<n—1} are linearly independent. This
reduction can be repeated until the second coordinates are linearly independent.
Moreover, the identity matrix [, is a coordinate matrix for z and so
n =rk(I,) = rk(z). As to uniqueness, one direction was proved earlier; see
(14.3) and the other direction is left to the reader.C]

The proof of Theorem 14.6 shows that if z # 0 and
z = Z S Xt
iel

where s; € U and t; € V, then if the multiset {s; | i € I} is not linearly
independent, we can rewrite z in the form

z:Z&@t;

icly

where {s; | i € Iy} is linearly independent. Then we can do the same for the
second coordinate to arrive so at the representation

tk(z)
z = T; QY

i

||
—-

where the multisets {z;} and {y;} are linearly independent sets. Therefore,
tk(z) < |I] and so the rank of z is the smallest integer m for which z can be
written as a sum of m decomposable tensors. This is often taken as the
definition of the rank of a tensor.

However, we caution the reader that there is another meaning to the word rank
when applied to a tensor, namely, it is the number of indices required to write
the tensor. Thus, a scalar has rank 0, a vector has rank 1, the tensor z above has
rank 2 and a tensor of the form
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iel
has rank 3.

Defining Linear Transformations on a Tensor Product

One of the simplest and most useful ways to define a linear transformation ¢ on
the tensor product U ® V' is through the universal property, for this property
says precisely that a bilinear function f on U x V' gives rise to a unique (and
well-defined) linear transformation on U ® V. The proof of the following
theorem illustrates this well.

Theorem 14.7 Let U and V be vector spaces. There is a unique linear
transformation

U@V = (UeV)"
defined by 0(f @ g) = [ ©® g where

(fO9)(uev) = f(u)g(v)

Moreover, 0 is an embedding and is an isomorphism if U and V are finite-
dimensional. Thus, the tensor product f ® g of linear functionals is (via this
embedding) a linear functional on tensor products.

Proof. Informally, for fixed f and g, the function (u,v) — f(u)g(v) is bilinear
in u and v and so there is a unique linear map f ® g taking u ® v to f(u)g(v).
The function (f,g) — f ® g is bilinear in f and g since

(rf+sg)©h=r(fOh)+s(gOh)

and so there is a unique linear map 6 taking f ® gto f © g.
More formally, for fixed f and g, the map £y ,: U x V — F defined by

Frg(u,v) = f(u)g(v)

is bilinear and so the universal property of tensor products implies that there
exists a unique f © g € (U ® V)* for which

(f o9 (u®v) = f(u)g(v)
Next, the map G: U* x V* — (U ® V)* defined by
G(f,9)=r0yg
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is bilinear since, for example,

[(rf +s9) © hJ(u®@v) = (rf + sg)(u) - h(v)
= rf(u)h(v) + sg(u)h(v)
=[r(fOh)+s(g®h)](uxwv)

which shows that G is linear in its first coordinate. Hence, the universal
property implies that there exists a unique linear map

U@V - (UV)
for which
0(feg=fog

To see that # is an injection, if h € U* ® V'* is nonzero, then we may write A in
the form

h = Zfi ® gi
=1

where the f; € U* are nonzero and {g;|1<i<n}CV* is linearly
independent. If #(h) = 0, then for any u € U and v € V, we have

0=0(h)(u®v)= 29f7®g1 )(u ® v) qu

Hence, for each nonzero u € U, the linear functional

> fiwg

is the zero map and so the linear independence of {g;} implies that f;(u) =0
for all 4. Since w is arbitrary, it follows that f; = 0 for all  and so h = 0.
Finally, in the finite-dimensional case, the map 6 is a bijection since

dim(U* @ V") =dim(U @ V)") < o0 a
Combining the isomorphisms of Theorem 14.4 and Theorem 14.7, we have, for
finite-dimensional vector spaces U and V,

U@V~ (U V) ~hom(U,V;F)

The Tensor Product of Linear Transformations

We wish to generalize Theorem 14.7 to arbitrary linear transformations. Let
7€ L(U,U') and o € L(V,V’). While the product 7(u)o(v) does not make
sense, the tensor product Tu ® ov does and is bilinear in u and v, that is, the
following function is bilinear:
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flu,v) =Tu® ov

The same argument that we used in the proof of Theorem 14.7 will work here.
Namely, the map (u,v) — 7u ® ov from U x V to U’ ® V' is bilinear in u and
v and so there is a unique linear map (7 © ¢): U ® V. — U’ ® V' for which

(TOo)(u®v) =Tu® ov
The function
¢ LU, U)x LV, V)= LUV, U V')
defined by
o(r,0)=T700
is bilinear, since

((at +bp) @ o)(u®v) = (a1 + bp)(u) ® ov
= (aTu + bpu) @ ov
= a[tu ® ov] + b[pu ® ov)
=a(t@0)(u®v)+b(pe o) (u®v)
=(a(r©0) +b(p©®0))(u®v)

and similarly for the second coordinate. Hence, there is a unique linear
transformation

0: LU, U@LV, V)= LUV, U oV’
satisfying
d(r®o)=T700
that is,
[0(T ® 0)](u®v) =Tu® ov

To see that 6 is injective, if h € L(U,U") @ L(V, V") is nonzero, then we may
write

h = Zfi @ gi
=1

where the f; € L(U,U’) are nonzero and the set {g;} C L(V, V") is linearly
independent. If (h) = 0, then for all u € U and v € V' we have

0=0(h)(u®v) = Z@fl@)gl )(u ® v) Zf, u) @ gi(v

Since h # 0, it follows that f; # 0 for some ¢ and so we may choose a u € U
such that f;(u) # 0 for some i. Moreover, we may assume, by reindexing if
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necessary, that the set {fi(u),..., f(u)} is a maximal linearly independent
subset of { f1(u), ..., fn(u)}. Hence, for each k > m, we have

m

u) = Zak7ifi(u)

and so

O_Zfz ®gz
Yo+ 3 [zahﬁ

i=1 k=m+1 [

& gk(’U)

> filw) @ giv Z Zak ilfi(uw) ® gi(v)]
i=1 k=m+11i=
>

= | filu) ® gi(v) + Zfl Z akz,igk(v)]
i=1 k=m+1
S e+ 3 ak.,tgk<v>]
i=1 k=m+1

Thus, the linear independence of {fi(u),..., f(u)} implies that for each
1 < m,

n
+ > arige(v) =

k=m+1

forall v € V and so

n
gi + Z g = 0
k=m+1

But this contradicts the fact that the set {g;} is linearly independent. Hence, it
cannot happen that #(h) = 0 for h # 0 and so € is injective.

The embedding of L(U,U’) ® L(V,V') into L(U ® V,U’ ® V') means that
each 7 ® o can be thought of as the linear transformation 7 ©® o from U ® V' to
U' ® V', defined by

(tO)(u®v)=TUuR 0V

In fact, the notation 7 ® o is often used to denote both the tensor product of
vectors (linear transformations) and the linear map 7 ® o, and we will do this as
well. In summary, we can say that the tensor product 7 ® o of linear
transformations is (up to isomorphism) a linear transformation on tensor
products.
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Theorem 14.8 There is a unique linear transformation
0: LU, U@ LV, V)= LUV, U V')
defined by 0(T1 @ 0) = T © 0 where
(TO)(u®v)=Tu® ov

Moreover, 0 is an embedding and is an isomorphism if all vector spaces are
finite-dimensional. Thus, the tensor product T ® o of linear transformations is
(via this embedding) a linear transformation on tensor products.C]

Let us note a few special cases of the previous theorem.

Corollary 14.9 Let us use the symbol X Y 1o denote the fact that there is an
embedding of X into Y that is an isomorphism if X and Y are finite-
dimensional.

1) TakingU' = F gives

Ur® L(V,V)S LU eV, V)
where
(f@o)(uev)= f(u)o(v)

for f e U™,
2) TakingU' = F and V' = F gives

U@V S (UeV)
where
(f@g)(uev)= f(u)g(v)

3) Taking V =F and noting that L(F, V')~ V' and U ® F ~ U gives
(letting W = V")

LU, UYQW S LU, U @ W)
where
(Tew)(u) =Tu@w
4) TakingU' = F andV = F gives (letting W = V")
U @W S LU, W)
where

(f @w)(u) = fuw)w O
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Change of Base Field

The tensor product provides a convenient way to extend the base field of a
vector space that is more general than the complexification of a real vector
space, discussed earlier in the book. We refer to a vector space over a field F' as
an F-space and write Vp.

Actually, there are several approaches to “upgrading” the base field of a vector
space. For instance, suppose that K is an extension field of F), that is, F C K.
If {b;} is a basis for Vp, then every « € Vp has the form

Tr = erbj

where r; € F'. We can define a K-space Vi simply by taking all formal linear
combinations of the form
Tr = ZO&jbi

where a; € K. Note that the dimension of Vi as a K-space is the same as the
dimension of V as an F-space. Also, Vi is an F-space (just restrict the scalars
to F) and as such, the inclusion map j:Vp — Vix sending x € Vp to
j(x) = x € Vg is an F'-monomorphism.

The approach described in the previous paragraph uses an arbitrarily chosen
basis for Vp and is therefore not coordinate free. However, we can give a
coordinate-free approach using tensor products as follows. Since K is a vector
space over F', we can form the tensor product

Wr=K® pVp

It is customary to include the subscript F' on ® r to denote the fact that the
tensor product is taken with respect to the base field F'. (All relevant maps are
F-bilinear and F'-linear.) However, since V is not a K -space, the only tensor
product of K and Vp that makes sense is the F'-tensor product and so we will
drop the subscript F'.

The tensor product W is an F'-space by definition of tensor product, but we
can make it into a K -space as follows. For a € K, the temptation is to “absorb”
the scalar «v into the first coordinate,

a(fv) = (af)®v
but we must be certain that this is well-defined, that is,
BRv=y0w = (af)@v=(ay)@w

But for a fixed «, the map (5, v) — (o) ® v is bilinear and so the universal
property of tensor products implies that there is a unique linear map
8 ® v (af) ® v, which we define to be scalar multiplication by «.
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To be absolutely clear, we have two distinct vector spaces: the F'-space
Wpr = K ® Vi defined by the tensor product and the K-space Wy = K @ Vg
with scalar multiplication by elements of K defined as absorption into the first
coordinate. The spaces Wy and Wy are identical as sets and as abelian groups.
It is only the “permission to multiply by” that is different. Accordingly, we can
recover W from Wy simply by restricting scalar multiplication to scalars from
F.

Thus, we can speak of “F'-linear” maps 7 from Vz into Wi, with the expected
meaning, that is,
T(ru+ sv) = rru + sTv

for all scalars r, s € F.

If the dimension of K as a vector space over F' is d, then
dlmF(WF) = dlmF(K ® VF) =d- dlmF(VF)

As to the dimension of Wy, it is not hard to see that if {b;} is a basis for V,
then {1 ® b;} is a basis for W. Hence

The map p: Vp — W defined by pv = 1 ® v is easily seen to be injective and
F-linear and so Wy contains an isomorphic copy of V. We can also think of x4
as mapping Vp into Wi, in which case p is called the K-extension map of Vp.
This map has a universal property of its own, as described in the next theorem.

Theorem 14.10 The F-linear K-extension map u:Vip — K ® Vi has the
universal property for the family of all F-linear maps from Vi into a K-space,
as measured by K-linear maps. Specifically, for any F-linear map f:Vy — Y,
where Y is a K-space, there exists a unique K-linear map 7: K @ Vp — Y for
which the diagram in Figure 14.6 commutes, that is, for which

Top=f

Proof. If such a K-linear map 7: K ® Vr — Y is to exist, then it must satisfy,
forany § € K,

T(B®v) = pr(l®v) = Bru(v) = Bf(v)

This shows that if 7 exists, it is uniquely determined by f. As usual, when
searching for a linear map 7 on a tensor product such as K ® Vp, we look for a
bilinear map. The map g: (K X Vi) — Y defined by

9(B,v) = Bf(v)
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is bilinear and so there exists a unique F'-linear map 7 for which
T(B®@v) = Bf(v)
It is easy to see that 7 is also K -linear, since if o € K, then

Tl @v)] = 7(af @ v) = abf(v) = ar(B @) O

vV, —E—>K®V,

S

Figure 14.6

Theorem 14.10 is the key to describing how to extend an F'-linear map to a K-
linear map. Figure 14.7 shows an F'-linear map 7: V' — W between F'-spaces V'
and W. It also shows the K-extensions for both spaces, where K ® V' and
K ® W are K-spaces.

vV ——> W

Hy Hw

KRV ——> KW

Figure 14.7

If there is a unique K-linear map 7 that makes the diagram in Figure 14.7
commute, then this would be the obvious choice for the extension of the F'-
linear map 7 to a K -linear map.

Consider the F-linear map o = (uyo7):V — K ®@ W into the K-space
K ®W. Theorem 14.10 implies that there is a unique K-linear map
TK®V — K®W for which

Touy =0
that is,
TOopy =pworT

Now, T satisfies
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T(B@v) = pT(l®v)
= B(T o uv)(v)
= B(uw o 7)(v)
= 3(1® Tv)
=[BTV
=tk ®7)(B®0)

andsoT = 1x R T.
Theorem 14.11 Let V and W be F-spaces, with K-extension maps [y and
ww, respectively. (See Figure 14.7.) Then for any F-linear map 7:V — W, the

map tg QT KRV — KW is the unique K-linear map that makes the
diagram in Figure 14.7 commute, that is, for which

porT =g RT)ov O

Multilinear Maps and Iterated Tensor Products

The tensor product operation can easily be extended to more than two vector
spaces. We begin with the extension of the concept of bilinearity.

Definition If Vi,...,V,, and W are vector spaces over F, a function
f:Vi x - x V,, = W is said to be multilinear if'it is linear in each coordinate
separately, that is, if

/
Flur, oo up—1, 70+ SV, Ugy1,y .0, Up)
/
=rf (Ul U1y Uy Ul 1y ey Up) F SF(ULy ey U1, Uy U1y - ey U
forall k =1,...,n. A multilinear function of n variables is also referred to as

an n-linear function. The set of all n-linear functions as defined above will be
denoted by hom(Vy, ..., V,; W). A multilinear function from Vi X --- x V,, to
the base field F is called a multilinear form or n-form.O

Example 14.7

1) If A is an algebra, then the product map p: A x --- x A — A defined by
wlay,...,a,) = aj---a, is n-linear.

2) The determinant function det: M,, — F' is an n-linear form on the columns
of the matrices in M,,.[1

The tensor product is defined via its universal property.

Definition As pictured in Figure 14.8, let Vi x --- XV, be the cartesian
product of vector spaces over F. A pair (T,t: V] x --- x V, — T) is universal
for multilinearity if for every multilinear map f:Vy x --- x V,, — W, there is
a unique linear transformation 7:T — W for which
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f=T1ot

The map T is called the mediating morphism for f. If (T,t) is universal for
multilinearity, then T is called the tensor product of Vi, ..., V,, and denoted by
Vi®- - ®V,. The map t is called the tensor map.]

VoeoxV, — L 5 V@0V,
T

\%
w

Figure 14.8

As we have seen, the tensor product is unique up to isomorphism.

The basis construction and coordinate-free construction given earlier for the
tensor product of two vector spaces carry over to the multilinear case.

In particular, let B; = {e; ; | j € J;} be a basis for V; fori = 1,...,n. For each
ordered n-tuple (e1;,...,€n4,), construct a new formal symbol
e, ® - ® ey, and define T" to be the vector space with basis

D={e1;, @ - @en | ir € i}
The tensor map ¢: Vi x --- x V,, — T'is defined by setting
t(e1iyy e s ni,) = €1i ® - @ en,

and extending by multilinearity. This uniquely defines a multilinear map ¢ that is
universal for multilinear functions from V; x --- x V,.

Indeed, if ¢: Vi x --- x V,, — W is multilinear, the condition f=r7ot is
equivalent to

T(e1i @ @ eni,) = feris -, eni,)
which uniquely defines a linear map 7: T — W. Hence, (T, ) has the universal

property for multilinearity.

Alternatively, we may take the coordinate-free quotient space approach as
follows.

Definition Let Vi, ..., V), be vector spaces over F and let F be the vector space
with basis Vi x --- X V,,. Let S be the subspace of F generated by all vectors of
the form
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I
T(V1y vy Up—15 Uy Ukgdy - vy Un) F S(U15 0oy U1, U, U1y ooy U)
i
— (U1, ey U1, TU + SU U1y e, U)

for r,s € F, u,u’ € Vi, and v; € V; for i # k. The quotient space F/S is the
tensor product of V1, ..., 'V, and the tensor map is the map

t(vr, ..o ) = (V1,000 ,0) + S O

As before, we denote the coset (vq,...,v,) + S by v1 ® --- ® v, and so any
element of V) ® --- ® V,, is a sum of decomposable tensors, that is,

Zvil ® R,

where the vector space operations are linear in each variable.

Here are some of the basic properties of multiple tensor products. Proof is left to
the reader.

Theorem 14.12 The tensor product has the following properties. Note that all
vector spaces are over the same field F.
1) (Associativity) There exists an isomorphism

TN V)W @ W, -V -V, W, & - @ W,
for which
(0 ® - ®1) @ (W @ @Wp)| =11 ® @ Uy @ Wy @ -+ @ Wiy
In particular,
UV)@WxUQ(VeaW)=UQV W

2) (Commutativity) Let m be any permutation of the indices {1,...,n}. Then
there is an isomorphism

oVi®@-- @V, = Vi) @ & Vi
for which
oV ® @ V) = Vr() @+ ® Vn(n)
3) There is an isomorphism p: F @ V. — V for which
m(reov)=rv
and similarly, there is an isomorphism ps:V @ F — V for which
p(v®r)=rv
Hence, FV =~V ~V @ F.O

The analog of Theorem 14.4 is the following.
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Theorem 14.13 Let Vi,...,V,, and W be vector spaces over F. Then the
mediating morphism map

¢:hom(Vy,...,. Vi, W) - LV ® - @V, W)

defined by the fact that ¢f is the unique mediating morphism for f is an
isomorphism. Thus,

hOm(%,...,‘/n;W) %‘C(‘/l®®‘/n7w)

Moreover, if all vector spaces are finite-dimensional, then
dim(hom(V4, ..., V,; W)] = dim(W') - | [dim(V;) O
i=1

Theorem 14.8 and its corollary can also be extended.

Theorem 14.14 The linear transformation
0: L(U,U) ® @ LU, U) — LU @ U, Ul @@ U))
defined by
@ @) (U @ @ Un) =TI @ -+ @ Tlly

is an embedding and is an isomorphism if all vector spaces are finite-
dimensional. Thus, the tensor product 7| ® --- @ T, of linear transformations is
(via this embedding) a linear transformation on tensor products. Two important
special cases of this are

Ui @ @U; = (U@ ®U,)"

where
(1@ @ fu)lur ® - @up) = fr(u1) - fu(un)
and
Ui @ @UieV < LU @ @ U,,V)
where

(fl K& f’n X U)(ul &K ®un) = fl(ul)"'fn(un)v O

Tensor Spaces

Let V be a finite-dimensional vector space. For nonnegative integers p and g,
the tensor product
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'V)=V® -V eV e -V =VPeg (V)

q

p factors q factors

is called the space of tensors of type (p, @), where p is the contravariant type
and ¢ is the covariant type. If p = ¢ = 0, then T/ (V') = F, the base field. Here

we use the notation V" for the n-fold tensor product of V' with itself. We will
also write V'*" for the n-fold cartesian product of V' with itself.

Since V' =~ V**, we have
THV) =V & (V)7 (V) & Vo)~ homp((V')7 x V™1, F)
which is the space of all multilinear functionals on

Vix oo xV o x Vx.-xV

p factors q factors

In fact, tensors of type (p, q) are often defined as multilinear functionals in this
way.
Note that

dim(T7(V)) = [dim(V)]P*4
Also, the associativity and commutativity of tensor products allows us to write

r D+1

Ty (V)@ TI(V) = T (V)

at least up to isomorphism.

Tensors of type (p, 0) are called contravariant tensors

V) =T(V)=V® -V

p factors
and tensors of type (0, ¢) are called covariant tensors

TLV)=T)(V)=V 8- oV

q factors

Tensors with both contravariant and covariant indices are called mixed tensors.

In general, a tensor can be interpreted in a variety of ways as a multilinear map
on a cartesian product, or a linear map on a tensor product. Indeed, the
interpretation we mentioned above that is sometimes used as the definition is
only one possibility. We simply need to decide how many of the contravariant
factors and how many of the covariant factors should be “active participants”
and how many should be “passive participants.”
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More specifically, consider a tensor of type (p, ¢), written
vl®"'®vm®"'®vp®fl®"'®fn®”‘®fq Gqu(V)

where m < p and n < q. Here we are choosing the first m vectors and the first
n linear functionals as active participants. This determines the number of
arguments of the map. In fact, we define a map from the cartesian product

Vix oo x V" x Vx--xV

m factors n factors

to the tensor product

VRV eV e -V

p—m factors q—n factors

of the remaining factors by

(M @U@ fi @& fo)(h1yooy o, 15, )
= hl(Ul)' . 'hm(vrn)fl(xl)' : 'fn(xn)Uerl K& Up 02y f’n+1 K- fq

In words, the first group v; ® --- ® vy, of (active) vectors interacts with the first
group hy, ..., h,, of arguments to produce the scalar h;(vy)---h,,(v,,). The first
group f1 ®---® f, of (active) functionals interacts with the second group
x1,..., %, of arguments to produce the scalar fi(x;)---f,(x,). The remaining
(passive) vectors vy,41 ®---®v, and functionals f,;1 ®---® f, are just
“copied” to the image tensor.

It is easy to see that this map is multilinear and so there is a unique linear map
from the tensor product

V@ -V elVe oV

m factors n factors

to the tensor product

Vo - eVeV'e -V

p—m factors q—n factors

defined by

(Ul ®"'®'Up@fl ®"'®fq)(h1 ®---®hm®l‘1 ®...®$n)
== hl(vl)"'hm,(vm),fl(xl)'",fn($n)vm+1 SOREE ®Up ®fn+l & ®fq

Moreover, the map

G-V @ (V)™ — L((VH)*" @ Vo, vEmm @ (V) =limm)
defined by

P ® - BVO®fi® - ®f) =10 01,0 OO f
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is an isomorphism, since if v; ©® --- © v, © f1 @ --- © f, is the zero map then
ha(v1): -l (V) f1(@1) - f(@n) Uiy @ -+ @0 @ fr1 @ - ® fy =0
forall h; € V* and z; € V, which implies that
VR QU iR f=0
As usual, we denote the map v; @ --- O v, ® f1 ©--- © f, by
MR - RUVRH® - f,

Theorem 11.15 For 0 < m < pand 0 <n < q,

TH(V) m L((V)P" @ VI, VEP=m g (VF)limm) O
When m = p and n = ¢, we get

TP(V) = L((V)P @ VL F) = (V)P @ V)

as before.

Let us look at some special cases. For ¢ = 0 we have
(V) ~ LV, V)
where
(1@ @uy)(h1 @ @ hy) = hi1(v1) Py (V) V1 @ -+ vy
Whenp=qg=1,wegetform=0andn =1,
T'V)~L(FRV,VeF)~L(V)

where

(ve f)(w) = f(w)v
and form = 1landn =0,

TV~ L(V*Q@F,FoV*) ~ LV, V")

where

(0@ f)(h) = h(v)f
Finally, when m = n = 1, we get a multilinear form

(v® f)(h,w) = h(v)f(w)

Consider also a tensor f® g of type (0,2). When n=¢=2 we get a
multilinear functional f ® g: (V x V') — F defined by
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(f @ g)(v,w) = fv)g(w)
This is just a bilinear form on V.
Contraction

Covariant and contravariant factors can be “combined” in the following way.
Consider the map

h: VP (V)1 — TPH(V)
defined by
h(vi,oc,vp, fioeo, fo) = ilo) (02 @ - @0, ® 1 ® - f,)
This is easily seen to be multilinear and so there is a unique linear map
0: T/ (V) = T, (V)
defined by
1@ Rup®fi® - ® fg) = filv)(12@ - Qv ® f1® - @ fy)

This is called the contraction in the contravariant index 1 and covariant index
1. Of course, contraction in other indices (one contravariant and one covariant)
can be defined similarly.

Example 14.8 Let dim(V') > 1 and consider the tensor space T} (V'), which is
isomorphic to £(V') via the map

(0@ f)(w) = f(w)v

For a “decomposable” linear operator of the form v @ f as defined above with
v#0 and f #0, we have ker(v® f) = ker(f), which has codimension 1.
Hence, if f(w)(v) = (v® f)(w) # 0, then

V= (w) @ ker(f) = (w) © &
where & is the eigenspace of v ® f associated with the eigenvalue 0.
In particular, if f(v) # 0, then
(v& f)(v) = flv)
and so v is an eigenvector for the nonzero eigenvalue f(v). Hence,
V=(v)®& =& @&

and so the trace of v ® f is
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tr(v® f) = f(v) =0(ve [)
where 6 is the contraction map.O]
The Tensor Algebra of V
Consider the contravariant tensor spaces
TV(V)=TP(V) =V

For p = 0 we take 7°(V) = F. The external direct sum

of these tensor spaces is a vector space with the property that
TY(V)Y®TYV) =T'V)

This is an example of a graded algebra, where T?(V') are the elements of grade
p. The graded algebra T'(V) is called the tensor algebra over V. (We will
formally define graded structures a bit later in the chapter.)

Since

T,(V)=V'®-- @V =TV
———— ———

q factors
there is no need to look separately at T, (V).

Special Multilinear Maps
The following definitions describe some special types of multilinear maps.
Definition

1) A multilinear map f:V>*" — W is symmetric if interchanging any two
coordinate positions changes nothing, that is, if

for, o vy, 0) = (01,000, 05,000, 4, U)

forany i # j.
2) A multilinear map f:V>*" — W is antisymmetric or skew-symmetric if
interchanging any two coordinate positions introduces a factor of —1, that

is, if
Jui, o 00, 0) = = f(U1, 0, Uy e, Uy, )

fori # 3.
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3) A multilinear map f: V" — W is alternate or alternating if
v =vjforsomei#j = f(vi,...,v,) =0 O

As in the case of bilinear forms, we have some relationships between these
concepts. In particular, if char(F') = 2, then

alternate = symmetric < skew-symmetric

and if char(F') # 2, then

alternate < skew-symmetric

A few remarks about permutations are in order. A permutation of the set
N ={1,...,n} is a bijective function m: N — N. We denote the group (under
composition) of all such permutations by S,,. This is the symmetric group on n
symbols. A cycle of length % is a permutation of the form (i1, @9, ... , i1 ), which
sends 7, to 4,41 foru =1,...,k — 1 and also sends ;. to ¢;. All other elements
of N are left fixed. Every permutation is the product (composition) of disjoint
cycles.

A transposition is a cycle (¢, j) of length 2. Every cycle (and therefore every
permutation) is the product of transpositions. In general, a permutation can be
expressed as a product of transpositions in many ways. However, no matter how
one represents a given permutation as such a product, the number of
transpositions is either always even or always odd. Therefore, we can define the
parity of a permutation 7 € .S, to be the parity of the number of transpositions
in any decomposition of 7 as a product of transpositions. The sign of a
permutation is defined by

B 1 7 has even parity
sg(m) = { —1 7 has odd parity

If sg(m) = 1, then 7 is an even permutation and if sg(7) = —1, then 7 is an
odd permutation. The sign of 7 is often written (—1)".

With these facts in mind, it is apparent that f is symmetric if and only if
Fi, o 00) = f(Urys o5 Vn(n))
for all permutations 7 € .S, and that f is skew-symmetric if and only if
for,v0) = (=17 f(Vr1), -+ Va(n))

for all permutations 7w € S,,.

A word of caution is in order with respect to the notation above, which is very
convenient albeit somewhat prone to confusion. It is intended that a permutation
7 permutes the coordinate positions in f, not the indices (despite appearances).
Suppose, for example, that f:R? x R? — X and that {e;, es} is a basis for R?.
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If 7 = (12), then 7 applied to f(e1,e1) gives f(e1,e1) and not f(es, €2), since
7 permutes the two coordinate positions in f(vy, vs).

Graded Algebras

We need to pause for a few definitions that are useful in discussing tensor
algebras. An algebra A over F' is said to be a graded algebra if as a vector
space over I, A can be written in the form

A= A,

00
i=0
for subspaces A; of A, and where multiplication behaves nicely, that is,

AiA; C A
The elements of A; are said to be homogeneous of degree i. If a € A is written

a:ail+...+ai”

for a;, € A;,, i) # ij, then q;, is called the homogeneous component of a of
degree 1.

The ring of polynomials F[z] provides a prime example of a graded algebra,
since

where F}[x] is the subspace of F'[x] consisting of all scalar multiples of 2.

More generally, the ring F[zy,...,x,] of polynomials in several variables is a
graded algebra, since it is the direct sum of the subspaces of homogeneous
polynomials of degree i. (A polynomial is homogeneous of degree i if each
term has degree . For example, p = I1$§ + x1wox3 is homogeneous of degree
3.)

The Symmetric and Antisymmetric Tensor Algebras

Our discussion of symmetric and antisymmetric tensors will benefit by a
discussion of a few definitions and setting a bit of notation at the outset.

Let Fyleq,...,e,] denote the vector space of all homogeneous polynomials of
degree p (together with the zero polynomial) in the independent variables
ey,...,e,. As is sometimes done in this context, we denote the product in
F,le1,...,e,] by V, for example, writing ejeses as e V e V e5. The algebra of
all polynomials in ey, ..., e, is denoted by Flley, ..., e,].
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We will also need the counterpart of F,[e, ..., e,] in which multiplication acts
anticommutatively, that is, e;e; = —eje;.

Definition Let E = (ey,...,e,) be a sequence of independent variables. For
p<n,let F[e1, ..., e,] be the vector space over I with basis

AP(E) = {eil'"eip | i <iy <-or < Zp}

consisting of all words of length p over E that are in ascending order. Let
Eyler, ..., en] = Fe, which we identify with F by identifying € with 1 € F.
Define a product on the direct sum

Fley,...,en] = @Fp’
p=0

as follows. First, the product f Ag of monomials [ =xzy---x,€F, and

g =yi--Yq € I~ is defined as follows:

1) Ifxi---xpy1- -y, has a repeated factor then f N g = 1.

2) Otherwise, reorder x1---Tpy1- - -y, in ascending order, say z---2pyq, via the
permutation o and set

fAg=(=1)7z12py

Extend the product by distributivity to F~[ey,...,e,]. The resulting product
makes F~[eq, ..., e,] into a (noncommutative) algebra over F. This product is
called the wedge product or exterior product on F~ [ey, ..., e,].00

For example, by definition of wedge product,
62/\61/\632 —61/\62/\63

Let B = {e1,...,e,} be a basis for V. It will be convenient to group the
decomposable basis tensors e; ® -+ ® e;, according to their index multiset.
Specifically, for each multiset M = {i1,...,7,} with 1 < i <n, let Gis be the
set of all tensors

ekl®...®ekp

where (ki,...,k,) is a permutation of {i1,...,4,}. For example, if
M = {2,2,3}, then

Gu={e2®e;®e3,ea@e3®er,e3@ey @ ey}
If v € T?(V') has the form

v= E Qiy,. i, €0 @ - D €,

0150 ylp

where a;, i # 0, then let Gy (v) be the subset of Gj; whose elements appear



394 Advanced Linear Algebra

in the sum for v. For example, if
V=26 Qe ®eg+ 3R ez e+ e3®ezRe;
then
G (v) ={e2®@e®e3 e @e3 @ er}

Let Sys(v) denote the sum of the terms of v associated with Gj/(v). For
example,

S{ngyg} (U) =2ey ® ey ®ez+ 36 ®esz ® e

Thus, v can be written in the form

v = ZSM(U) = Z Z oyt
M

M\ teGy(v)

where the sum is over a collection of multisets M with Sy/(v) # 0. Note also
that oy # 0 since t € G/ (v). Finally, let

Up = 67;1 ® ...®e,]./p

be the unique member of Gy for which 7; < iy < --- < 4.

Now we can get to the business at hand.
Symmetric and Antisymmetric Tensors

Let S, be the symmetric group on {1,...,p}. For each ¢ € S,, the multilinear
map f,: VP — TP(V) defined by

fo(@1,e s 2p) =201 @ @ 24y
determines a unique linear operator A, on 77(V') for which
Aol21 @ - @) = Tt ® -+ @ T
For example, if p = 3 and o = (12), then
Aa2)(v1 ® v3 ® v2) = v3 ® V1 @V
Let {e1,...,e,} be abasis for V. Since A, is a bijection of the basis
B={e;® --®@e|e; B}

it follows that A, is an isomorphism of 7T7(V'). Note also that A\, is a
permutation of each GGy, that is, the sets Gy are invariant under \,.

Definition Let V' be a finite-dimensional vector space.
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1) Atensort € TP(V) is symmetric if
Aot =1
for all permutations o € S,,. The set of all symmetric tensors
STP(V)={teT?(V) | \t=tforalloc e S,}

is a subspace of T?(V'), called the symmetric tensor space of degree p
over'V.
2) Atensort € TP(V) is antisymmetric if

Aot = (—=1)%t
The set of all antisymmetric tensors
ATP(V) ={t € TP(V) | Aot = (=1)t forall o € S,}
is a subspace of TP (V'), called the antisymmetric tensor space or exterior

product space of degree p over V.1

We can develop the theory of symmetric and antisymmetric tensors in tandem.
Accordingly, let us write (anti)symmetric to denote a tensor that is either
symmetric or antisymmetrtic.

Since for any s,t € GG, there is a permutation ), taking s to ¢, an
(anti)symmetric tensor v must have G s (v) = G, and so

o= Ssulo) = (T
M M teGy
Since A, is a permutation of (¢, it follows that v is symmetric if and only if
Ao (Sar(v)) = Su(v)

for all 0 € S, and this holds if and only if the coefficients oy of Sy/(v) are
equal, say ay = ayy for all ¢ € ;. Hence, the symmetric tensors are precisely
the tensors of the form

V= Z (OzM Z t)
M teGr
The tensor v is antisymmetric if and only if
Ao (Sa(v)) = (~1)7 S (v) (14.4)

In this case, the coefficients oy of Sy (v) differ only by sign. Before examining
this more closely, we observe that M must be a set. For if M has an element k
of multiplicity greater than 1, we can split G, into two disjoint parts:
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where G, are the tensors that have ey, in positions r and s:

G%[:{(i“@@ e R Qe ®"'®€i,)}

position position s

Then A, fixes each element of G}, and sends the elements of G}, to other
elements of Gj;. Hence, applying A, to the corresponding decomposition of
SM(U)Z

Sa(v) = Sy + Sy
gives
—(Sg\[ + SXI) = —S]\,j = )\(12)5]\,1 = S]/\[ + )\(12)55\,{

and so S}, = 0, whence Sy (v) = 0. Thus, M is a set.

Now, since for any o € S,
Gy ={)\t|t e Gy}
equation (14.4) implies that
(-1)° Z ot = Ay ( Z att> = Z At = Z ay it
Gy teGy Gy teGy
which holds if and only if ay 1, = (1), or equivalently,
e = (1)

for all t€ Gy and o€ S, Choosing u=uy =e; ® e, where
1y < --- <1, as standard-bearer, if o,; denotes the permutation for which
Ao, (u) = t, then

Qp = (_1)0“"T’Oéu
Thus, v is antisymmetric if and only if it has the form
V= Z (aM Z (—1)”“'%)
M teG oy

where oy = v, # 0 and the sum is over a family of sets.

In summary, the symmetric tensors are
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v= Z(aMZt>

M teG
where M is a multiset and the antisymmetric tensors are
=3 ( > <—1>”““t)
M teGar

where M is a set.

We can simplify these expressions considerably by representing the inside sums
more succinctly. In the symmetric case, define a surjective linear map

T:TP(V) — Fylei, ..., en)
by
ey @ ®e) =€, Vo Ve

and extending by linearity. Since 7 takes every member of (Gj; to the same
monomial Tu =¢e;, V-V €i,» where iy < --- < 7),, we have

TW=T <Z (aM Z t) ) = ZaM\GM\TuM
M teG M
In the antisymmetric case, define a surjective linear map
mTP(V) — F, [e1, ..., €]
by
(e, @+ ®equ) =ey, N Nej,
and extending by linearity. Since
Tt = (=1)7 71Uy,

we have

M teGy
= E (aﬂf E TU]\,[)
M teGy

= an|Gulrun
M
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Thus, in both cases,

TV = ZOU\HGJ\HTUM
M

where uy = ¢;, ® -+ ® ¢;, with i <ig < --- <4, and

TuM =€y V-V, o Tuy =ei N Ae,

depending on whether v is symmetric or antisymmetric. However, in either case,
the monomials 7uj,; are linearly independent for distinct multisets/sets M.
Therefore, if 7v =0 then «ay/|Gy| =0 for all multisets/sets M. Hence, if
char(F) =0, then ap; = 0 and so v = 0. This shows that the restricted maps
T|srv(vy and 7| gpp(vy are isomorphisms.

Theorem 14.16 Let V be a finite-dimensional vector space over a field F' with

char(F) = 0.
1) The symmetric tensor space STP(V) is isomorphic to the algebra
F,le1, ..., ey] of homogeneous polynomials, via the isomorphism

T(Zai,,.“,%eil ®-® ez,,) = i le, Ve Vey)

2) For p <mn, the antisymmetric tensor space ATP(V') is isomorphic to the
algebra F le1,...,e,] of anticommutative homogeneous polynomials of
degree p, via the isomorphism

T(Z%,...,i,ﬁil ® - ® %) = i ilen A Aer) o

The direct sum
ST(V) =P ST"(V) ~ Fley, ..., €]
p=0

is called the symmetric tensor algebra of V' and the direct sum

AT(V) = P AT (V) = Fley, ..., )]
p=0

is called the antisymmetric tensor algebra or the exterior algebra of V. These
vector spaces are graded algebras, where the product is defined using the vector
space isomorphisms described in the previous theorem to move the products of
Fley,...,e,J and F[eq,...,e,] to ST(V) and AT (V), respectively.

Thus, restricting the domains of the maps 7 gives a nice description of the
symmetric and antisymmetric tensor algebras, when char(F) = 0. However,
there are many important fields, such as finite fields, that have nonzero
characteristic. We can proceed in a different, albeit somewhat less appealing,
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manner that holds regardless of the characteristic of the base field. Namely,
rather than restricting the domain of 7 in order to get an isomorphism, we can
factor out by the kernel of 7.

Consider a tensor

’U:ZSM(U)ZZ Z oyt
i

M\ teGy(v)
Since 7 sends elements of different groups Gy (v) = {t1,..., ¢} to different
monomials in Fler,...,e,] or F[er, ..., e,], it follows that v € ker(7) if and

only if 7(Sys(v)) = 0 for all M, that is, if and only if

oy Tt + -+ oy, Tt =0
In the symmetric case, 7 is constant on G/ (v) and so v € ker(7) if and only if

op, +-+a, =0
In the antisymmetric case, 7t; = (—1)77t; where A, (t1) =t; and so
v € ker(7) if and only if
(=) oy, + -+ (=1)"ay, =0
In both cases, we solve for oy, and substitute into Sy;(v). In the symmetric case,
Qi

= Ty = = Oy

and so
Su(v) = apty + -+ ayty = oy, (ta — t1) + - + g (B — t1)
In the antisymmetric case,

Qy = —(—1)01-2at2 . (_:[)(fl.koétlC

and so
S]L[(U) = Oét]tl + -+ atktk
= (=)t — ) + - ag (1)t — 1)

Since ¢; € B, it follows that Sj,(v) and therefore v, is in the span of tensors of
the form A,(¢) —t¢ in the symmetric case and (—1)?A,(¢t) —¢ in the
antisymmetric case, where o € S, and t € B.

Hence, in the symmetric case,
ker(t) C I, == (A (t) =t |t € B,o € 5))

and since 7(\,(t) —t) =0, it follows that ker(7) = I,. In the antisymmetric
case,
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ker(r) C I, == ((=1)7A,(t) =t | t € B,o € S,)
and since 7((—1)7 A\, (t) — t) = 0, it follows that ker(7) = I,.

We now have quotient-space characterizations of the symmetric and
antisymmetric tensor spaces that do not place any restriction on the
characteristic of the base field.

Theorem 14.17 Let V be a finite-dimensional vector space over a field F'.
1) The surjective linear map 7:T?(V') — Fle1, ..., e,] defined by

7'( E iy, i iy @ @ ez',,) = E Qiy,. i Vo Ve,

has kernel
I,=(\(t)—t|teB,oes,)
and so
TP(V
(V) ~ Fyler, ..., e
I,

The vector space TP(V')/I is also referred to as the symmetric tensor
space of degree p of V.
2)  The surjective linear map 7:T? (V') — F [e1, ..., e,] defined by

T(E Qiy,. i, €1y @ @ %) = E Qiy,.. i€ N AN e,

has kernel
I ={(-1)7A(t) —t|t € B,o €5,)
and so
™V) -
Ip %Fp[elﬂ"wen]

The vector space T?(V')/I is also referred to as the antisymmetric tensor
space or exterior product space of degree p of V. 1

The isomorphic exterior spaces AT? (V') and T?(V') /1, are usually denoted by
A’V and the isomorphic exterior algebras AT (V) and T'(V))/I are usually
denoted by AV

Theorem 14.18 Let V' be a vector space of dimension n.
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1) The dimension of the symmetric tensor space STP(V) is equal to the

number of monomials of degree p in the variables e, ... e, and this is
-1
dim(ST?(V,)) = (” +§ )

2)  The dimension of the exterior tensor space \' (V') is equal to the number of
words of length p in ascending order over the alphabet E = {ey, ..., e,}
and this is

p

am( A" = ()

Proof. For part 1), the dimension is equal to the number of multisets of size p
taken from an underlying set {ey,...,e,} of size n. Such multisets correspond
bijectively to the solutions, in nonnegative integers, of the equation

T+ F+Tp=p

where z; is the multiplicity of e; in the multiset. To count the number of
solutions, invent two symbols = and /. Then any solution x; =s; to the
previous equation can be described by a sequence of «'s and /'s consisting of s,
x's followed by one /, followed by s, «'s and another /, and so on. For example,
if p = 6 and n = 4, the solution 3 + 1 + 0 + 2 = 6 corresponds to the sequence

Thus, the solutions correspond bijectively to sequences consisting of p z's and
n — 1 /'s. To count the number of such sequences, note that such a sequence can
be formed by considering n + p — 1 “blanks” and selecting p of these blanks for
the z's. This can be done in
(n +p— 1)
p

ways.[]
The Universal Property

We defined tensor products through a universal property, which as we have seen
is a powerful technique for determining the properties of tensor products. It is
easy to show that the symmetric tensor spaces are universal for symmetric
multilinear maps and the antisymmetric tensor spaces are universal for
antisymmetric multilinear maps.

Theorem 14.19 Let V be a finite-dimensional vector space with basis

{61, ey €n}.

1) The pair (Fplxy,...,x,),t), where t:V*P — Fy[zy,...,x,] is the
multilinear map defined by
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t(eil,... ,€ip) = € VRS \/6,‘[7

is universal for symmetric p-linear maps with domain V*?; that is, for any
symmetric p-linear map f:V>*P — U where U is a vector space, there is a
unique linear map 7: F[z1, ..., x,] — U for which

T(eil V-V eip) = f(eiﬂ . ,eip)

2) The pair (F;[z1,...,7,],t), where t:V*P — F [x1,...,x,] is the

multilinear map defined by
t(eil,... ,61[]) =€ A - /\ei[,

is universal for antisymmetric p-linear maps with domain V*?; that is, for
any antisymmetric p-linear map f:V*P — U where U is a vector space,
there is a unique linear map 7: F, [1,...,2,] — U for which

T(e,;l JARERWAN e,;p) = f(e,;l, e ,67jp)
Proof. For part 1), the property
(e, V---Vei) = flei,...,ei,)

does indeed uniquely define a linear transformation 7, provided that it is well-
defined. However,

e, V---Ve, =e€; V--Vej
if and only if the multisets {e; ,...,e; } and {ej,...,e; } are the same, which
implies that f(e;,...,e;) = f(ej,...,¢ej,), since f is symmetric.

For part 2), since f is antisymmetric, it is completely determined by the fact that
it is alternate and by its values on the basis of ascending words e;, A -+~ Ae; .

Accordingly, the condition
T(e,;l JANRERIWAN e,;p) = f(e,;l, ceey e,;p)
uniquely defines a linear transformation 7.[J

The Symmetrization Map

When char(F') = 0, we can define a linear map S:T7(V) — STP?(V), called
the symmetrization map, by

1
St = EZ Aot

‘oeSs,

Since A\, A\, = A, we have
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A-(St) = %Z Adgt = =3 Mgt = — Y A\t = St

1 1
! p! p!
o€ES), o€ES, o€ES,

and so St is symmetric. The reason for the factor 1/p! is that if v is a symmetric
tensor, then \,v = v and so

1 1
S’v:HZ)\O—v:Hszv

€S, €S,

that is, the symmetrization map fixes all symmetric tensors. It follows that for
any tensor t € T?(V'),

S%t = St

Thus, S is idempotent and is therefore the projection map of T?(V) onto
im(S) = ST?(V).

The Determinant

The universal property for antisymmetric multilinear maps has the following
corollary.

Corollary 14.20 Let V' be a vector space of dimension n over a field F'. Let

E = (ey,...,e,) be an ordered basis for V. Then there is at most one
antisymmetric n-linear form d: V" — F for which
d(el,...,en) =1

Proof. According to the universal property for antisymmetric n-linear forms, for
every antisymmetric n-linear form f:V*" — F satisfying f(e1,...,e,) =1,
there is a unique linear map 7;: A"V — F for which

Tr(er A Nep) = fler,...,e,) =1

But A"V has dimension 1 and so there is only one linear map o: \"V — F
with o(e; A--- Ae,) = 1. Therefore, if f and g are two such forms, then
Tf = 0 = T4, from which it follows that

f=Trot=1,0t=yg O

We now wish to construct an antisymmetric form d: V' *" — F', which is unique
by the previous theorem. Let 55 be a basis for V. For any v € V, write [v]3; for
the ith coordinate of the coordinate matrix [v]z. Thus,

v = Z [v]g.ei

i

For clarity, and since we will not change the basis, let us write [v]; for [v]z,.
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Consider the map d: V*" — F defined by
d(vlv cee >Un) = Z (—1)0[’[}1]01' . '[vn]an

oeS,

Then d is multilinear since

d(avy + buy,...,v,) = Z (=1)%[avy + but]or- - [vn)on

S

= Z (=1)7(alvi]or + blur]o1) - [Vn]om)

oes,
= az (—1)0[1)1}01' . '[Un]mz
o€eS,
+b3 (=) [wior[valon

g€eSs,
=ad(vy,...,v,) + bd(u1,va,...,v,)

and similarly for any coordinate position.

To see that d is alternating, and therefore antisymmetric since char(F') # 2,
suppose for instance that v; = vy. For any permutation o € 5,,, let

o = (olo2)c
Then o'z = ox for x # 1,2 and
0'l=02 and 0'2=o0l

Hence, ¢’ # 0. Also, since (0’)" = o, if the sets {o,0'} and {p, p'} intersect,
then they are identical. Thus, the distinct sets {o, o’} form a partition of S,,. It
follows that

d(’Ul,’Ul, U3y ... 7vn) = Z<_1)U[’U1]01[U1}02' . '[Un]an

oeSs,
= 2 [<—1>"[vﬂoﬂvﬂa2~~~[vn1m+<—1>“’[v1]aq[m1g/2~~~mg«n
pairs {o,0"}
But
[Ul]al [UI]JZ = [Ul]a’l[vl}J’Z
and since (—1)7 = —(—1)7, the sum of the two terms involving the pair {7, o'}
is 0. Hence, d(vq,v1,...,v,) = 0. A similar argument holds for any coordinate

pair.
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Finally,
d(@l, ) en) = Z (_1)0[61}01' . '[en]o’n
o€S,
- Z (_1)061,01' . '6n,0n
og€eSs,
=1

Thus, the map d is the unique antisymmetric n-linear form on V*" for which
d(ey,...,e,) =1.

Under the ordered basis £ = (ey,...,e,), we can view V as the space F" of
coordinate vectors and view V' *" as the space M, (F') of n x n matrices, via the
isomorphism

[vili - [vah
(v1,...,0,) —
[Ul]n ['Un]n

where all coordinate matrices are with respect to £.

With this viewpoint, d becomes an antisymmetric n-form on the columns of a
matrix A = (a; ;) given by

d(A) = Z (—1)001701' Ap,on

o€eSs,
This is called the determinant of the matrix A.
Properties of the Determinant

Let us explore some of the properties of the determinant function.

Theorem 14.21 If A € M, (F), then
d(A) = d(A")
Proof. We have

d(A) = (=1)7aie1-anon

og€eSs,

-1
= Z (_1)0 Ag-11,1" " "Qg=1pp

o-les,

= Z (_l)aazfl,l' “Qon.n

o€eS,

=d(A")
as desired.[]
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Theorem 14.22 I[f A, B € M, (F), then
d(AB) =d(A)d(B)
Proof. Consider the map f4: M, (F) — F defined by
fa(X) = d(AX)
We can consider f4 as a function on the columns of X and think of it as a
composition
Far (XM XY Ax®, L ax) 2 aax)

Each step in this map is multilinear and so f4 is multilinear. It is also clear that
fa 1s antisymmetric and so f4 is a scalar multiple of the determinant function,
say fa4(X) = cd(X). Then

d(AX) = fa(X) = cd(X)
Setting X = I, gives d(A) = ¢ and so
d(AX) =d(A)d(X)
as desired.[d
Theorem 14.23 4 matrix A € M,,(F) is invertible if and only if d(A) # 0.
Proof. If P € M,,(F) is invertible, then PP~! = I,, and so
d(P)d(P") =1

which shows that d(P) # 0 and d(P~') = 1/d(P). Conversely, any matrix
A € M, (F) is equivalent to a diagonal matrix

A=PDQ

where P and @) are invertible and D is diagonal with 1's and 0's on the main
diagonal. Hence,

and so if d(A) # 0, then d(D) # 0, which happens if and only if D = I,,,
whence A is invertible.[

Exercises

1. Show that if 7: W — X is a linear map and b:U x V — W is bilinear,
then 7o b: U x V — X is bilinear.

2. Show that the only map that is both linear and n-linear (for n > 2) is the
zero map.

3. Find an example of a bilinear map 7:V XV — W whose image
im(7) = {7(u,v) | u,v € V'} is not a subspace of .
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11.

12.

13.

14.
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Let B={u; | i € I} be a basis for U and let C = {v; | j € J} be a basis
for V. Show that the set

D:{ui,®vj|i61,j€J}

is a basis for U ® V' by showing that it is linearly independent and spans.
Prove that the following property of a pair (W,g:U x V. — W) with g
bilinear characterizes the tensor product (U @ V,t:U xV - U ® V) up
to isomorphism, and thus could have been used as the definition of tensor
product: For a pair (W,g:U x V — W) with ¢ bilinear if {u;} is a basis
for U and {v;} is a basis for V, then {g(u;,v;)} is a basis for .
Provethat U @ V =V ®U.

Let X and Y be nonempty sets. Use the universal property of tensor
products to prove that Fxyy ~ Fx & Fy.

Let w,u/ €U and v, € V. Assuming that u® v # 0, show that
u®v =1y ®¢ ifand only if v’ = ru and v = r~'o, for r # 0.

Let B = {b;} be a basis for U and C = {¢;} be a basis for V. Show that any
function f:BxC— W can be extended to a linear function
f:U ®V — W. Deduce that the function f can be extended in a unique
way to a bilinear map ?: U xV — W. Show that all bilinear maps are
obtained in this way.

Let 51, S5 be subspaces of U. Show that

(51®V)Q(SQ®V)%(51HSQ)®V

Let SCU and T CV be subspaces of vector spaces U and V,
respectively. Show that

SeV)INUST)~S®T

Let S1,52 CU and T1,7T5 CV be subspaces of U and V, respectively.
Show that

(S1 X T1) n (SQ X TQ) 7 (Sl N Sg) ® (Tl (024] Tg)

Find an example of two vector spaces U and V and a nonzero vector
x € U ®V that has at least two distinct (not including order of the terms)
representations of the form

n
€T = g u; X v;
i=1

where the w;'s are linearly independent and so are the v;'s.
Let tx denote the identity operator on a vector space X. Prove that
Ly Oy = lygw.
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15.

16.

17.

18.

19.
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Suppose that 71: U — V, 7:V — W and o01:U" — Vg, o9: Vg — W',
Prove that

(o) ®(02001) = (2 ®0o3) o (11O oy)

Connect the two approaches to extending the base field of an F'-space V' to
K (at least in the finite-dimensional case) by showing that
F"® pK ~ (K)".

Prove that in a tensor product U ® U for which dim(U') > 2 not all vectors
have the form v ® v for some w,v € U. Hint: Suppose that u,v € U are
linearly independent and consider u ® v+ v ® u.

Prove that for the block matrix

A B
- el
0 c block

we have d(M) = d(A)d(C).
Let A, B € M,,(F'). Prove that if either A or B is invertible, then the
matrices A + a.B are invertible except for a finite number of o's.

The Tensor Product of Matrices

20.

21.
22.
23.
24.

25.
26.

Let A = (a;;) be the matrix of a linear operator 7 € £(V') with respect to
the ordered basis A = (u1,...,u,). Let B = (b, ;) be the matrix of a linear
operator o € L£(V) with respect to the ordered basis B = (vy,...,vpn).
Consider the ordered basis C = (u; ® v;) ordered lexicographically; that is
U ®@vj<ug®uvy if 1 <L or i =¢ and j < k. Show that the matrix of
T ® o with respect to C is

aaB a1pB - a,B
A ® B— a2,:1B GQ’:QB cee QQ_:LB
an,.lB an.,.QB T an,:nB

block

This matrix is called the tensor product, Kronecker product or direct
product of the matrix A with the matrix B.

Show that the tensor product is not, in general, commutative.

Show that the tensor product A ® B is bilinear in both A and B.

Show that A ® B =0 ifandonly if A =0or B = 0.

Show that

a) (A®B)!=A'"®B'

b) (A® B)"= A" ® B* (when F' = C)

Show that if u, v € F™, then (as row vectors) u'v = u' @ v.

Suppose that A, ,, By, Cp and D,, are matrices of the given sizes.
Prove that

(A® B)(C ® D) = (AC) ® (BD)

Discuss the case k = r = 1.
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28.
29.

30.
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Prove that if A and B are nonsingular, then so is A ® B and
(A9 B '=A"1te B!

Prove that tr(A ® B) = tr(A) - tr(B).

Suppose that F' is algebraically closed. Prove that if A has eigenvalues
Aly..., A, and B has eigenvalues p,...,,, both lists including
multiplicity, then A ® B has eigenvalues {\;i;|i <n,j<m}, again
counting multiplicity.

Prove that det(A4,,, ® By,n) = (det(A,,))™ (det(Bym))".



Chapter 15
Positive Solutions to Linear Systems:
Convexity and Separation

It is of interest to determine conditions that guarantee the existence of positive
solutions to homogeneous systems of linear equations

Az =0
where A € MHLJL(R)'

Definition Let v = (aq,...,a,) € R™
1) v is nonnegative, written v > 0, if

a; > 0 foralli

(The term positive is also used for this property.) The set of all nonnegative
vectors in R" is the nonnegative orthant in R".
2) wis strictly positive, written v > 0, if v is nonnegative but not 0, that is, if

a; > 0 for alli and a; > 0 for some j

The set R'} of all strictly positive vectors in R" is the strictly positive
orthant in R".
3) v is strongly positive, written v > 0, if

a; > 0 forall i

The set R of all strongly positive vectors in R" is the strongly positive
orthant in R".[0

We are interested in conditions under which the system Az = 0 has strictly
positive or strongly positive solutions. Since the strictly and strongly positive
orthants in R"” are not subspaces of R", it is difficult to use strictly linear
methods in studying this issue: we must also use geometric methods, in
particular, methods of convexity.
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Let us pause briefly to consider an important application of strictly positive

solutions to a system Az = 0. If X = (21, ...,x,) is a strictly positive solution
to this system, then so is the vector
1 1
1= Z:L’iX = S (1o xn) = (M1, 00, )

which is a probability distribution, that is, 0 < m; < 1 and Y m; = 1. Moreover,
if X is a strongly positive solution, then II has the property that each probability
is positive.

Now, the product AII is the expected value of the columns of A with respect to
the probability distribution II. Hence, Az = 0 has a strictly (strongly) positive
solution if and only if there is a strictly (strongly) positive probability
distribution for which the columns of A have expected value 0. If each column
of A represents the possible payoffs from a game of chance, where each row is a
different possible outcome of the game, then the game is fair when the expected
value of the columns is 0. Thus, Az =0 has a strictly (strongly) positive
solution X if and only if the game with payoffs A and probabilities X is fair.

As another (related) example, in discrete option pricing models of mathematical
finance, the absence of arbitrage opportunities in the model is equivalent to the
fact that a certain vector describing the gains in a portfolio does not intersect the
strictly positive orthant in R". As we will see in this chapter, this is equivalent
to the existence of a strongly positive solution to a homogeneous system of
equations. This solution, when normalized to a probability distribution, is called
a martingale measure.

Of course, the equation Az = 0 has a strictly positive solution if and only if
ker(A) contains a strictly positive vector, that is, if and only if

ker(A) = RowSpace(A)*

meets the strictly positive orthant in R". Thus, we wish to characterize the
subspaces S of R" for which S meets the strictly positive orthant in R", in
symbols,

SENRY £ 0

for these are precisely the row spaces of the matrices A for which Az = 0 has a
strictly positive solution. A similar statement holds for strongly positive
solutions.

Looking at the real plane R?, we can divine the answer with a picture. A one-
dimensional subspace S of R? has the property that its orthogonal complement
S+ meets the strictly positive orthant (quadrant) in R? if and only if S is the z-
axis, the y-axis or a line with negative slope. For the case of the strongly
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positive orthant, S must have negative slope. Our task is to generalize this to
R™.

This will lead us to the following results, which are quite intuitive in R? and R3:
STNRL, #0 & SNRL=0 (15.1)
and
STNRL£0 < SNRL =0 (15.2)

Let us translate these statements into the language of the matrix equation
Ax = 0.1If S = RowSpace(A), then S+ = ker(A) and so we have

ker(A)NRY, #0 < RowSpace(A) R} =0

and
ker(A)NRY #0 <« RowSpace(A)NRY, =
Now,
RowSpace(A) NRY = {vA | vA > 0}
and

RowSpace(A) NRY} | = {vA | vA > 0}
and so these statements become
Az = 0 has a strongly positive solution < {vA |vA >0} =1
and

Az = 0 has a strictly positive solution <  {vA |[vA >0} =10

We can rephrase these results in the form of a theorem of the alternative, that
is, a theorem that says that exactly one of two conditions holds.

Theorem 15.1 Let A € M., ,(R).

1) Exactly one of the following holds:
a) Au = 0 for some strongly positive u € R".
b) wvA > 0 forsomev € R™.

2) Exactly one of the following holds:
a) Au = 0 for some strictly positive u € R".
b) vA > 0 forsomev € R".[0

Before proving Theorem 15.1, we require some background.

Convex, Closed and Compact Sets

We shall need the following concepts.
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Definition
1) Letx,...,z; € R" Any linear combination of the form

tixy + -+ Ly

where 0 < t; < 1and t) + ---+ ti, = 1 is called a convex combination of
the vectors x+, ..., xy.

2) A subset X C R" is convex if whenever x,y € X, then the line segment
between x and y also lies in X, in symbols,

fta+(1-t)y|0<t<1}CX

3) A subset X C R" is closed if whenever (x,) is a convergent sequence of
elements of X, then the limit is also in X.

4) A subset X C R" is compact if it is both closed and bounded.

5) A subset X C R"is acone ifx € X implies that ax € X for all a > 0.0

We will also have need of the following facts from analysis.

1) A continuous function that is defined on a compact set X in R” takes on
maximum and minimum values at some points within the set X.

2) A subset X of R" is compact if and only if every sequence in X has a
subsequence that converges to a point in X.

Theorem 15.2 Let X and Y be subsets of R". Define
X+Y={a+blaeX,beY}

1) If X andY are convex, thensois X +Y

2) If X is compact and Y is closed, then X +Y is closed.

Proof. For 1), let xy + yo and x; + y; be in X + Y. The line segment between
these two points is

t(xo +yo) + (1 —t) (21 +41)
=teo+ (1 —t)z]+[tyo+ (1 —t)y] € X +Y

for 0 <t < 1landso X + Y is convex.

For part 2), let z,, +y, be a convergent sequence in X + Y. Suppose that
Tp + Yyn — 2. We must show that z € X + Y. Since x, is a sequence in the
compact set X, it has a convergent subsequence x,, whose limit x lies in X.
Since x,, + yn, — # and x,, — x we can conclude that y,,, — 2z — z. Since Y’
is closed, it follows that z — 2 € Yandsoz =z + (2 —z) € X + Y.

Convex Hulls

We will also have use for the notion of the smallest convex set containing a
given set.



Positive Solutions to Linear Systems: Convexity and Separation 415

Definition 7he convex hull of a set S = {x1,...,x;} of vectors in R" is the
smallest convex set in R" that contains S. We will denote the convex hull of S

by C(S).0
Here is a characterization of convex hulls.

Theorem 15.3 Let S = {x1,..., 21} be a set of vectors in R™. Then the convex
hull C(S) is the set A of all convex combinations of vectors in S, that is,

C(S) =A:= {tll‘l—F"'-‘Ftk.’L‘k | 0<t; < 1’Zti: 1}

Proof. Clearly, if D is a convex set that contains .S, then D also contains A.
Hence A C C(S). To prove the reverse inclusion, we need only show that A is
convex, since then S C A implies that C(S) C A. So let

X =tz + - + trxy
Y = 51214 - + sp2p

bein A.Ifa+b=1and0 < a,b <1 then

aX +b0Y = a(tﬂl?l + -+ tk.’Ek) + b(SlfL‘l + -+ skxk)
= (at; + bs1)x1 + -+ + (aty, + bsp)zy

But this is also a convex combination of the vectors in .S, because
0 <at; +bs; < (a+0b)-max(s;,t;) = max(s;, t;) <1
and

k k k
Z(ati +bs;) = aZti + szi =a+b=1
gt : :

i i=1 i=1

Thus, a X +0Y € A.O0

Theorem 15.4 The convex hull C(S) of a finite set S = {x1,...,x;} of vectors
in R" is a compact set.
Proof. The set

D={(tr ) [0t <1, 3t =1}

is closed and bounded in R" and therefore compact. Define a function
f:D — R" as follows: If t = (t1,...,t1), then

ft) =tz + - + tray,

To see that f is continuous, let s = (s1, ..., s;) and let M = max(||x;|). Given
€ >0,if ||s — t|| < e/kM then
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€

|si —til < lls = tll < o7

and so

1£(s) = F@OI = [[(s1 = t) @1 + -+~ + (51 — t) 7]
<ls1 = tafllerll + - + s = tafll ]
< kM|js — 1]

=¢
Finally, since f(D) = C(S), it follows that C(.S) is compact.]

Linear and Affine Hyperplanes

We next discuss hyperplanes in R”. A linear hyperplane in R" is an (n — 1)-
dimensional subspace of R". As such, it is the solution set of a linear equation
of the form

axy + -+ apx, =0
or
(N,z) =0

where N = (ai,...,a,) is nonzero and z = (x1,...,z,). Geometrically
speaking, this is the set of all vectors in R" that are perpendicular (normal) to
the vector V.

An affine hyperplane, or just hyperplane, in R" is a linear hyperplane that has
been translated by a vector. Thus, it is the solution set to an equation of the form

aj(xy — b))+ -+ ap(x, —b,) =0
or equivalently,
(N,z)=b
where b = a;b; + -+ + a,b,. We denote this hyperplane by
H(N,b) ={x e R" | (N,z) =b}
Note that the hyperplane
H(N,|IN|*) = {z € R" | (N,z) = ||N||*}

contains the point N, which is the point of H(N, || N||*) closest to the origin,
since Cauchy's inequality gives

INI* = (N, 2) < [N]l|]

and so |N|| < |jz| for all 2 € H(N,|N||*). Moreover, we leave it as an
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exercise to show that any hyperplane has the form H(N,||N|/*) for an
appropriate vector N.

A hyperplane defines two closed half-spaces

Ho(N,b) = {a € R" | (N, z) > b}
H_(N,b) = { € R" | (N, ) < b}

and two disjoint open half-spaces
HL(N,b) = {z e R" | (N,
HZ(N,b) ={z e R"| (N,
It is clear that
H(N,b)NH_(N,b) = H(N,b)
and that the sets HS (N, b), H° (N, b) and H(N, b) form a partition of R".

If N € R"and X C R", we let
(N, X)y={(N,z) |z € X}
and write
(N, X)<b

to denote the fact that (V, z) < b forall z € X.

Definition 7wo subsets X and Y of R" are strictly separated by a hyperplane
H(N,b) if X lies in one open half-space determined by H(N,b) and Y lies in
the other open half-space; in symbols, one of the following holds:

) (N,X)<b<(N,Y)

2) (N,Y)<b<(N,X) O

Note that 1) holds for N and b if and only if 2) holds for —N and —b, and so we
need only consider one of the conditions to demonstrate that two sets X and Y
are not strictly separated. Specifically, if 1) fails for all N and b, then the
condition

(—N,Y) < —b < (=N, X)

also fails for all NV and b and so 2) also fails for all N and b, whence X and Y
are not strictly separated.

Definition 7wo subsets X and 'Y of R" are strongly separated by a hyperplane
H(N,b) if there is an e > 0 for which one of the following holds:

) (NX)<b—e<b+e<(N,Y)

2) (NJY)<b—e<b+e<(N,X) O
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As before, we need only consider one of the conditions to show that two sets are
not strongly separated. Note also that if

(N,z) <r<(N,Y)

forr € R, then z € R” and Y C R" are stongly separated by the hyperplane

H(N’r—i—(é\ﬁx})

Separation

Now that we have the preliminaries out of the way, we can get down to some
theorems. The first is a well-known separation theorem that is the basis for
many other separation theorems. It says that if a closed convex set C' C R" does
not contain a vector b, then C' can be strongly separated from b.

Theorem 15.5 Let C' be a closed convex subset of R".

1) C contains a unique vector N of minimum norm, that is, there is a unique
vector N € C' for which

[N < [l

forallz € C,x # N.
2) Ifb ¢ C, then C lies in the closed half-space

He (N[N + (N, b))
that is,
(N,C) = |N|* + (N,b) > (N,b)
where N is the unique vector of minimum norm in the closed convex set
C—-—b={c—blceC}

Hence, C' and b are strongly separated by the hyperplane

o (N, NP +22<N,b>>

Proof. For part 1), if 0 € C' then this is the unique vector of minimum norm, so
we may assume that 0 ¢ C'. It follows that no two distinct elements of C' can be
negative scalar multiples of each other. For if « and rz were in C, where r < 0,
then taking t = —r/(1 — r) gives

O=te+(1—-t)raeC

which is false.
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We first show that C' contains a vector N of minimum norm. Recall that the
Euclidean norm (distance) is a continuous function. Although C' need not be
compact, if we choose a real number s such that the closed ball

By(0) ={z e R"[|lz]| < s}

intersects C, then that intersection C” = C' N B,(0) is both closed and bounded
and so is compact. The norm function therefore achieves its minimum on C’,
say at the point N € C" C C. It is clear that if ||v|| < || N|| for some v € C, then
v € C’, in contradiction to the minimality of N. Hence, N is a vector of
minimum norm in C'.

We establish uniqueness first for closed line segments [u,v] in R™. If u = rv
where r > 0, then

[tu+ (1 = t)ol| = [tr + (1 = t)][|v]|

is smallest when ¢t = 0 for » > 1 and ¢ = 1 for r < 1. Assume that v and v are
not scalar multiples of each other and suppose that x # y in [u,v] have
minimum norm d > 0. If z = (2 4 y)/2 then since = and y are also not scalar
multiples of each other, the Cauchy-Schwarz inequality is strict and so

1 2
2] = 2zl
1
= Z(Ilcvll2 +2(z,9) + lyll?)
1
< (@ + Il ly])
= {2

which contradicts the minimality of d. Thus, [u,v] has a unique point of
minimum norm.

Finally, if z € C also has minimum norm, then /N and x are points of minimum
norm in the line segment [N, z] C C' and so x = N. Hence, C has a unique
element of minimum norm.

For part 2), suppose the result is true when 0 ¢ C. Then b ¢ C implies that
0¢ C —bandsoif N € C' — b has smallest norm, then

(N,C = b) > NP >0
Therefore,
(N,C) > |IN|I* + (N,b) > (N,b)

and so C' and b are strongly separated by the hyperplane
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H(N, (1/2) [N + (N, b))
Thus, we need only prove part 2) for b = 0, that is, we need only prove that
(N,C) > |N|?
If there is a nonzero « € C' for which
(N, z) <||N|?
then ||N|| < ||| and
(N,z) = ||N|* — e

for some € > 0. Then for the open line segment f(¢) =tN + (1 — t)x with
0 <t <1, wehave

LF @I = [[EN + (1 = )|
= CIN|* +2t(1 — t)(N,z) + (1 — t)*[]
< (2t — ?)||N|]? = 2t(1 — t)e + (1 — t)?|||?
= (=lINI? + 26 + [|2[*)¢* + 2(| N[* = € = [|=]|*)¢ + |||
Let p(t) denote the final expression above, which is a quadratic in ¢. It is easy to

see that p(¢) has its minimum at the interior point of the line segment [N, z]
corresponding to

2 2

_ NI + e+l
0 — 2 2
—[INI" + 2¢ + ||z

and so || f(to)|| < p(to) < p(1) = || N||, which is a contradiction..]

The next result brings us closer to our goal by replacing a single vector b with a
subspace S disjoint from C'. However, we must also require that C' be bounded,
and therefore compact.

Theorem 15.6 Let C' be a compact convex subset of R" and let S be a subspace
of R" such that C' N S = (). Then there exists a nonzero N € S* such that

(N,z) > |N|* >0

for all x: € C. Hence, the hyperplane H(N, |N|*/2) strongly separates S and
C.

Proof. Theorem 15.2 implies that the set S+ C is closed and convex.
Furthermore, C'N S = ) implies that 0 ¢ S + C' and so Theorem 15.5 implies
that S + C can be strongly separated from the origin. Hence, there is a nonzero
N € R" such that
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(N,s)+ (N,¢) = (N,s+¢) > |N|*

forall s € S and ¢ € C. Butif (N, s) # 0 for some s € S, then we can replace
s by an appropriate scalar multiple of s in order to make the left side of this
inequality negative, which is impossible. Hence, (N, s) = 0 for all s € S, that
is, N € St and

(N,C) > N O
We can now prove (15.1) and (15.2).

Theorem 15.7 Let S be a subspace of R".

1) SNRY =0ifand only if STNR" | #0

2) SNR", =0 ifandonly if S* NR" # ()

Proof. In both cases, one direction is easy. It is clear that there cannot exist
vectors u € R}, and v € R} that are orthogonal. Hence, SNR! and
St NR?, cannot both be nonempty and so S*NR", #( implies
SNRY =0. Also, SNR}, and S*NR? cannot both be nonempty and so
StNRY # 0 implies that S NR%, = 0.

For the converse in part 1), to prove that
SNRL=0 = S NRL, #0

a good candidate for an element of S*NR", would be a normal to a
hyperplane that separates S from a subset of R’,. Note that our separation
theorems do not allow us to separate S from R}, because R’} is not compact. So

consider instead the convex hull A of the standard basis vectors €q,...,€, in
R":
+

A:{t161+"'+tn,€n|0§t7j S 1,2t7:1}

which is compact. Moreover, A C R’} implies that AN.S = () and so Theorem
15.6 implies that there is a nonzero vector N = (a4, ...,a,) € S L such that

2
(N,6) = [IN]|
for all 6 € A. Taking § = ¢; gives
a; = (N, &) = |N|* >0
and so N € S+ NR"_, which is therefore nonempty.
To prove part 2), again we note that there cannot exist orthogonal vectors

w € R, and v € RY and so SNR", and S* NR’} cannot both be nonempty.
Thus, S+ NR" # () implies that S N R = 0.
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To finish the proof of part 2), we must prove that
SNRY, =0 = S'NRL#0
Let B={B,...,B;} be a basis for S. Then N = (ay,...,a,) € S* if and
only if N L B; for all . In matrix terms, if
M = (mi;) = (Bi| By |- | By)
has rows Ry, ..., R,, then N € S* ifand only if NM = 0, that is,
aiRi+-4+a,R,=0

Now, S+ contains a strictly positive vector N = (ay, ..., a,) if and only if this
equation holds, where a; > 0 for all ¢ and a; > 0 for some j. Moreover, we may
assume without loss of generality that ¥a; = 1, or equivalently, that 0 is in the
convex hull C of the row space of M. Hence,

STNRY#£0 & 0€ecC
Thus, we wish to prove that

SNRY, =0 = 0eC
or equivalently,

0¢C = SNR}, #0

Now we have something to separate. Since C is closed and convex, Theorem
15.5 implies that there is a nonzero vector B = (by,...,by) € R for which

(B,C) > | BII*>0
Consider the vector
v=bB + -+ 0B, €S
The ith coordinate of v is
bimiy + -+ bymiy = (B, R;) > | B|” >0

and so v is strongly positive. Hence, v € SNR",, which is therefore

nonempty.]

Inhomogeneous Systems

We now turn our attention to inhomogeneous systems
Ax =10

The following lemma is required.
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Lemma 15.8 Let A € M, ,,(R). Then the set
C={Ay|yeR",y>0}

is a closed, convex cone.
Proof. We leave it as an exercise to prove that C is a convex cone and omit the
proof that C is closed.Od

Theorem 15.9 (Farkas's lemma) Let A € M,,,,(R) and let b € R™ be
nonzero. Then exactly one of the following holds:

1) There is a strictly positive solution u € R" to the system Ax = b.

2) There is a vector v € R™ for which vA < 0 and (v,b) > 0.

Proof. Suppose first that 1) holds. If 2) also holds, then

(vA)u = v(Au) = (v,b) >0
However, vA < 0 and w > 0 imply that (vA)u < 0. This contradiction implies
that 2) cannot hold.
Assume now that 1) fails to hold. By Lemma 15.8, the set
C={Ay|yeR"y >0} CR"

is closed and convex. The fact that 1) fails to hold is equivalent to b ¢ C.
Hence, there is a hyperplane that strongly separates b and C'. All we require is
that b and C' be strictly separated, that is, for some o € R and v € R™,

(v,2) < a < (v,b) forallz € C

Since 0 € C, it follows that & > 0 and so (v, b) > 0. Also, the first inequality is
equivalent to (v, Ay) < a, that is,

(A'v,y) < a

for all y € R",y > 0. We claim that this implies that A’v cannot have any
positive coordinates and thus vA < 0. For if the ith coordinate (A'v); is
positive, then taking y = Ae; for A > 0 we get

)\(Atv)i <«
which does not hold for large A. Thus, 2) holds.[J

In the exercises, we ask the reader to show that the previous result cannot be
improved by replacing vA < 0 in statement 2) with vA < 0.

Exercises

1. Show that any hyperplane has the form H(N,|N||?) for an appropriate
vector N.
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10.

11.

12.

13.

14.
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If A is an m X n matrix prove that the set {Az |z € R",z >0} is a
convex cone in R™.

If A and B are strictly separated subsets of R” and if A is finite, prove that
A and B are strongly separated as well.

Let V be a vector space over a field F' with char(F) # 2. Show that a
subset X of V' is closed under the taking of convex combinations of any
two of its points if and only if X is closed under the taking of arbitrary
convex combinations, that is, for all n > 1,

n n
Tl,..., Ty € X, Zri: 1,0<r; < léZri:ci eX
i—1 i—1

Explain why an (n — 1)-dimensional subspace of R" is the solution set of a
linear equation of the form ayxy + -+ + a,z, = 0.
Show that

Hi(N,b) NH_(N,b) = H(N,b)
and that HS (N, b), H° (N, b) and H(N, b) are pairwise disjoint and
HE(N,b)U HZ(N,b) UH(N,b) =R"

A function T:R" — R™ is affine if it has the form T'(v) = 7o+ b for
b € R™, where 7 € L(R",R™). Prove that if C' C R" is convex, then so is
T(C) CR™.

Find a cone in R? that is not convex. Prove that a subset X of R" is a
convex cone if and only if =,y € X implies that Az 4+ py € X for all
A, > 0.

Prove that the convex hull of a set {z1,...,2,} in R” is bounded, without
using the fact that it is compact.

Suppose that a vector x € R" has two distinct representations as convex
combinations of the vectors wvq,...,v,. Prove that the vectors
v9 — vy, ...,0, — v; are linearly dependent.

Suppose that C' is a nonempty convex subset of R” and that H(N,b) is a
hyperplane disjoint from C'. Prove that C' lies in one of the open half-spaces
determined by H(N, b).

Prove that the conclusion of Theorem 15.6 may fail if we assume only that
C' is closed and convex.

Find two nonempty convex subsets of R? that are strictly separated but not
strongly separated.

Prove that X and Y are strongly separated by H (N, b) if and only if

(N,z')y > bforallz’ € X, and (N,y') < b forally €Y,

where X, = X +¢B(0,1) and Y, =Y + ¢B(0, 1) and where B(0, 1) is the
closed unit ball.
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15. Show that Farkas's lemma cannot be improved by replacing vA <0 in
statement 2) with vA < 0. Hint: A nice counterexample exists for
m=2n=3.



Chapter 16
Affine Geometry

In this chapter, we will study the geometry of a finite-dimensional vector space
V, along with its structure-preserving maps. Throughout this chapter, all vector
spaces are assumed to be finite-dimensional.

Affine Geometry

The cosets of a quotient space have a special geometric name.

Definition Let S be a subspace of a vector space V. The coset
v+S={v+s|seS}

is called a flat in V with base S and flat representative v. We also refer to
v+ S as a translate of S. The set A(V') of all flats in 'V is called the affine
geometry of V. The dimension dim(A(V")) of A(V) is defined to be dim(V').O0

While a flat may have many flat representatives, it only has one base since
r+S=y+T implies that x € y+7T and so x+S=y+T=x+T,
whence S =T

Definition 7he dimension of a flat x + S is dim(S). 4 flat of dimension k is
called a k-flat. 4 O-flat is a point, a 1-flat is a line and a 2-flat is a plane. A4 flat
of dimension dim(.A(V')) — 1 is called a hyperplane.(]

Definition Two flats X =x+ S and Y =y+ T are said to be parallel if
S CTorT CS. This is denoted by X || Y.OO

We will denote subspaces of V' by the letters S,T,... and flats in V by
X, Y, ...

Here are some of the basic intersection properties of flats.
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Theorem 16.1 Let S and 7 be subspaces of V' and let X =2+ S and
Y =y+Tbeflatsin V.
1) The following are equivalent:
a) some translate of X isinY: w+ X CY forsomew €'V
b) some translate of S'isinT: v+ S C T for somev €V
¢c) SCT
2) The following are equivalent:
a) X andY are translates: w+ X =Y for some w € V
b) SandT aretranslates: v+ S =T for somev € V
c) S=T
) XNY#0, SCT&XCY
49 XNY#0, S=TX=Y
5 IfX||YthenXCY,YCXorXNY =40
6) X ||Y if and only if some translation of one of these flats is contained in
the other.
Proof. If 1a) holds, then —y +w + 2 + S C T and so 1b) holds. If 1b) holds,
then v € T and so S = (v+S) —v C T and so Ic) holds. If 1c) holds, then
y—rz+X=y+SCy+T =Y and so la) holds. Part 2) is proved in a
similar manner.

For part 3), S CT implies that v+ X CY for some ve V and so if
z€XNY then v+2z€Y and so veY, which implies that X CY.
Conversely, if X C Y then part 1) implies that S C T'. Part 4) follows similarly.
We leave proof of 5) and 6) to the reader.[]

Affine Combinations

Let X be a nonempty subset of V. It is well known that

1) X is a subspace of V' if and only if X is closed under linear combinations,
or equivalently, X is closed under linear combinations of any two vectors
in X.

2) The smallest subspace of V' containing X is the set of all linear
combinations of elements of X. In different language, the /inear hull of X
is equal to the linear span of X.

We wish to establish the corresponding properties of affine subspaces of V,
beginning with the counterpart of a linear combination.

Definition Let V' be a vector space and let x; € V. A linear combination
USROS R ol 2]

where r; € F and Y r; = 1 is called an affine combination of the vectors x;.[]

Let us refer to a nonempty subset X of V' as affine closed if X is closed under
any affine combination of vectors in X and two-affine closed if X is closed
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under affine combinations of any two vectors in X. These are not standard
terms.

The line containing two distinct vectors x,y € V is the set
ry={re+(Q-rylreF}=y+(z—y)

of all affine combinations of « and y. Thus, a subset X of V' is two-affine closed
if and only if X contains the line through any two of its points.

Theorem 16.2 Let V' be a vector space over a field F with char(F') # 2. Then a
subset X of V' is affine closed if and only if it is two-affine closed.

Proof. The theorem is proved by induction on the number n of terms in an
affine combination. The case n = 2 holds by assumption. Assume the result true
for affine combinations with fewer than n > 3 terms and consider the affine
combination

zZ=7r1x1+ -+ Xy,

where n > 3. There are two cases to consider. If either of r; and r is not equal
to 1, say r; # 1, write

Tn

1—7"11.2—’_.“—'_1—7“1

zZ =T + (]. — 7‘1) |: Ty

and if r; = 9 = 1, then since char(F') # 2, we may write

1 1
222[2:514—2:132] +r3x3 4 -+ o,

In either case, the inductive hypothesis applies to the expression inside the
square brackets and then to z.[J

The requirement char(F") # 2 is necessary, for if F' = Zs, then the subset

X = {(an)a (170)7 (Oa 1)}
of F? is two-affine closed but not affine closed. We can now characterize flats.
Theorem 16.3 4 nonempty subset X of a vector space V is a flat if and only if
X is affine closed. Moreover, if char(F') # 2, then X is a flat if and only if X is
two-affine closed.

Proof. Let X =2+ S be a flat and let z; =z +s; € X, where s; € S. If
Yr; = 1, then

Zrimi:ZT5($+Si):$+Z7’i$5 cx+ S5
i i i

and so X is affine closed. Conversely, suppose that X is affine closed, let
r€ XandletS =X —xz.Ifr; € F and s; € S then
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r181 + 1289 = ri(x1 — ) + ro(ze — x) = g + roxe — (1o + 1)

for z; € X. Since the sum of the coefficients of xq, o and x in the last
expression is 0, it follows that

7181 +1roSe +x =1z +roxe — (ra+ 1 — 1z € X

and so 151 + 1959 € X —x = S. Thus, S is a subspace of V and X = = + S is
a flat. The rest follows from Theorem 16.2.1

Affine Hulls

The following definition is the analog of the subspace spanned by a collection
of vectors.

Definition Let X be a nonempty set of vectors in' V.

1) The affine hull of X, denoted by affhull(X), is the smallest flat containing
X.

2) The affine span of X, denoted by affspan(X), is the set of all affine
combinations of vectors in X.[J

Theorem 16.4 Let X be a nonempty subset of V. Then
afthull(X) = affspan(X) = = + span(X — x)
or equivalently, for a subspace S of V,
x+ S =affspan(X) <& S =span(X —z)
Also,
dim(affspan(X)) = dim(span(X — x))

Proof. Theorem 16.3 implies that affspan(X) C affhull(X) and so it is
sufficient to show that A = affspan(X) is a flat, or equivalently, that for any
y € A, theset S = A — y is a subspace of V. To this end, let

n
Y= E T0,i%i
i=1

Then any two elements of .S have the form y; — y and yo — y, where

n n
Y1 = E rix; and  yp = E 2, %;
p} )

are in A. Butif s,t € F, then
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z=s(y1 —y) +t(y2 — y)

n

g

(STLi +try; — (S + t)’r‘oy,,;)l‘i

i=1

S

(STlﬁi + t’f‘z;i — (S +t— 1)7‘0@)111‘ -y
i=1

which is in A —y =S, since the last sum is an affine sum. Hence, S is a
subspace of V. We leave the rest of the proof to the reader.[J

The Lattice of Flats

The intersection of subspaces is a subspace, although it may be trivial. For flats,
if the intersection is not empty, then it is also a flat. However, since the
intersection of flats may be empty, the set A(V) does not form a lattice under
intersection. However, we can easily fix this.
Theorem 16.5 Let V' be a vector space. The set

Ag(V) = AV)U {0}

of all flats in V, together with the empty set, is a complete lattice in which meet

is intersection. In particular:

Iy Ao(V) is closed wunder arbitrary intersection. In fact, if
F ={x;+ S; | i € K} has nonempty intersection, then

NF=(@i+S)=z+[)S

ieK €K €K

Jfor some x € (\F. In other words, the base of the intersection is the

intersection of the bases.
2) The join \| F of the family F = {x; + S; | i € K} is the intersection of all
flats containing the members of F. Also,

\/F = afthuit (| 7)
3 IfX=x+SandY =y+ T areflatsin V, then
XVY=z+{(z—y)+5+1T)
IfXNY #0, then
XVY =2+ (5+T)
Proof. For part 1), if

an(SEL+S,)

€K

then x; + S, = x + S; forall i € K and so
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€K €K €K

We leave proof of part 2) to the reader.

For part 3), since z,y € X VY, it follows that
XVY=24+U=y+U

for some subspace U of V. Thus, x —y € U. Also, z + .S C x + U implies that
S CU and similarly 7T CU, whence S+7 CU and so if W=
(x —y)+S+T, then W CU. Hence, c+W Cax+U =XVY. On the
other hand,

X=z+SCax+W
and
Y=y+T=2—(z—y)+TCax+W
andso X VY Cx+W.Thus, X VY =2+ W.

If X NY # (), then we may take the flat representatives for X and Y to be any
element z € X NY, in which case part 1) gives

XVY=z4{z—2)+S+T)=2+5S+T
andsincex € X VY,wealsohave X VY =z + S +T7T.00

We can now describe the dimension of the join of two flats.

Theorem 16.6 Let X =z + S andY =y + T be flats in V.
D) IfXNY #0, then

dim(X VY) =dim(S +7T) = dim(X) 4+ dim(Y) — dim(X NY)

2) IfXNY =0, then

dim(X VY) = dim(S + T) + 1
Proof. We have seen that if X N'Y # (), then

XVY =x4+S5+T

and so

dim(X VY) = dim(S + T)
On the other hand, if X N'Y = (), then

XVY=z+{(z—y)+5+7)

and since dim({z — y)) = 1, we get
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dim(XVY)=dim(S+7T)+1
Finally, we have
dim(S + T') = dim(S) + dim(7) — dim(SN7T)
and Theorem 16.5 implies that
dim(XNY)=dim(SNT)

Affine Independence

We now discuss the affine counterpart of linear independence.

433

Theorem 16.7 Let X be a nonempty set of vectors in V. The following are

equivalent:
1) Forall x € X, the set

(X —2)\ {0}

is linearly independent.
2) Forallx € X,

x ¢ affhull(X \ {z})
3) Forany vectors x; € X,

Zrimi :O,Zm =0 = r;=0forallt

(3

4) For affine combinations of vectors in X,
Zrixi = Z sixi = ri=s;foralli
i i

5) When X = {x1,...,x,} is finite,
dim(affhull(X)) = n — 1

A set X of vectors satisfying any (any hence all) of these conditions is said to be

affinely independent.
Proof. If 1) holds but there is an affine combination equal to x,

n
xr = E riZ;
i=1

where z; # z for all 4, then

n

ZH(% —x)=0

i=1
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Since 7; is nonzero for some ¢, this contradicts 1). Hence, 1) implies 2). Suppose
that 2) holds and
Z Tix; = 0

where Y r; = 0. If some r;, say 71, is nonzero then

T = —Z (ri/r)x; € affhull(X \ {z1})

i>1

which contradicts 2) and so r; = 0 for all <. Hence, 2) implies 3).

If 3) holds and the affine combinations satisfy

§ it = § SiLi

then

Z (TL‘ - Si)l‘i =0

and since » (r; —s;) =1 —1 =0, it follows that r; = s; for all 7. Hence, 4)
holds. Thus, it is clear that 3) and 4) are equivalent. If 3) holds and

Zn(mi —z)=0

for x # x;, then

Z T — (Zn)x =0

and so 3) implies that r; = 0 for all 4.

Finally, suppose that X = {xy,...,x,}. Since
dim(affhull(X)) = dim({X — z;))

it follows that 5) holds if and only if (X — ;) \ {0}, which has size n — 1, is
linearly independent.[]

Affinely independent sets enjoy some of the basic properties of linearly
independent sets. For example, a nonempty subset of an affinely independent set
is affinely independent. Also, any nonempty set X contains an affinely
independent set.

Since the affine hull H = affhull(X) of an affinely independent set X is not the
affine hull of any proper subset of X, we deduce that X is a minimal affine
spanning set of its affine hull.
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Affine Bases and Barycentric Coordinates
We have seen that a set X is affinely independent if and only if the set
X = (X =)\ {0}
is linearly independent. We have also seen that for a subsapce S of V,
r+ S =affspan(X) <« S =span(X,)

Therefore, if by analogy, we define a subset 3 of a flat A =2 + S to be an
affine basis for A if 5 is affinely independent and affspan(B) = A, then B is an
affine basis for « + S if and only if B, is a basis for S.

Theorem 16.8 Let A = = + S be a flat of dimension n. Let B = (21, ...,x,) be
an ordered basis for S and let (B + z)U{z} = (v1 + x,...,x, + x,2) be an
ordered affine basis for A. Then every v € A has a unique expression as an
affine combination

V="121+ o+ Ty + Tl

The coefficients r; are called the barycentric coordinates of v with respect to
the ordered affine basis B + x.OJ

For example, in R®, a plane is a flat of the form A =z + (v, v;) where
B = (v1, vy) is an ordered basis for a two-dimensional subspace of R*. Then

(B+z)U{z} = (1 +z,v2+x,2) = (p1, 02, P3)
are barycentric coordinates for the plane, that is, any v € A has the form
T1P1 + T2P2 + T3P3
where vy + r9 + r3 = 1.
Affine Transformations

Now let us discuss some properties of maps that preserve affine structure.

Definition 4 function f:V — V that preserves affine combinations, that is, for

which

is called an affine transformation (or affine map, or affinity).]

We should mention that some authors require that f be bijective in order to be
an affine map. The following theorem is the analog of Theorem 16.2.
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Theorem 16.9 If char(F) # 2, then a function f:V —V is an affine
transformation if and only if it preserves affine combinations of every pair of its
points, that is, if and only if

flre+ (1 =r)y) =rf(z)+ 1 -7)f(y) o

Thus, if char(F') # 2, then a map f is an affine transformation if and only if it
sends the line through x and y to the line through f(x) and f(y). It is clear that
linear transformations are affine transformations. So are the following maps.

Definition Let v € V. The affine map T,:V — V defined by
T, (z)=xz+wv

forall x € V, is called translation by v.[]

It is not hard to see that any composition T, o 7, where 7 € L(V'), is affine.
Conversely, any affine map must have this form.

Theorem 16.10 A function f:V — V is an affine transformation if and only if
it is a linear operator followed by a translation,

f=T,0o1

wherev € V and T € L(V).

Proof. We leave proof that T, o 7 is an affine transformation to the reader. Let f
be an affine map and suppose that fO = —z. Then 7, o fO = 0. Moreover,
letting 7 =T, o f, we have

T(ru+ sv) = f(ru+ sv) + z
=flru+sv+(1—r—:5)0)+z
=rfu+sfo—(l—r—s)z+z
=TrTU + STV

and so 7 is linear.[]

Corollary 16.11

1)  The composition of two affine transformations is an affine transformation.

2) An affine transformation f =T, o T is bijective if and only if T is bijective.

3)  The set aff(V') of all bijective affine transformations on'V' is a group under
composition of maps, called the affine group of V.[1

Let us make a few group-theoretic remarks about aff(1"). The set trans(V") of all
translations of V' is a subgroup of aff(V). We can define a function
¢:aff(V) — L(V) by

d(TyoT)=T
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It is not hard to see that ¢ is a well-defined group homomorphism from aff(V")
onto L(V'), with kernel trans(V'). Hence, trans(V') is a normal subgroup of
aff(V') and

aff(V)

trans(V) ~L(V)

Projective Geometry

If dim(V') = 2, the join (affine hull) of any two distinct points in V' is a line. On
the other hand, it is not the case that the intersection of any two lines is a point,
since the lines may be parallel. Thus, there is a certain asymmetry between the
concepts of points and lines in V. This asymmetry can be removed by
constructing the projective plane. Our plan here is to very briefly describe one
possible construction of projective geometries of all dimensions.

By way of motivation, let us consider Figure 16.1.

Figure 16.1

Note that H is a hyperplane in a 3-dimensional vector space V and that 0 ¢ H.
Now, the set A(H) of all flats of V' that lie in H is an affine geometry of
dimension 2. (According to our definition of affine geometry, H must be a
vector space in order to define A(H ). However, we hereby extend the definition
of affine geometry to include the collection of all flats contained in a flat of V)

Figure 16.1 shows a one-dimensional flat X and its linear span (X), as well as a
zero-dimensional flat Y and its span (Y'). Note that, for any flat X in H, we
have

dim(({X)) = dim(X) + 1

Note also that if L; and Lo are any two distinct lines in H, the corresponding



438 Advanced Linear Algebra

planes (L) and (Lo) have the property that their intersection is a line through
the origin, even if the lines are parallel. We are now ready to define projective
geometries.

Let V' be a vector space of any dimension and let H be a hyperplane in V' not
containing the origin. To each flat X in H, we associate the subspace (X) of V'
generated by X. Thus, the linear span function P: A(H) — S(V') maps affine
subspaces X of H to subspaces (X) of V. The span function is not surjective:
Its image is the set of all subspaces that are not contained in the base subspace
K of the flat H.

The linear span function is one-to-one and its inverse is intersection with H,
P'U=UNH

for any subspace U not contained in K.

The affine geometry A(H) is, as we have remarked, somewhat incomplete. In
the case dim(H) = 2, every pair of points determines a line but not every pair
of lines determines a point.

Now, since the linear span function P is injective, we can identify A(H ) with
its image P(A(H)), which is the set of all subspaces of V' not contained in the
base subspace K. This view of A(H) allows us to “complete” A(H) by
including the base subspace K. In the three-dimensional case of Figure 16.1, the
base plane, in effect, adds a projective line at infinity. With this inclusion, every
pair of lines intersects, parallel lines intersecting at a point on the line at infinity.
This two-dimensional projective geometry is called the projective plane.

Definition Let V' be a vector space. The set S(V') of all subspaces of V is
called the projective geometry of V. The projective dimension pdim(S) of
S € S(V) is defined as

pdim(S) = dim(S) — 1

The projective dimension of P(V) is defined to be pdim(V') = dim(V') — 1. 4
subspace of projective dimension 0 is called a projective point and a subspace
of projective dimension 1 is called a projective line.[]

Thus, referring to Figure 16.1, a projective point is a line through the origin and,
provided that it is not contained in the base plane K, it meets H in an affine
point. Similarly, a projective line is a plane through the origin and, provided that
it is not K, it will meet H in an affine line. In short,

span(affine point) = line through the origin = projective point
span(affine line) = plane through the origin = projective line

The linear span function has the following properties.
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Theorem 16.12 The linear span function P: A(H) — S(V') from the affine
geometry A(H) to the projective geometry S(V') defined by PX = (X)
satisfies the following properties:

1) The linear span function is injective, with inverse given by

PlU=UnH

for all subspaces U not contained in the base subspace K of H.

2) The image of the span function is the set of all subspaces of V' that are not
contained in the base subspace K of H.

3) X CYifandonlyif (X) C(Y)

4) If X, are flats in H with nonempty intersection, then

span(ﬂXi) = ﬂ span(X;)
ieK ieK
5) For any collection of flats in H,
span(\/XZ) = @ span(X;)
i€k ieK
6) The linear span function preserves dimension, in the sense that
pdim(span(X)) = dim(X)

7y X ||Y if and only if one of (X)NK and (Y)N K is contained in the
other.

Proof. To prove part 1), let x+ S be a flat in H. Then = € H and so

H = z + K, which implies that S C K. Note also that (xz + S) = (z) + S and

ze(x+SYNH=(x)+S)N(x+K)=z=rc+s=z+k

for some s €S, k€ K and r € F. This implies that (1 —r)z € K, which
implies that either 2 € K or r = 1. But € H implies « ¢ K and so r =1,
which implies that z = x + s € z + S. In other words,

(x+SYNHCz+ S
Since the reverse inclusion is clear, we have
(x+SYNH=2+S
This establishes 1).
To prove 2), let U be a subspace of V' that is not contained in K. We wish to

show that U is in the image of the linear span function. Note first that since
U ¢ K and dim(K) = dim(V') — 1, we have U + K =V and so

dim(U N K) = dim(U) + dim(K) — dim(U + K) = dim(U) — 1
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Now let 0 # z € U — K. Then

r¢ K= ()+ K=V
=re+keHforsome0#reF, ke K
=reeH

Thus, rz € U N H for some 0 # r € F. Hence, the flat rz + (U N K) lies in H

and

dim(re + (UNK)) =dim(U NK) =dim(U) — 1

which implies that span(raz + (U N K)) = (rz) + (U N K) lies in U and has
the same dimension as U . In other words,

span(re + (UNK))=(re) + UNK)=U

We leave proof of the remaining parts of the theorem as exercises.[]

Exercises

1.

2.

10.

11.

12.

Show that if xy,...,z, €V, then the set S = {Zrz; | Xr; =0} is a
subspace of V.
Prove that if X C V' is nonempty then

affhull(X) = z + (X — z)

Prove that the set X = {(0,0), (1,0), (0,1)} in (Z3)? is closed under the

formation of lines, but not affine hulls.

Prove that a flat contains the origin 0 if and only if it is a subspace.

Prove that a flat X is a subspace if and only if for some x € X we have

re € X forsome 1 #r € F.

Show that the join of a collection C = {x; + 5; | i € K} of flats in V' is the

intersection of all flats that contain all flats in C.

Is the collection of all flats in V' a lattice under set inclusion? If not, how

can you “fix” this?

Suppose that X =z + S and Y = y + T'. Prove that if dim(X) = dim(Y")

and X | Y, then S =T.

Suppose that X =x+ .5 and Y =y + T are disjoint hyperplanes in V.

Show that S =T.

(The parallel postulate) Let X be a flat in V' and v ¢ X. Show that there is

exactly one flat containing v, parallel to X and having the same dimension

as X.

a) Find an example to show that the join X VY of two flats may not be
the set of all lines connecting all points in the union of these flats.

b) Show that if X and Y are flats with X N'Y # (), then X VY is the
union of all lines zy where x € X andy € Y.

Show that if X || Y and X NY = 0), then

dim(X VY) = max{dim(X),dim(Y)} + 1



13.

14.

15.

16.
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Let dim(V') = 2. Prove the following:

a) The join of any two distinct points is a line.

b) The intersection of any two nonparallel lines is a point.

Let dim(V') = 3. Prove the following:

a) The join of any two distinct points is a line.

b) The intersection of any two nonparallel planes is a line.

c) The join of any two lines whose intersection is a point is a plane.

d) The intersection of two coplanar nonparallel lines is a point.

e) The join of any two distinct parallel lines is a plane.

f) The join of a line and a point not on that line is a plane.

g) The intersection of a plane and a line not on that plane is a point.

Prove that f:V — V is a surjective affine transformation if and only if
f=70T,forsomew €V and 7 € L(V).

Verify the group-theoretic remarks about the group homomorphism
¢:aff(V') — L(V') and the subgroup trans(V') of aff(V").



Chapter 17
Singular Values and the Moore—Penrose
Inverse

Singular Values

Let U and V be finite-dimensional inner product spaces over C or R and let
7 € L(U,V). The spectral theorem applied to 7°7 can be of considerable help
in understanding the relationship between 7 and its adjoint 7*. This relationship
is shown in Figure 17.1. Note that U and V' can be decomposed into direct sums

U=A®B and V=C®D

in such a manner that 7: A — C and 7°: C' — A act symmetrically in the sense
that

Tiu; — s;v; and TV sy

Also, both 7 and 7* are zero on B and D, respectively.

We begin by noting that 7*7 € £(U) is a positive Hermitian operator. Hence, if
r =1k(7) = rk(7*7), then U has an ordered orthonormal basis

B = (U1yeeyUpy Upi1y.nnyUp)

of eigenvectors for 77, where the corresponding eigenvalues can be arranged
so that
M>>N>0=Ng==\,

The set (uy41,...,u,) is an ordered orthonormal basis for ker(7*7) = ker(7)
and so (uy, ..., u,) is an ordered orthonormal basis for ker(7)* = im(7*).
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im(t") im(t)
p
U, — Vi
T(U)=S, Vi
. N e
. 2 e
v .

ONB of u, T*(Vk)zskuk v, ONB of
eigenvectors > eigenvectors
for t*t for tt*
Ui T= ~ Via
. > .

. < .
=0

\ un Vm
ker(t) ker(t")
Figure 17.1
For i =1,...,r, the positive numbers s; = 1/ \; are called the singular values

of 7. If we set s; = 0 for ¢ > r, then
T U = stuy

for e =1,...,n. We can achieve some “symmetry” here between 7 and 7" by
setting v; = (1/s;)7u; for each ¢ < r, giving

siv; 1 <r
TUW; =

0 t>r
and
» siu; 1 <r
T V; = .
0 1>
The vectors vy, ..., v, are orthonormal, since if 7, j < r, then
_ _ * _ S -5
<vi7vj> - <Tuiﬂ7—uj> - <T Tu'iauj> - —<U,,;,Uj> — Viyg
SiSj SiSj Sj
Hence, (v, ...,v,) is an orthonormal basis for im(7) = ker(7*)*, which can be
extended to an orthonormal basis C = (vy,...,v,) for V, the extension
(Ur41, - , U ) being an orthonormal basis for ker(7*). Moreover, since
T = 8iTu; = S2v;
the vectors vy,...,v, are eigenvectors for 77 with the same eigenvalues

\; = s? as for 7*7. This completes the picture in Figure 17.1.
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Theorem 17.1 Let U and V' be finite-dimensional inner product spaces over C
or R and let T € L(U,V') have rank r. Then there are ordered orthonormal
bases B and C for U and V', respectively, for which

B = (ula"'aura Upyly .- Up )
ONB forim(7*)  ONB for ker(7)
and
C= (Ula"'avrv UT+17"'7U771)
ONB forim(t)  ONB for ker(7*)
Moreover, for 1 <k <,
TU; = S;V;
T*'Ui = S;U;
where s; > 0 are called the singular values of 7, defined by
T U, = s?ui, s; >0
for i < r. The vectors uy, ..., u, are called the right singular vectors for 7 and

the vectors vy, ..., v, are called the left singular vectors for 7.[1

The matrix version of the previous discussion leads to the well-known singular-
value decomposition of a matrix. Let A € M,, ,,(F) and let B = (u1,...,u,)
and C = (vy,...,v,,) be the orthonormal bases from U and V, respectively, in
Theorem 17.1, for the operator 74. Then

[T]c = ¥ = diag(s1, s2,...,5,0,...,0)
A change of orthonormal bases from the standard bases to C and D gives

A =[1ale,e, = Mcg, [TalscMe, 5 = PLQ"

where P = M¢g, and (Q = Mpg, are unitary/orthogonal. This is the singular-
value decomposition of A.

As to uniqueness, if A = PXQ*, where P and () are unitary and X is diagonal,
with diagonal entries \;, then

A*A = (PXQ")'PEQ = QY EQ*

and since X% = diag(\?,..., \2), it follows that the \?'s are eigenvalues of
A* A, that is, they are the squares of the singular values along with a sufficient
number of 0's. Hence, X is uniquely determined by A, up to the order of the
diagonal elements.
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We state without proof the following uniqueness facts and refer the reader to
[48] for details. If n < m and if the eigenvalues \; are distinct, then P is
uniquely determined up to multiplication on the right by a diagonal matrix of the
form D = diag(zy, ..., zy,) with |z;| = 1. If n < m, then Q is never uniquely
determined. If m = n = r, then for any given P there is a unique (). Thus, we
see that, in general, the singular-value decomposition is not unique.

The Moore—Penrose Generalized Inverse

Singular values lead to a generalization of the inverse of an operator that applies
to all linear transformations. The setup is the same as in Figure 17.1. Referring
to that figure, we are prompted to define a linear transformation 7+: V' — U by

1 .

=u; fori<r
7_4—7}2‘ _ st =

0 fori >r

since then
(T+T)|<u1 ) L
(T+T)|<ur+1,...,u,,,> =0
and
(7—7'+)|(1;17.4.,1;,.) =1
(TT+) (Vrt1ye e oyUm) —

Hence, if n=m =r, then 7+ = 77!, The transformation 7% is called the
Moore—Penrose generalized inverse or Moore—Penrose pseudoinverse of 7.
We abbreviate this as MP inverse.

Note that the composition 717 is the identity on the largest possible subspace of
U on which any composition of the form o7 could be the identity, namely, the
orthogonal complement of the kernel of 7. A similar statement holds for the
composition 77". Hence, 77 is as “close” to an inverse for 7 as is possible.

We have said that if 7 is invertible, then 7+ = 7~1. More is true: If 7 is
injective, then 777 = ¢ and so 7" is a left inverse for 7. Also, if T is surjective,
then 7 is a right inverse for 7. Hence the MP inverse 7" generalizes the one-
sided inverses as well.

Here is a characterization of the MP inverse.

Theorem 17.2 Let 7€ L(U,V). The MP inverse 7" of T is completely
characterized by the following four properties:

N rrtr=r1

2) thrrt =77

3) 71t is Hermitian

4) 7771 is Hermitian
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Proof. We leave it to the reader to show that 7+ does indeed satisfy conditions
1)-4) and prove only the uniqueness. Suppose that p and o satisfy 1)—4) when
substituted for 7F. Then

p=pTp
= (p7)p
=71'p'p
= (to7)"p"p

= (o7)"7"p"p
=orTp"p
=oTpTp

=0oTp

and

=o(r0)"
oo T"

=oo*(TpT)*
=oo*1"(1p)*
=oo'T'Tp
=oTOTP
=oT1p

which shows that p = .1

The MP inverse can also be defined for matrices. In particular, if A € M, ,,(F),
then the matrix operator 74 has an MP inverse 7. Since this is a linear
transformation from F™ to F', it is just multiplication by a matrix 7 = 75.
This matrix B is the MP inverse for A and is denoted by A*.

Since 7';; = 74+ and T4p = TATB, the matrix version of Theorem 17.2 implies
that A™ is completely characterized by the four conditions

1) AATA=A

2) ATAAT = A"

3) AAT is Hermitian
4) A't A is Hermitian
Moreover, if

A=UXU;

is the singular-value decomposition of A, then
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At = U,YUT

where Y is obtained from X by replacing all nonzero entries by their
multiplicative inverses. This follows from the characterization above and also
from the fact that for ¢ < r,

UQZ/UFU,; = UQZ’ei = S;lUgei = s{lui
and for¢ > r,

UQZ/UI*UZ' = UQZ’@j =0

Least Squares Approximation

Let us now discuss the most important use of the MP inverse. Consider the
system of linear equations

Ax =wv

where A € M, ,(F). (As usual, F' = C or F' = R.) This system has a solution
if and only if v € im(74). If the system has no solution, then it is of considerable
practical importance to be able to solve the system

Ax =7

where ¥ is the unique vector in im(74) that is closest to v, as measured by the
unitary (or Euclidean) distance. This problem is called the linear least squares
problem. Any solution to the system Az =7 is called a least squares solution
to the system Ax = v. Put another way, a least squares solution to Az = v is a
vector x for which || Az — v|| is minimized.

Suppose that w and z are least squares solutions to Az = v. Then
Aw=7= Az

and so w — z € ker(A). (We will write A for 74.) Thus, if w is a particular least
squares solution, then the set of all least squares solutions is w + ker(A).
Among all solutions, the most interesting is the solution of minimum norm.
Note that if there is a least squares solution w that lies in ker(A)*, then for any
z € ker(A), we have

2 2 2 2
[w+2]" = [lwl]” + [|2]]” = [lw]|

and so w will be the unique least squares solution of minimum norm.

Before proceeding, we recall (Theorem 9.14) that if S is a subspace of a finite-
dimensional inner product space V, then the best approximation to a vector
v € V from within S is the unique vector v € S for which v — ¥ 1L .S. Now we
can see how the MP inverse comes into play.
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Theorem 17.3 Let A € M,,,,(F). Among the least squares solutions to the
system

Ax =7

there is a unique solution of minimum norm, given by A*v, where A" is the MP
inverse of A.

Proof. A vector w is a least squares solution if and only if Aw = %. Using the
characterization of the best approximation v, we see that w is a solution to
Aw =79 if and only if

Aw —v L im(A)
Since im(A)* = ker(A*) this is equivalent to
A'(Aw—v) =0
or
A*Aw = A

This system of equations is called the normal equations for Az =v. Its
solutions are precisely the least squares solutions to the system Az = wv.

To see that w = At is a least squares solution, recall that, in the notation of
Figure 17.1,

AA+y — 4 Vi 1 <r
' 0 i>r
and so
Av i <r
* 4+ ? — 1 A%,
ATA(A U7’)_{0 i>r_Avl
and since C = (vy,...,v,,) is a basis for V, we conclude that AT v satisfies the

normal equations. Finally, since A*v € ker(A)*, we deduce by the preceding
remarks that A" v is the unique least squares solution of minimum norm.J

Exercises

1. Let7 € L£(U). Show that the singular values of 7* are the same as those of

T.
2. Find the singular values and the singular value decomposition of the matrix
31
St
Find A™.

3. Find the singular values and the singular value decomposition of the matrix
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120
A{202]

Find A™. Hint: Is it better to work with A*A or AA*?

Let X = (w1 @9 -+ o,,)" be a column matrix over C. Find a singular-value
decomposition of X.

Let A € M,, ,(F') and let B € My, 1y m+n (F) be the square matrix

0 A
5= 4]
A 0 block

Show that, counting multiplicity, the nonzero eigenvalues of B are
precisely the singular values of A together with their negatives. Hint: Let
A =U,;XU; be a singular-value decomposition of A and try factoring B
into a product U SU* where U is unitary. Do not read the following second
hint unless you get stuck. Second Hint: Verify the block factorization

o[ 4]l 5]

Uy 0|2 O0[|U ©

What are the eigenvalues of the middle factor on the right? (Try €; + €,41

and €; — €,41.)

Use the results of the previous exercise to show that a matrix

A € M, ,(F), its adjoint A*, its transpose A’ and its conjugate A all have

the same singular values. Show also that if U and U’ are unitary, then A

and U AU’ have the same singular values.

Let A€ M,(F) be nonsingular. Show that the following procedure

produces a singular-value decomposition A = U; XU of A.

a) Write A=UDU* where D = diag(\,...,\,) and the \'s are
positive and the columns of U form an orthonormal basis of
eigenvectors for A. (We never said that this was a practical procedure.)

b) Let X = diag()\i/ 27 AU )\,1/ 2) where the square roots are nonnegative.
AlsoletU; = U and Uy = A*UX L.

If A = (a;;) is an n x m matrix, then the Frobenius norm of A is

1/2
[Allp = (Z a?,j)
(]

Show that || A% = 37 s? is the sum of the squares of the singular values of
A.



Chapter 18
An Introduction to Algebras

Motivation

We have spent considerable time studying the structure of a linear operator
7€ Lp(V) on a finite-dimensional vector space V' over a field F. In our
studies, we defined the F[z]-module V; and used the decomposition theorems
for modules over a principal ideal domain to dissect this module. We
concentrated on an individual operator 7, rather than the entire vector space
Lr(V). In fact, we have made relatively little use of the fact that Lz(V') is an
algebra under composition. In this chapter, we give a brief introduction to the
theory of algebras, of which £ (V') is the most general, in the sense of Theorem
18.2 below.

Associative Algebras

An algebra is a combination of a ring and a vector space, with an axiom that
links the ring product with scalar multiplication.

Definition An (associative) algebra A over a field F, or an F-algebra, is a
nonempty set A, together with three operations, called addition (denoted by
+ ), multiplication (denoted by juxtaposition) and scalar multiplication (also
denoted by juxtaposition), for which the following properties hold.:

1) Ais avector space over F under addition and scalar multiplication.

2) A is a ring with identity under addition and multiplication.

3) Ifr € Fanda,b € A, then

r(ab) = (ra)b = a(rb)

An algebra is finite-dimensional if it is finite-dimensional as a vector space. An
algebra is commutative if A is a commutative ring. An element a € A is
invertible if there is b € A for which ab = ba = 1.0J

Our definition requires that A have a multiplicative identity. Such algebras are
called unital algebras. Algebras without unit are also of great importance, but
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we will not study them here. Also, in this chapter, we will assume that all
algebras are associative. Nonassociative algebras, such as Lie algebras and
Jordan algebras, are important as well.

The Center of an Algebra
Definition The center of an F-algebra A is the set
Z(A)={a€A|lax ==xaforallx € A}

of all elements of A that commute with every element of A..]

The center of an algebra is never trivial since it contains a copy of F':

{rl|re F} CZ(A)
Definition An F-algebra A is central if its center is as small as possible, that
is, if

Z(A)={rl|reF} O

From a Vector Space to an Algebra

If V' is a vector space over a field F and if B={b; | i € I'} is a basis for V,
then it is natural to wonder whether we can form an F'-algebra simply by
defining a product for the basis elements and then using the distributive laws to
extend the product to V. In particular, we choose a set of constants ozjc"j with the
property that for each pair (i, j), only finitely many of the ai}j are nonzero. Then
we set

bibj = > ay’by
k

and make multiplication bilinear, that is,

(i: T‘ibi> bk = i: Tibibk
i=1 i=1
by, <Zn: 7"7'b7:> = i: r;brb;
i=1 i1
and
r <i ribi> = i: rr;b;
i=1 i=1

for r € F. It is easy to see that this does define a nonunital associative algebra
A provided that
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(bibj)br = bi(bjby)
for all 4, j, k € I and that A is commutative if and only if
bib; = b;b;
for all 7,5 € I. The constants ozz’j are called the structure constants for the

algebra A. To get a unital algebra, we can take for a given ¢ € I, the structure
constants to be

aA —6k]—ak

in which case b; is the multiplicative identity. (An alternative is to adjoin a new
element to the basis and define its structure constants in this way.)

Examples

The following examples will make it clear why algebras are important.

Example 18.1 If I < E are fields, then E is a vector space over F'. This vector
space structure, along with the ring structure of F, is an algebra over F'.[J

Example 18.2 The ring F'[x] of polynomials is an algebra over F.[1

Example 18.3 The ring M, (F) of all n x n matrices over a field F' is an
algebra over F', where scalar multiplication is defined by

M =(a;;), reF = rM=/(ra) O

Example 18.4 The set £(V') of all linear operators on a vector space V' over a
field F' is an F'-algebra, where addition is addition of functions, multiplication is
composition of functions and scalar multiplication is given by

(ro)(v) = r[ov]

The identity map ¢ € Lp(V) is the multiplicative identity and the zero map
0 € Lp(V) is the additive identity. This algebra is also denoted by Endp(V),
since the linear operators on V' are also called endomorphisms of V.0

Example 18.5 If G is a group and F is a field, then we can form a vector space
F[G] over F by taking all formal F-linear combinations of elements of G and
treating G as a basis for F'[G]. This vector space can be made into an F'-algebra
where the structure constants are determined by the group product, that is, if
9igj = Gu, then ak = 6k u The group identity g; = 1 is the algebra identity

since g1g; = ¢; and so ak = 0y, j and similarly, akl = Opj-

The resulting associative algebra F[G] is called the group algebra over F.
Specifically, the elements of F[G] have the form
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T=7rigr+ +Tngn
where r; € F'and g; € G. If
y:51h1+"'+5mhm

then we can include additional terms with O coefficients and reindex if
necessary so that we may assume that m = n and g; = h; for all ¢. Then the sum
in F[G] is given by

(Zn: 7‘7197',) + (i: 8191> = Z”: (ri + si)gi
| =1 =1

Also, the product is given by

(Zﬁgz) (Zsihz‘> = risigih;
i1 = By

and the scalar product is
n n
S Zﬁ'gz‘ = Zsﬁ‘gz‘ O
i—1 i=1

The Usual Suspects

Algebras have substructures and structure-preserving maps, as do groups, rings
and other algebraic structures.

Subalgebras

Definition Let A be an F'-algebra. A subalgebra of A is a subset B of A that is
a subring of A (with the same identity as A) and a subspace of A.LJ

The intersection of subalgebras is a subalgebra and so the family of all
subalgebras of A is a complete lattice, where meet is intersection and the join of
a family F of subalgebras is the intersection of all subalgebras of A that contain
the members of F.

The subalgebra generated by a nonempty subset X of an algebra A is the
smallest subalgebra of A that contains X and is easily seen to be the set of all
linear combinations of finite products of elements of X, that is, the subspace
spanned by the products of finite subsets of elements of X:

<X>alg = <$1"'$n | x; € X>
Alternatively, (X)a, is the set of all polynomials in the variables in X. In

particular, the algebra generated by a single element z € A is the set of all
polynomials in = over F'.
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Ideals and Quotients

In defining the notion of an ideal of an algebra A, we must consider the fact that
A may be noncommutative.

Definition 4 (two-sided) ideal of an associative algebra A is a nonempty
subset I of A that is closed under addition and subtraction, that is,

a,bel = a+ba-bel
and also left and right multiplication by elements of A, that is,

kel, abeA = akbel O

The ideal generated by a nonempty subset X of A is the smallest ideal
containing X and is equal to

(X )ideal = {Zaiiﬂibi |z € X,a;,b; € A}
=1

Definition An algebra A is simple if

1) The product in A is not trivial, that is, ab # 0 for at least one pair of
elements a,b € A

2) A has no proper nonzero ideals.[]

Definition If I is an ideal in A, then the quotient algebra is the quotient
ring/quotient space

A/l ={a+1I|a€ A}
with operations

(@a+ D)+ b+1)=(a+b)+1
(a+I)b+I)=ab+1
rla+1I)=ra+1T

where a,b € A and r € F. These operations make A/I an F-algebra.l]

Homomorphisms

Definition If A and B are F-algebras a map o:A — B is an algebra
homomorphism if" it is a ring homomorphism as well as a linear
transformation, that is,

ola+d)=ca+od, o(ad)=(0a)(oa’), ocl=1
and
r(ca) = o(ra)

forre F.O0
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The usual terms monomorphism, epimorphism, isomorphism, embedding,
endomorphism and automorphism apply to algebras with the analogous meaning
as for vector spaces and modules.

Example 18.6 Let V' be an n-dimensional vector space over F'. Fix an ordered
basis B for V. Consider the map p: L(V') — M,,(F) defined by

(o) = lols

where [0]p is the matrix representation of o with respect to the ordered basis B.
This map is a vector space isomorphism and since

[rols = [7]slo]s
it is also an algebra isomorphism.[]
Another View of Algebras

If A is an algebra over F', then A contains a copy of F'. Specifically, we define a
function \: F' — A by

Ar=rl

for all » € F, where 1 € A is the multiplicative identity. The elements r1 are in
the center of A, since forany a € A,

(rl)a=r(la) =ra
and
a(rl) =r(al) =ra
Thus, \: F — Z(A). To see that X is a ring homomorphism, we have

A1p)=1p-1=1
Ar+s)=(r+s)1=r1+s1l=Ar)+ A(s)
A(rs) = (rs)l =r(sl) =rA(s) =r(1-A(s)) = (r-1)A(s) = A(r)A(s)

Moreover, if 1 = 0 and r # 0, then

0=rt(rl)=1p-1=1
and so provided that 0 # 1 in A, we have r = 0. Thus, A is an embedding.
Theorem 18.1

1) If A is an associative algebra over F and if 0 # 1 in A, then the map
A F — Z(A) defined by

Ar=rl

is an embedding of the field F into the center Z(A) of the ring A. Thus, F
can be embedded as a subring of Z (A).
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2) Conversely, if R is a ring with identity and if F C Z(R) is a field, then R
is an F-algebra with scalar multiplication defined by the product in R.[]

One interesting consequence of this theorem is that a ring R whose center does
not contain a field is not an algebra over any field F'. This happens, for example,
with the ring Zg.

The Regular Representation of an Algebra

An algebra homomorphism o: A — Lp(V) is called a representation of the
algebra A in L7(V'). A representation o is faithful if it is injective, that is, if o
is an embedding. In this case, A is isomorphic to a subalgebra of Lz (V).

Actually, the endomorphism algebras Lr(V) are the most general algebras
possible, in the sense that any algebra A has a faithful representation in some
endomorphism algebra.

Theorem 18.2 Any associative F-algebra A is isomorphic to a subalgebra of
the endomorphism algebra Lp(A). In fact, if p, is the left multiplication map
defined by

e = ax

then the map ji: A — L;(A) is an algebra embedding, called the left regular
representation of A.[]

When dim(A) = n < oo, we can select an ordered basis B for A and represent
the elements of L£p(A) by matrices. This gives an embedding of A into the
matrix algebra M, (F), called the left regular matrix representation of A
with respect to the ordered basis B.

Example 18.7 Let G = {1,q, ..., "'} be a finite cyclic group. Let
B=(1,a,...,a" ")

be an ordered basis for the group algebra F'[G]. The multiplication map ; that
is multiplcation by o is a shifting of B (with wraparound) and so the matrix
representation of pu, is the matrix whose columns are obtained from the identity
matrix by shifting k£ columns to the right (with wrap around). For example,

o o0 --- 0 1
1 0 --- 0 O
[ialp=10 1 ~° 0 0
00 -~ 10

These matrices are called circulant matrices.J



458 Advanced Linear Algebra

Since the endomorphism algebras L£p(V') are of obvious importance, let us
examine them a bit more closely.

Theorem 18.3 Let V' be a vector space over a field F'.
1) The algebra Ly (V') has center

Z=A{rl|reF}

and so Lp(V') is central.
2) The set I of all elements of Lp(V') that have finite rank is an ideal of
Lp(V) and is contained in all other ideals of Lp(V).
3) Lp(V) is simple if and only if V' is finite-dimensional.
Proof. We leave the proof of parts 1) and 3) as exercises. For part 2), we leave
it to the reader to show that I is an ideal of Lz (V). Let J be a nonzero ideal of
Lp(V). Let f € Lr(V) have rank 1. Then there is a basis B= B, UB; (a
disjoint union) and a nonzero w € V for which B; is a finite set, f(B2) = {0}
and f(b) =mw for all b € B. Thus, f is a linear combination over F' of
endomorphisms fj, defined by

fo(b) =w,  fo(B\ {b}) = {0}

Hence, we need only show that f;, € J.

If o € J is nonzero, then there is an e € B for whichoe = u # 0. If 7 € Lp(V)
is defined by

b =e, 7(B\{b}) ={0}
and A € Lp(V) is defined by
Nu=w, AB\{u}) = {0}
then
AoT(b) =w, Xor(B\{b})={0}
and so f, = Aot € J.0
Annihilators and Minimal Polynomials

If A is an F-algebra and a € A, then it may happen that « satisfies a nonzero
polynomial p(x) € F[z]. This always happens, in particular, if A is finite-
dimensional, since in this case the powers

2
1,a,a7,...

must be linearly dependent and so there is a nonzero polynomial in a that is
equal to 0.

Definition Let A be an F-algebra. An element a € A is algebraic if there is a
nonzero polynomial p(x) € F[x]| for which p(a) =0. If a is algebraic, the
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monic polynomial m,(x) of smallest degree that is satisfied by a is called the
minimal polynomial of a.(]

If a € A is algebraic over F, then the subalgebra generated by a over F is
Fla] = {p(a) | p(z) € F[z],deg(p) < deg(ma)}
and this is isomorphic to the quotient algebra
Fla]
(ma(z))

where (m,(x)) is the ideal generated by the minimal polynomial of a. We leave
the details of this as an exercise.

Fla] =

The minimal polynomial can be used to tell when an element is invertible.

Theorem 18.4
1) The minimal polynomial m,(x) of a € A generates the annihilator of a,
that is, the ideal

ann(a) = {f(z) € Fla] | f(a) = 0}

of all polynomials that annihilate a.

2) The element a € A is invertible if and only if m,(x) has nonzero constant
term.

Proof. We prove only the second statement. If a is invertible but

me(z) = xp(x)

then 0 = m,(a) = ap(a). Multiplying by a~! gives p(a) = 0, which contradicts
the minimality of deg(m,(x)). Conversely, if

me(x) = ap + x4 - + a,_z" "+ 2"
where g # 0, then

O=ap+aja+ -+ a,1a" " +a"

and so
-1 n—2 n—1
a—(a1+a2a+~~+an_1a +a )CL:l
0
and so
1 -1 n—2 n—1
a=—(taa+-+a, 10" +ad") |

Qo
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Theorem 18.5 If A is a finite-dimensional F-algebra, then every element of A
is algebraic. There are infinite-dimensional algebras in which all elements are
algebraic.

Proof. The first statement has been proved. To prove the second, let us consider
the complex field C as a Q-algebra. The set A of algebraic elements of C is a
field, known as the field of algebraic numbers. These are the complex numbers
that are roots of some nonzero polynomial with rational (or integral)
coefficients.

To see this, if a € A, then the subalgebra Q|a] is finite-dimensional. Also, Q[a]
is a field. To prove this, first note that since C is a field, the minimal polynomial
of any nonzero a € A is irreducible, for if m,(z) = p(z)q(x), then
0 =p(a)q(a) and so one of p(a) and g¢(a) is 0, which implies that
p(z) = my(x) or g(z) = my(x). Since m,(z) is irreducible, it has nonzero
constant term and so the inverse of a is a polynomial in a, that is, a=' € Qla].
Of course, Qa] is closed under addition and multiplication and so Q[a] is a
subfield of C.

Thus, C is an algebra over Q[a]. By similar reasoning, if b € A, then the
minimal polynomial of b over Q[a] is irreducible and so b~ € Q[a][b]. Since
Qla][b] = QJa, b] is the set of all polynomials in the “variables” a and b, it is
closed under addition and multiplication as well. Hence, Q|a,b] is a finite-
dimensional algebra over Q[a], as well as a subfield of C. Now,

dimg (Q[a, b]) = dimgye)(Q[a, b]) - dimg(Q[a])

and so Q[a, b] is finite-dimensional over Q. Hence, the elements of Qla, b] are
algebraic over Q, that is, Q[a, b] C A. But Q[a, b] contains a~!,a + b,a — b and
ab and so A is a field.

We claim that A is not finite-dimensional over Q. This follows from the fact
that for every prime p, the polynomial 2" — p is irreducible over QQ (by
Eisenstein's criterion). Hence, if a is a complex root of " — p, then a has
minimal polynomial " — p over Q and so the dimension of Q[a] over Q is n.
Hence, A cannot be finite-dimensional.[]

The Spectrum of an Element

Let A be an algebra. A nonzero element a € A is a left zero divisor if ab =0
for some b # 0 and a right zero divisor if ca =0 for some ¢ # 0. In the
exercises, we ask the reader to show that an algebraic element is a left zero
divisor if and only if it is a right zero divisor.

Theorem 18.6 Let A be a algebra. An algebraic element a € A is invertible if
and only if it is not a zero divisor.

Proof. If a is invertible and ab = 0, then multiplying by a~' gives b = 0.
Conversely, suppose that a is not invertible but ab = 0 implies b = 0. Then
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mq(x) = xp(x) for some nonzero polynomial p(x) and so 0 = ap(a), which
implies that p(a) = 0, a contradiction to the minimality of m,(z).0

We have seen that the eigenvalues of a linear operator 7 on a finite-dimensional
vector space are the roots of the minimal polynomial of 7, or equivalently, the
scalars r for which 7 —r¢ is not invertible. By analogy, we can define the
eigenvalues of an element a of an algebra A.

Theorem 18.7 Let A be an algebra and let a € A be algebraic. An element
r € F is a root of the minimal polynomial m,(z) if and only if a — rl is not
invertible in A.

Proof. If a — r1 is not invertible, then

M (x) = xp(x)
and since m,(z + r1) is satisfied by a — r1, it follows that
zp(x) = me_r1(x) | ma(z +rl)

Hence, (z — rl) | mq(x). Alternatively, if a — r1 is not invertible, then there is
a nonzero b € A such that (a —r1)b =0, that is, ab = rb. Hence, for any
polynomial p(z) we have p(a)b = p(r)b. Setting p(x)=m,(z) gives
mqa(r) =0.

Conversely, if m,(r) =0, then m,(z)=(z—7rl)p(r) and so
0 = (a — r1)p(a), which shows that a — r1 is a zero divisor and therefore not
invertible.[]

Definition Let A be an F-algebra and let a € A be algebraic. The roots of the
minimal polynomial of a are called the eigenvalues of a. The set of all
eigenvalues of a

Spec(a) = {r € F' | m,(r) =0}

is called the spectrum of a.(]
Note that @ € A is invertible if and only if 0 ¢ Spec(a).

Theorem 18.8 (The spectral mapping theorem) Let A be an algebra over an
algebraically closed field F. Let a € A and let p(x) € F[z|. Then

Spec(p(a)) = p(Spec(a)) = {p(r) | € Spec(a)}

Proof. We leave it as an exercise to show that p(Spec(a)) C Spec(p(a)). For
the reverse inclusion, let r € Spec(p(a)) and suppose that

p($) —-r= (;c — 7"1)6‘~"(x _ Tn)e"

Then
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pla) —rl=(a—r1)* - (a—r,1)™

and since the left-hand side is not invertible, neither is one of the factors
a — i1, whence 7, € Spec(a). But
p(ry) —r=0
and so 7 = p(r;) € p(Spec(a)). Hence, Spec(p(a)) C p(Spec(a)).O
Theorem 18.9 Let A be an algebra over an algebraically closed field F. If
a,b € A, then
Spec(ab) = Spec(ba)
Proof. If 0 # r ¢ Spec(ba), then ba — r1 is invertible and a simple computation
gives
(ab—rD)a(ba —r1)"'o—1] =7
and so ab —rl is invertible and r ¢ Spec(ab). If 0 ¢ Spec(ba), then ba is
invertible. We leave it as an exercise to show that this implies that ab is also
invertible and so 0 ¢ Spec(ab). Thus, Spec(ab) C Spec(ba) and by symmetry,
equality must hold.(J
Division Algebras
Some important associative algebras A have the property that all nonzero

elements are invertible and yet A is not a field since it is not commutative.

Definition An associative algebra D over a field F' is a division algebra if
every nonzero element has a multiplicative inverse.l]

Our goal in this section is to classify all finite-dimensional division algebras
over the real field R, over any algebraically closed field F' and over any finite
field. The classification of finite-dimensional division algebras over the rational
field Q is quite complicated and we will not treat it here.

The Quaternions

Perhaps the most famous noncommutative division algebra is the following.
Define a real vector space H with basis

B ={1,i,j,k}

To make H into an F'-algebra, define the product of basis vectors as follows:

1) le=xl=xaforallz B
2) P=F=kK=-1

3) ij=k,gk=diki=j

4) ji=—k,kj=—iik=—j
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Note that 3) can be stated as follows: The product of two consecutive elements
i, j, k is the next element (with wraparound). Also, 4) says that yz = —xy for
x,y € {1, j, k}. This product is extended to all of H by distributivity.

We leave it to the reader to verify that H is a division algebra, called Hamilton's
quaternions, after their discoverer William Rowan Hamilton (1805-1865).
(Readers familiar with group theory will recognize the quaternion group ) =
{+1,+i,+j, £k}.) The quaternions have applications in geometry, computer
science and physics.

Finite-Dimensional Division Algebras over an Algebraically Closed
Field

It happens that there are no interesting finite-dimensional division algebras over
an algebraically closed field.

Theorem 18.10 If D is a finite-dimensional division algebra over an
algebraically closed field F then D = F.

Proof. Let a € D have minimal polynomial m,(z). Since a division algebra has
no zero divisors, m,(z) must be irreducible over F' and so must be linear.
Hence, m,(z) =z —randsoa =r € F.OO

Finite-Dimensional Division Algebras over a Finite Field

The finite-dimensional division algebras over a finite field are also easily
described: they are all commutative and so are finite fields. The proof, however,
is a bit more challenging. To understand the proof, we need two facts: the class
equation and some information about the complex roots of unity. So let us
briefly describe what we need.

The Class Equation

Those who have studied group theory have no doubt encountered the famous
class equation. Let G be a finite group. Each a € G can be thought of as a
permutation o, of G defined by

Ou = azxa™!
for all z € G. The set of all conjugates aza~! of x is denoted by {x}¢ and so
{2}Y = {0,z |a e G}

This set is also called a conjugacy class in G. Now, the following are
equivalent:
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0o = Opx
axa”! = bxb™!

blazab™t =2
b la € Cq(x)

where
Ce(z) ={g9 € G | gz = zg}

is the centralizer of . But b~'a € C(w) if and only if @ and b are in the same
coset of Cg(x). Thus, there is a one-to-one correspondence between the
conjugates of = and the cosets of Cz(z). Hence,

{2}¢] = (G : Ca())

Since the distinct conjugacy classes form a partition of G (because conjugacy is
an equivalence relation), we have

Gl=> [z} =3 (G : Culx))

zes zeS

where S is a set consisting of exactly one element from each conjugacy class
{2}%. Note that a conjugacy class {x}“ has size 1 if and only if axza™' = z for
all @ € G, that is, xa = ax for all @ € G and these are precisely the elements in
the center Z(G) of G. Hence, the previous equation can be written in the form

G =12(G)| + Y (G : Ca(x))

zes’

where S’ is a set consisting of exactly one element from each conjugacy class
{x}¢ of size greater than 1. This is the class equation for G.

The Complex Roots of Unity

If n is a positive integer, then the complex nth roots of unity are the complex
solutions to the equation

2" —1=0

The set U,, of complex nth roots of unity is a cyclic group of order n. To see
this, note first that U, is an abelian group since a,b € U,, implies that ab € U,
and ¢! € U,. Also, since 2" — 1 has no multiple roots, U,, has order n.

Now, in any finite abelian group G, if m is the maximum order of all elements
of G, then ¢"™ =1 for all g € G. Thus, if no element of U,, has order n, then
m < n and every g € GG satisfies the equation " — 1 = 0, which has fewer
than n solutions. This contradiction implies that some element of U,, must have
order n and so U, is cyclic.
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The elements of U, that generate U,,, that is, the elements of order n are called
the primitive nth roots of unity. We denote the set of primitive nth roots of
unity by €2,,. Hence, if a € €2, then

Q, = {d"| (n,k) =1}

has size ¢(n), where ¢ is the Euler phi function. (The value ¢ (k) is defined to
be the number of positive integers less than or equal to & and relatively prime to
k.)

The nth cyclotomic polynomial is defined by

Qu(@) = T (@~ w)

wes,
Thus,
deg(@n(z)) = ¢(n)

Since every nth root of unity is a primitive dth root of unity for some d | n and
since every primitive dth root of unity for d | n is also an nth root of unity, we

deduce that
Un = U Qd
dln

where the union is a disjoint one. It follows that

Finally, we show that @Q,,(x) is monic and has integer coefficients by induction
on n. It is clear from the definition that @, (x) is monic. Since Q;(z) = = — 1,
the result is true for n = 1. If p is a prime, then all nonidentity pth roots of unity
are primitive and so

P —1

Qo) =——F =" +al 4wt ]

and the result holds for n = p. Assume the result holds for all proper divisors of
n. Then

2" =1 = Qu(@)[[Qu(x) = Qu(x)R(=)

djn
d<n

By the induction hypothesis, R(x) has integer coefficients and it follows that
@, (x) must also have integer coefficients.

Wedderburn's Theorem
Now we can prove Wedderburn's theorem.
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Theorem 18.11 (Wedderburn's theorem) I/ D is a finite division algebra, then
D is a field.

Proof. We must show that D is commutative. Let G = D* be the multiplicative
group of all nonzero elements of D. The class equation is

|ID| = 1Z(D")| + Y (D" : C())

where the sum is taken over one representative 3 from each conjugacy class of
size greater than 1. If we assume for the purposes of contradiction that D is not
commutative, that is, that Z(D*) # D*, then the sum on the far right is not an
empty sum and so |[C*(5)| < |D*| for some 8 € D*.

The sets Z(D) and C(f) are subalgebras of D and, in fact, Z(D) is a
commutative division algebra; that is, a field. Let |Z(D)| =z > 2. Since
Z(D) C C(B), we may view C'(3) and D as vector spaces over Z(D) and so

|IC(B) = 2" and |D|=2"

for integers 1 < k() < n. The class equation now gives

and since 2*") — 1| 2" — 1, it follows that k(3) | n.

If Q,(x) is the nth cyclotomic polynomial, then @,(z) divides z" — 1. But
Q@ (2) also divides each summand on the far right above, since its roots are not
roots of 2#(?) — 1. It follows that Q,,(z) | z — 1. On the other hand,

Qu(2) =] (=~ )

wel,

and since w € {2, implies that |z — w| > z — 1, we have a contradiction. Hence
Z(D*) = D* and D is commutative, that is, D is a field.]

Finite-Dimensional Real Division Algebras
We now consider the finite-dimensional division algebras over the real field R.

In 1877, Frobenius proved that there are only three such division algebras.

Theorem 18.12 (Frobenius, 1877) If D is a finite-dimensional division algbera
over R, then

D=R, D=C or D=H
Proof. Note first that the minimal polynomial mg(x) of any d € D is either

linear, in which case d € R or irreducible quadratic my(z) = 2° + rz + s with
r? — 4s < 0. Completing the square gives
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1\* 1
O:md(a):a2+ra+32(a+2r) +Z(4s—r2)

Hence, any a € D has the form

= + ! L +t
a=|a 2r 27“ =«
where ¢ € R and either o = 0 or o < 0. Hence, o® € R but a ¢ R. Thus, every
element of D is the sum of an element of R and an element of the set
D' ={aeD|a*<0}
that is, as sets:
D=R+D

Also, RN D" = {0}. To see that D' is a subspace of D, let u,v € D'. We wish
to show that w+wveD. If v=ru for some réc&R, then
u+v=(1l+r)u € D' So assume that u and v are linearly independent. Then
u and v are nonzero and so also nonreal.

Now, u + v and u — v cannot both be real, since then u and v would be real. We
have seen that

ut+tv=r—+auo
and

u—v=s+p0
where r, s € R, at least one of « or 3 is nonzero and o, 3% < 0. Then

(w+v)?2+ (u—v)7°=(r+a)+(s+3)°
and so
2%+ 20° =12 + 2ra + o® + s> + 255 + 5*
Collecting the real part on one side gives
ora 4 2s0 = 2u® + 20° — (r 4+ o® + s> + 3?)

Now, if we knew that «, 5 and 1 were linearly independent over R we could
conclude that r = s = 0 and so

(u+v) =0a><0 and (u—0v)?=p><0

which shows that « + v and © — v are in D'.

To see that {«, 3,1} is linearly independent, it is equivalent to show that
{u,v,1} is linearly independent. But if
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v=au+b
for a,b € R, then
v? = a*u’® 4 2abu + b?
and since u ¢ R, it follows that ab = 0 and so a = 0 or b = 0. But a # 0 since
v ¢ Rand b # 0 since {u, v} are linearly independent.
Thus, D' is a subspace of D and
D=RoD

We now look at D', which is a real vector space. If D’ = {0}, then D = R and
we are done, so assume otherwise. If a € D' is nonzero, then a®> = —r? where
r € R. Hence, i = ar~' € D’ satisfies i> = —1. If

D' =Ri={ri|reR}
then D = R @ Ri = C and we are done. If not, then Ri is a proper subspace of
D
In the quaternion field, there is an element j for which 75 + ji = 0. So we seck a
j € D'\ Ri with this property. To this end, define a bilinear form on D’ by
(u,v) = —(uv + vu)

Then it is easy to see that this form is a real inner product on D’ (positive
definite, symmetric and bilinear). Hence, if Ri is a proper subspace of I, then

D=RicoS

where © denotes the orthogonal direct sum. If w € .S is nonzero, then

u? = —r? forr € R and so if j = ur~!, then

#=-1 and ji+ij=0
Now, Rj is a subspace of S and so
D=RiORjoOT

Setting k = ij, we have

—(i,k) =ik + ki=1dij+iji=0
and

—(J,k) =jk+kj=jij+1jj=0
and so k € T" and we can write

D=RiORjOREOU
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Now, if U # {0}, then there is au € U for which u> = —1 and

ut = —iu
uj = —ju
uk = —ku

The third equation is u(ij) = —(ij)u and so

u(if) = —(ij)u = iuj = —uij

whence uij = 0, which is false. Hence, U = {0} and

D=R&Ri®Rj® Rk =H

This completes the proof.[]

Exercises

1.

W

Prove that the subalgebra generated by a nonempty subset X of an algebra
A is the subspace spanned by the products of finite subsets of elements of
X:

<X>alg = <$1$n | T € X>

Verify that the group algebra F[G] is indeed an associative algebra over F.
Show that the kernel of an algebra homomorphism is an ideal.

Let A be a finite-dimensional algebra over F' and let B be a subalgebra.
Show that if b € B is invertible, then b~ € B.

If A is an algebra and S C A is nonempty, define the centralizer C4(S) of
S to be the set of elements of A that commute with all elements of .S. Prove
that C'4(S) is a subalgebra of A.

Show that Zg is not an algebra over any field.

Let A = F'[a] be the algebra generated over F' by a single algebraic element
a. Show that A is isomorphic to the quotient algebra F[z]/(f(x)), where
(f(x)) is the ideal generated by f(x) € F[z]. What can you say about
f(x)? What is the dimension of A? What happens if a is not algebraic?

Let G = {1 = ay, ..., a,} be a finite group. For z € F[G] of the form

T =riar+ -+ rpa,

le¢ T(x)=r1+-+r, Prove that T:F[G] — F is an algebra
homomorphism, where F' is an algebra over itself.

Prove the first isomorphism theorem of algebras: A homomorphism
0: A — B of F-algebras induces an isomorphism &: A/ker(o) =~ im(o)
defined by (aker(c)) = oa.

10. Prove that the quaternion field is an F'-algebra and a field. Hint: For

x=ro+rii+ryy+rsk #0
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1.

12.

13.

14.
15.
16.
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(ro = rgl) consider
f:TU—T’li—TQj—Tgk

Describe the left regular representation of the quaternions using the ordered
basis B = (1,4, j, k).

Let S, be the group of permutations (bijective functions) of the ordered set
X = (x1,...,x,), under composition. Verify the following statements.
Each o € S,, defines a linear isomorphism 7, on the vector space V' with
basis X over a field F. This defines an algebra homomorphism
f: F[S,] — Lp(V') with the property that f (o) = 7,. What does the matrix
representation of a o € S,, look like? Is the representation f faithful?

Show that the center of the algebra Ly (V) is

Z=A{rl|reF}

Show that £(V') is simple if and only if dim(V') < oc.

Prove that for n > 3, the matrix algebras M,,(F') are central and simple.

An element a € A is left-invertible if there is a b € A for which ba = 1, in

which case b is called a left inverse of a. Similarly, a € A is right-

invertible if there is a b € A for which ab = 1, in which case b is called a

right inverse of a. Left and right inverses are called one-sided inverses

and an ordinary inverse is called a two-sided inverse. Let a € A be

algebraic over F'.

a) Prove that ab = 0 for some b # 0 if and only if ca = 0 for some ¢ # 0.
Does ¢ necessarily equal b?

b) Prove that if a has a one-sided inverse b, then b is a two-sided inverse.
Does this hold if a is not algebraic? Hint: Consider the algebra
A= Lp(Flz)).

¢) Leta,b € A be algebraic. Show that ab is invertible if and only if a
and b are invertible, in which case ba is also invertible.



Chapter 19
The Umbral Calculus

In this chapter, we give a brief introduction to an area called the umbral
calculus. This is a linear-algebraic theory used to study certain types of
polynomial functions that play an important role in applied mathematics. We
give only a brief introduction to the subject, emphasizing the algebraic aspects
rather than the applications. For more on the umbral calculus, may we suggest
The Umbral Calculus, by Roman [1984]?

One bit of notation: The lower factorial numbers are defined by

(n)p=nn—-1)-(n—k+1)

Formal Power Series

We begin with a few remarks concerning formal power series. Let F denote the
algebra of formal power series in the variable ¢, with complex coefficients.
Thus, F is the set of all formal sums of the form

f(t) = iaktk (19.1)
k=0

where aj, € C (the complex numbers). Addition and multiplication are purely
formal:

zoc: aktk + 200: bktk' = i (ak + bk)tk'
k=0 k=0 k=0
and
(Z aktk) (Z bktk) = Z (Z (Ijbk,j) tk
=0 =0 =0 " j=0

The order o(f) of f is the smallest exponent of ¢ that appears with a nonzero
coefficient. The order of the zero series is defined to be + oco. Note that a series
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f has a multiplicative inverse, denoted by f~!, if and only if o(f) = 0. We
leave it to the reader to show that

o(fg) =o(f) +olg)
and
o(f +g) > min{o(f),o(g)}

If fy is a sequence in F with o(f;;) — oo as k — 0, then for any series

g(t) = byt
k=0

we may substitute f;, for t* to get the series
h(t) =Y befu(t)
k=0

which is well-defined since the coefficient of each power of ¢ is a finite sum. In
particular, if o(f) > 1, then o( f*) — 0o and so the composition

(90 HE) = g(F) = 3 bef' (1)
k=0

is well-defined. It is easy to see that o(g o f) = o(g)o(f).

If o(f) = 1, then f has a compositional inverse, denoted by f and satisfying
(fof)t)=(fof)(t)=t

A series f with o(f) = 1 is called a delta series.

The sequence of powers f* of a delta series f forms a pseudobasis for F, in the
sense that for any g € F, there exists a unique sequence of constants a;, for
which

g(t) = arf*(t)
k=0
Finally, we note that the formal derivative of the series (19.1) is given by
o.¢]
af(t)=f'(t) =" kapt*"
k=1

The operator d; is a derivation, that is,

9i(fg) = 0i(f)g + f0(9)
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The Umbral Algebra

Let P = C[z] denote the algebra of polynomials in a single variable x over the
complex field. One of the starting points of the umbral calculus is the fact that
any formal power series in F can play three different roles: as a formal power
series, as a linear functional on P and as a linear operator on P. Let us first
explore the connection between formal power series and linear functionals.

Let P* denote the vector space of all linear functionals on P. Note that P* is the
algebraic dual space of P, as defined in Chapter 2. It will be convenient to
denote the action of L € P* on p(z) € P by

(L | p())

(This is the “bra-ket” notation of Paul Dirac.) The vector space operations on P*
then take the form

(L+M | p(z)) =(L|p=)+ (M| p))
and
(rL | p(z)) =r(L|p(z)), reC

Note also that since any linear functional on P is uniquely determined by its
values on a basis for P, the functional L € P* is uniquely determined by the
values (L | z") forn > 0.

Now, any formal series in F can be written in the form

Py =30 %

k!
and we can use this to define a linear functional f(¢) by setting
(f@) | 2") = an
for n > 0. In other words, the linear functional f(¢) is defined by
IR VIGIEN
f(t) = ; T t

where the expression f(t) on the left is just a formal power series. Note in
particular that

" 2™y = nlé,
where 6, ;. is the Kronecker delta function. This implies that
(t" | p(x)) = p™*)(0)

and so t* is the functional “kth derivative at 0.” Also, t" is evaluation at 0.
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As it happens, any linear functional L on P has the form f(¢). To see this, we
simply note that if

k=0
then
(fr@) | «") =(L|=z")

for all n > 0 and so as linear functionals, L = f1,(t).
Thus, we can define a map ¢: P* — F by ¢(L) = f1(t).

Theorem 19.1 The map ¢: P* — F defined by ¢(L) = f1(t) is a vector space
isomorphism from P* onto F.
Proof. To see that ¢ is injective, note that

fr@t)=fu@)=(L|z")=(M|z")foralln >0=L=M

Moreover, the map ¢ is surjective, since for any f € F, the linear functional
L = f(t) has the property that ¢(L) = f1(t) = f(¢). Finally,

S(rL + sM) = iW/"’Z—]'V”xA)tk

k
< x t"+sz
—r¢( )+s¢( ) O

From now on, we shall identify the vector space P* with the vector space F,
using the isomorphism ¢: P* — F. Thus, we think of linear functionals on P
simply as formal power series. The advantage of this approach is that F is more
than just a vector space—it is an algebra. Hence, we have automatically defined
a multiplication of linear functionals, namely, the product of formal power
series. The algebra F, when thought of as both the algebra of formal power
series and the algebra of linear functionals on P, is called the umbral algebra.

M%%‘c‘»

=~
CJ

Let us consider an example.

Example 19.1 For a € C, the evaluation functional ¢, € P* is defined by

(€ [ p(z)) = p(a)
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In particular, (e, | 2"") = a” and so the formal power series representation for
this functional is

8

fe(t) = Z (€ |'mk>tk = afktk =

k=0 k! k=0 k!

which is the exponential series. If ¢ is evaluation at b, then

et — platb)t

and so the product of evaluation at a and evaluation at b is evaluation at
a-+ 0.0

When we are thinking of a delta series f € F as a linear functional, we refer to
it as a delta functional. Similarly, an invertible series f € F is referred to as an
invertible functional. Here are some simple consequences of the development
so far.

Theorem 19.2
1) Forany f € F,

— k!
2) Foranype P,
(" | p(x))
k>0

3) Forany f,g€ F,
D) | 2™ =S (") (£ () | 25 (g(t) | 2" *
(F(B)g(t) | 2" kzo(k)<f()| Hg(t) | ")
9 o(f(1) > deg p(x) = (f(1) | p(a)) = 0
5) Ifo(fr) =kforallk >0, then
(3 asi®|p(e)) = X aclfutt) | ple)
k=0 k>0

where the sum on the right is a finite one.

6) Ifo(fi) =k forall k > 0, then

(fu() | p(@)) = (fi(t) | q(2)) for all k > 0 = p(x) = q(z)
7) Ifdeg pr(x) = k for all k > 0, then

(f(t) | pu(x)) = (9(t) | pr(@)) forallk > 0 = f(t) = g(t)
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Proof. We prove only part 3). Let

ft) = Z —'tk and g(t) = Zj{ t
k=0 =0

Then

m

F090) = 3 (3 (" Yo

m=0 k=0
and applying both sides of this (as linear functionals) to 2" gives
N n n
(FB9t) 127 =Y )arbus
=Nk
The result now follows from the fact that part 1) implies a;, = (f(t) | *) and
bnr = (g(t) | ="~*).0

We can now present our first “umbral” result.
Theorem 19.3 For any f(t) € F and p(x) € P,
(f(t) | zp(x)) = (0 f (1) | p(2))
Proof. By linearity, we need only establish this for p(z) = z". But if

F) =3t

0

=~
Il

then

(@) 12" O

Let us consider a few examples of important linear functionals and their power
series representations.

Example 19.2
1) We have already encountered the evaluation functional e

(" | p(x)) = p(a)

@ satisfying
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2) The forward difference functional is the delta functional e — 1,
satisfying

(e =1 p(x)) = p(a) — p(0)
3) The Abel functional is the delta functional te?, satisfying
(te" | p(x)) = p'(a)
4) The invertible functional (1 — ¢)~! satisfies
(=07 [ po) = [ plu)e v du
0
as can be seen by setting p(x) = 2" and expanding the expression

(1—-t)~L
5) To determine the linear functional f satisfying

(1) | pla)) = / o) du

we observe that

O ]2 S d o eat — 1
f(t)—; k! t—;(k+1)!t_ .

The inverse ¢/(e® — 1) of this functional is associated with the Bernoulli
polynomials, which play a very important role in mathematics and its
applications. In fact, the numbers

:I:'Il>

t
Bn:<eat—1

are known as the Bernoulli numbers.[]

Formal Power Series as Linear Operators

We now turn to the connection between formal power series and linear
operators on P. Let us denote the kth derivative operator on P by ¢*. Thus,

t*p(x) = p¥(x)

We can then extend this to formal series in ¢,

w‘w

f(t) = f: a, t (19.2)
k=0 """



478 Advanced Linear Algebra

by defining the linear operator f(¢): P — P by

Fnte) = - 2 oo = S 0

k>0

()

the latter sum being a finite one. Note in particular that

fz" = Z(Z)akx"’k (19.3)

With this definition, we see that each formal power series f € F plays three
roles in the umbral calculus, namely, as a formal power series, as a linear
functional and as a linear operator. The two notations (f(¢) | p(z)) and
f(@)p(x) will make it clear whether we are thinking of f as a functional or as an
operator.

It is important to note that f = g in F if and only if f = g as linear functionals,
which holds if and only if f = g as linear operators. It is also worth noting that

[F()g(®)]p(z) = f()]g(t)p(x)]
and so we may write f(¢)g(¢)p(x) without ambiguity. In addition,
f®)gt)p(x) = g(t) f(t)p(x)
forall f,g € Fandp € P.
When we are thinking of a delta series f as an operator, we call it a delta

operator. The following theorem describes the key relationship between linear
functionals and linear operators of the form f(¢).

Theorem 19.4 If f. g € F, then
(ft)g(t) | p(x)) = (F(t) | 9(t)p(x))

for all polynomials p(x) € P.
Proof. If f has the form (19.2), then by (19.3),

(W] f(t)e <t0]z( Jara"F) = an = (1) [ ") (194)
By linearity, this holds for 2™ replaced by any polynomial p(x). Hence,

applying this to the product fg gives

(f(g() | pa)) = (t° | F(t)g(t)p(x)) O
= (" | FO)g®)p()]) = (f(t) | g(t)p(2))

Equation (19.4) shows that applying the linear functional f(¢) is equivalent to
applying the operator f(t) and then following by evaluation at - = 0.
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Here are the operator versions of the functionals in Example 19.2.

Example 19.3
1) The operator e satisfies
ook n
at,n __ af k. n __ n k_n—k __ n
e"r 7];:0]{?!75 7k5:0(k)ax =(x+a)

and so
e'p(x) = p(x +a)

for all p € P. Thus ¢ is a translation operator.

2) The forward difference operator is the delta operator e — 1, where

(e = Dp(z) = pla + a) — p(a)
3) The Abel operator is the delta operator te®, where
te"p(z) = p'(x + a)

4) The invertible operator (1 — t)~! satisfies
(1—t)"'px) = / p(x +u)e "du
0

5) The operator (e® — 1)/t is easily seen to satisfy

eat_l Tta
)= [ bl du

479

O

We have seen that all linear functionals on P have the form f(¢), for f € F.
However, not all linear operators on P have this form. To see this, observe that

deg [f(t)p(x)] < deg p(x)

but the linear operator ¢: P — P defined by ¢(p(z)) = xp(x) does not have

this property.

Let us characterize the linear operators of the form f(¢). First, we need a lemma.

Lemma 19.5 If T is a linear operator on P and T f (t) = f(t)T for some delta

series f(t), then deg(Tp(z)) < deg(p(z)).
Proof. For any m > 0,

deg(Tz™) — 1 = deg(f(#)Ta") = deg(T f(t)=")

and so
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deg(Tz™) = deg(Tf(t)z™) + 1

Since deg(f(t)x™) = m — 1 we have the basis for an induction. When m = 0
we get deg(7T'1) = 1. Assume that the result is true for m — 1. Then

deg(Tz™) =deg(Tf(t)z"™)+1<m—-14+1=m O

Theorem 19.6 The following are equivalent for a linear operator T: P — P.

1) T has the form f(t), that is, there exists an [ € F for which T = f(t), as
linear operators.

2) T commutes with the derivative operator, that is, Tt = tT.

3) T commutes with any delta operator g(t), that is, Th(t) = h(t)T.

4) T commutes with any translation operator, that is, Te® = e™T.

Proof. It is clear that 1) implies 2). For the converse, let

(| Tt
g(t) = ZTt
k=0
Then
(g(t) | ") = (" | T")
Now, since T' commutes with £, we have
<t" | ka,> — <t0 ‘ t"T:L‘k>
% | Tt )
= (k) (t" | T2
= (k)u(t" | g(t)*")
_ <tn ‘ g(t)xl‘"}

and since this holds for all n and k we get T = g(t). We leave the rest of the
proof as an exercise.[]

Sheffer Sequences

We can now define the principal object of study in the umbral calculus. When
referring to a sequence s, (z) in P, we shall always assume that deg s,,(z) =n
foralln > 0.

Theorem 19.7 Let [ be a delta series, let g be an invertible series and consider
the geometric sequence

g9, 9f,9f%9f%, ...

in F. Then there is a unique sequence s,(x) in P satisfying the orthogonality
conditions
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(g(t) f () | sn(x)) = nlbnk (19.5)

foralln,k > 0.
Proof. The uniqueness follows from Theorem 19.2. For the existence, if we set

n
() =Dty
=0
and

g6 f () =D bt

i=k

where by, # 0, then (19.5) is

Il
S
kS
.
S
S
S
<

Taking k = n we get

For k =n — 1 we have
0= bn—l,n—lan,n—l(n - 1)' + bn—l,nanmn!

and using the fact that a,, = 1/b,, we can solve this for Gpn—1. By
successively taking k=n,n—1,n—2,... we can solve the resulting
equations for the coefficients a,, 1, of the sequence s, ().

Definition The sequence s, (x) in (19.5) is called the Sheffer sequence for the
ordered pair (g(t), f(t)). We shorten this by saying that s,(x) is Sheffer for
(g(t), f(1)).00

Two special types of Sheffer sequences deserve explicit mention.

Definition The Sheffer sequence for a pair of the form (1, f(t)) is called the
associated sequence for f(t). The Sheffer sequence for a pair of the form
(g(t), 1) is called the Appell sequence for g(t).0]
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Note that the sequence s, () is Sheffer for (g(¢), f(¢)) if and only if
(g F () | su(2)) = nléns

which is equivalent to
(FE() | g(t)sn(x)) = by

which, in turn, is equivalent to saying that the sequence p,(z) = g(t)s,(x) is
the associated sequence for f(¢).

Theorem 19.8 The sequence s, (x) is Sheffer for (g(t), f(t)) if and only if the
sequence p,(x) = g(t)s,(x) is the associated sequence for f(t).O1

Before considering examples, we wish to describe several characterizations of
Sheffer sequences. First, we require a key result.

Theorem 19.9 (The expansion theorems) Let s,,(x) be Sheffer for (g(t), f(t)).
1) Foranyh € F,

2) Foranyp € P,

Proof. Part 1) follows from Theorem 19.2, since

<§:Mg(t)fk(t) sn,(x)> = iMn!(Sﬂ,k

!
— k!

We can now begin our characterization of Sheffer sequences, starting with the
generating function. The idea of a generating function is quite simple. If r,,(z) is
a sequence of polynomials, we may define a formal power series of the form

olt.) = )

This is referred to as the (exponential) generating function for the sequence
rn(2). (The term exponential refers to the presence of k! in this series. When
this is not present, we have an ordinary generating function.) Since the series is
a formal one, knowing g(¢, x) is equivalent (in theory, if not always in practice)



The Umbral Calculus 483

to knowing the polynomials r,(x). Moreover, a knowledge of the generating
function of a sequence of polynomials can often lead to a deeper understanding
of the sequence itself, that might not be otherwise easily accessible. For this
reason, generating functions are studied quite extensively.

For the proofs of the following characterizations, we refer the reader to Roman
[1984].

Theorem 19.10 (Generating function)
1) The sequence p,(x) is the associated sequence for a delta series f(t) if and
only if

where f(t) is the compositional inverse of f(t).
2) The sequence s, (x) is Sheffer for (g(t), f(t)) if and only if

1 ey?(t) _ Sk(y) k
PR W

The sum on the right is called the generating function of s, ().
Proof. Part 1) is a special case of part 2). For part 2), the expression above is
equivalent to

which is equivalent to

o =32 o) ()
k=0

But if s, (x) is Sheffer for (f(¢), g(t)), then this is just the expansion theorem
for e¥'. Conversely, this expression implies that

o0

sul) = {6 [ sa()) = Y2 g0 0) | )

k=0

and so (g(t)f*(t) | su(z)) =nlé,r, which says that s,(z) is Sheffer for
(f,9).0

We can now give a representation for Sheffer sequences.

Theorem 19.11 (Conjugate representation)
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1) A sequence p,(x) is the associated sequence for f(t) if and only if

2) A sequence s, (x) is Sheffer for (g(t), f(t)) if and only if

@) = ST FO) | 2)at
k=0 """

Proof. We need only prove part 2). We know that s,(x) is Sheffer for
(g(t), f(¢t)) if and only if

But this is equivalent to

L) | gn) — (S50 ) _
G 1) = () =

Expanding the exponential on the left gives

S r —17F/p\k " oS Sy
S BEO T 1) > 40y

k=0

2") = 5u(y)

Replacing y by x gives the result.(]
Sheffer sequences can also be characterized by means of linear operators.

Theorem 19.12 (Operator characterization)

1) A sequence p,(x) is the associated sequence for f(t) if and only if
a) p'n(o) = 571,,0
b) f(t)pu(z) = npy-1(x)forn >0

2) A sequence s, (x) is Sheffer for (g(t), f(t)) for some invertible series g(t) if
and only if

f(@)sn() = nsp(z)

foralln > 0.
Proof. For part 1), if p,(x) is associated with f(¢), then

pu(0) = (e | pu(@)) = (F(1)° | pul2)) = 08,0

and
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(F@OF | fO)pa()) = (FO | pal2))
= n!én,lﬁLl
=n(n—1)16,-14

=n{f(t)" | pui(2)

and since this holds for all £ > 0 we get 1b). Conversely, if 1a) and 1b) hold,
then

(FOF [ pa(@)) = & | F(0) pula))
= (n)rpn-r(0)
( )kén k,0

n'(‘;n k

and so p, () is the associated sequence for f(t).

As for part 2), if s,,(z) is Sheffer for (g(t), f(t)), then
(GO F )" | f(O)su(@) = (g F &) | sula)

= n!(sn,kJrl
=n(n—1)16,_14

=n(g(t)f(1)" | s0-1(2))
and so f(t)s,(x) = ns,_1(x), as desired. Conversely, suppose that
F(t)sn(z) = ns,_1(x)

and let p,(x) be the associated sequence for f(t). Let T be the invertible linear
operator on V' defined by

Tsy(x) = pp(x)
Then
Tf(t)sn(x) = nTsyp-1(z) = npp-1(z) = f({)pa(2) = f()Ts0(2)

and so Lemma 19.5 implies that 7" = g(t) for some invertible series g(¢). Then

(g f ) | sul@)) = (F(O) | g(t)sa(@))
= (| f(t)*pa())
= (n)kpn—x(0)
( )kén k0
:nl(Snk

O

and so s, () is Sheffer for (g(t), f(t)).

We next give a formula for the action of a linear operator h(t) on a Sheffer
sequence.
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Theorem 19.13 Let s,,(x) be a Sheffer sequence for (g(t), f(t)) and let p,(x)
be associated with f(t). Then for any h(t) we have

nOsale) = 3 (1) (0) | se(a)pcs(a)

k=0

Proof. By the expansion theorem

we have

which is the desired formula.[]

Theorem 19.14

1) (The binomial identity) A sequence p,(x) is the associated sequence for a
delta series f(t) if and only if it is of binomial type, that is, if and only if it
satisfies the identity

n

n
pu(x +y) = Z( ) i (y)pn—k (@)
=k
forally € C.
2) (The Sheffer identity) 4 sequence s,(x) is Sheffer for (g(t), f(t)) for
some invertible g(t) if and only if

n

sn(z+y) = Z(:) PE(Y)sn—k(2)

k=0

Jorall y € C, where p,(z) is the associated sequence for f(t).
Proof. To prove part 1), if p,(x) is an associated sequence, then taking
h(t) = e“" in Theorem 19.13 gives the binomial identity. Conversely, suppose
that the sequence p,(x) is of binomial type. We will use the operator
characterization to show that p,(z) is an associated sequence. Taking
x =y = 0 we have for n = 0,

10(0) = po(0)po(0)
and so py(0) = 1. Also,
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P1(0) = po(0)p1(0) + p1(0)po(0) = 2p1(0)
and so p;(0) = 0. Assuming that p;(0) =0 fori=1,...,m — 1 we have
Pm(0) = po(0)pin(0) + pn(0)po(0) = 2pm(0)
and so p,(0) = 0. Thus, p,(0) = 6,.0.

Next, define a linear functional f(¢) by
<f(t) l pn(z» = 67%1

Since (f(t) | 1) = (f(t) | po(x)) =0 and (f(t) | pr(x)) =1#0 we deduce
that f(¢) is a delta series. Now, the binomial identity gives

n

O @) =Y () @) FO) | poia))

k=0

=>2(,) s

= NpPn-1 (y)
and so
(e | f(t)pa(@)) = (" | npp-1(2))

and since this holds for all y, we get f(¢)p,(x) = np,—1(x). Thus, p,(x) is the
associated sequence for f(t).

For part 2), if s,(x) is a Sheffer sequence, then taking h(t) = €% in Theorem
19.13 gives the Sheffer identity. Conversely, suppose that the Sheffer identity
holds, where p, () is the associated sequence for f(¢). It suffices to show that
9(t)sn(x) = pn(x) for some invertible g(¢). Define a linear operator T by

T'sn(x) = po(w)
Then
" Ts,(z) = e¥"'p,(x) = pu(z +7)
and by the Sheffer identity,
; N~ N~
TeY Sn(fL') - ;(k/‘) Pk:(y)TS7H:($) - ;(k) pk(y)pn—k(fﬂ)

and the two are equal by part 1). Hence, T' commutes with ¢ and is therefore
of the form g(t), as desired..c
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Examples of Sheffer Sequences

We can now give some examples of Sheffer sequences. While it is often a
relatively straightforward matter to verify that a given sequence is Sheffer for a
given pair (g(t), f(t)), it is quite another matter to find the Sheffer sequence for
a given pair. The umbral calculus provides two formulas for this purpose, one of
which is direct, but requires the usually very difficult computation of the series
(f(t)/t)~™. The other is a recurrence relation that expresses each s, (z) in terms
of previous terms in the Sheffer sequence. Unfortunately, space does not permit
us to discuss these formulas in detail. However, we will discuss the recurrence
formula for associated sequences later in this chapter.

Example 19.4 The sequence p,(z) = «" is the associated sequence for the delta
series f(t) = t. The generating function for this sequence is

k=0

and the binomial identity is the well-known binomial formula

n

@+ = (1) aty"

k=0
Example 19.5 The lower factorial polynomials
(@)p=z(x—1)(x—n+1)
form the associated sequence for the forward difference functional
fit)y=¢e"—1

discussed in Example 19.2. To see this, we simply compute, using Theorem
19.12. Since (0) is defined to be 1, we have (0),, = 6,,0. Also,

(e = D)(@)n = (z+ 1) — (2)n
=[x+ Dz(z—-1)-(z—n+2)]—[z(x—1)(z —n+1)]
=z(x—1)-(x—n+2)[(x+1)—(x —n+1)]
=nz(z—1)-(r—n+2)

=n(x),1

The generating function for the lower factorial polynomials is

o0

eylog (1+1) z
=0

k
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which can be rewritten in the more familiar form
(1+1) = i(y) tk
k=0 k

Of course, this is a formal identity, so there is no need to make any restrictions
on t. The binomial identity in this case is

(T +y)n = i (Z) (@) (Y)n—r

k=0

which can also be written in the form

(=200

This is known as the Vandermonde convolution formula.

Example 19.6 The Abel polynomials
Ay (z;0) = x(x — an)"!
form the associated sequence for the Abel functional

f(t) =te™

also discussed in Example 19.2. We leave verification of this to the reader. The
generating function for the Abel polynomials is

i Z?J - “k .

Taking the formal derivative of this with respect to y gives

?(t)ey?(t) — Zoo: k(y — a’) (y — ak)k71 tk

— k!

which, for y =0, gives a formula for the compositional inverse of the series
£(t) = ter,

io: k kk 1

k=1
Example 19.7 The famous Hermite polynomials H,(z) form the Appell
sequence for the invertible functional

g(t) ="?
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We ask the reader to show that s,,(x) is the Appell sequence for g(t) if and only
if s,,(z) = g(t)~'2". Using this fact, we get

Hn('r) = €7t2/2$n = Z(_l)]\ (n)Qk l,nfk

!
=3 k!

The generating function for the Hermite polynomials is

eyt—t/2 — s~ Hi(y) "
— k!

and the Sheffer identity is

n

Hy(w+y) =Y (] ) Hia)y ™

k=0

We should remark that the Hermite polynomials, as defined in the literature,
often differ from our definition by a multiplicative constant.[]

Example 19.8 The well-known and important Laguerre polynomials Lgf)(x)
of order o form the Sheffer sequence for the pair

t
= (1= f(t)= ——
oty = (1= 1), f0) =
It is possible to show (although we will not do so here) that

n

@) = Y (4 ) (o

k=0
The generating function of the Laguerre polynomials is

L

L ey _ i (@)
DG 2R

As with the Hermite polynomials, some definitions of the Laguerre polynomials
differ by a multiplicative constant.[]

We presume that the few examples we have given here indicate that the umbral
calculus applies to a significant range of important polynomial sequences. In
Roman [1984], we discuss approximately 30 different sequences of polynomials
that are (or are closely related to) Sheffer sequences.

Umbral Operators and Umbral Shifts

We have now established the basic framework of the umbral calculus. As we
have seen, the umbral algebra plays three roles: as the algebra of formal power
series in a single variable, as the algebra of all linear functionals on P and as the
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algebra of all linear operators on P that commute with the derivative operator.
Moreover, since F is an algebra, we can consider geometric sequences

g, 9f,9f* af?, ...

in F, where o(g) =0 and o(f) =1. We have seen by example that the
orthogonality conditions

(g F " (#) | su(@)) = nlbns

define important families of polynomial sequences.

While the machinery that we have developed so far does unify a number of
topics from the classical study of polynomial sequences (for example, special
cases of the expansion theorem include Taylor's expansion, the Euler—
MacLaurin formula and Boole's summation formula), it does not provide much
new insight into their study. Our plan now is to take a brief look at some of the
deeper results in the umbral calculus, which center on the interplay between
operators on P and their adjoints, which are operators on the umbral algebra
F =P

We begin by defining two important operators on P associated with each
Sheffer sequence.

Definition Let s,(x) be Sheffer for (g(t), f(t)). The linear operator
Ag.f: P — P defined by

Mg (2") = su(2)

is called the Sheffer operator for the pair (g(t), f(t)), or for the sequence
sn(x). If pp(x) is the associated sequence for f(t), the Sheffer operator
)

Af(2") = pu(x

is called the umbral operator for f(t), or for p,(z).0d

Definition Let s,(x) be Sheffer for (g(t), f(t)). The linear operator
045 P — P defined by

eg,f[sn(‘r)] = 3n+1(x)

is called the Sheffer shift for the pair (g(t), f(t)), or for the sequence s,(x). If
pn(x) is the associated sequence for f(t), the Sheffer operator

01[pa(2)] = pnia ()
is called the umbral shift for f(t), or for p,(z).0
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It is clear that each Sheffer sequence uniquely determines a Sheffer operator and
vice versa. Hence, knowing the Sheffer operator of a sequence is equivalent to
knowing the sequence.

Continuous Operators on the Umbral Algebra

It is clearly desirable that a linear operator 7" on the umbral algebra F pass
under infinite sums, that is, that

T(iakfk(t)) = iakT[fk(t)] (19.6)
k=0 k=0

whenever the sum on the left is defined, which is precisely when o( f;(t)) — oo
as k — oo. Not all operators on F have this property, which leads to the
following definition.

Definition A linear operator T on the umbral algebra F is continuous if it
satisfies (19.6).00

The term continuous can be justified by defining a topology on F. However,
since no additional topological concepts will be needed, we will not do so here.
Note that in order for (19.6) to make sense, we must have o(T[f5(t)]) — oo. It
turns out that this condition is also sufficient.

Theorem 19.15 A linear operator 7" on F is continuous if and only if

o(fx) = 00 = o(T(fr)) — ¢ (19.7)

Proof. The necessity is clear. Suppose that (19.7) holds and that o(f) — oo.
For any m > 0, we have

m

<T§:akfk(t) ‘m”> = <Tzakfk(t)
k=0 k=0

m"’> + <TZakfk(t)

k>m

g;> (19.8)

Since

0<Za1\:fk(t)> — 00

k>m

(19.7) implies that we may choose m large enough that

and

o(T[fr(t)]) > nfork >m
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Hence, (19.8) gives

<Ti ar fi(t)
5=0

m

<TZ arfi(t)
k=0
= (> aTh)

= (> a1l
k=0

:L,7L>

o)
)
o)

which implies the desired result.[]

Operator Adjoints

If 7:'P — P is a linear operator on P, then its (operator) adjoint 7 is an
operator on P* = F defined by

T [h(t)] = h(t) o T
In the symbolism of the umbral calculus, this is
(T*h(t) | p(x)) = (h(t) | Tp(x))

(We have reduced the number of parentheses used to aid clarity.)
Let us recall the basic properties of the adjoint from Chapter 3.

Theorem 19.16 For 7,0 € L(P),
I (t+o)=17"40"
2) (rr)* =rr* foranyr e C
3) (ro)* =o"7"
(171 = ()7 for any invertible T € L(P) O

Thus, the map ¢: L(P) — L(F) that sends 7: P — P to its adjoint 7°: F — F
is a linear transformation from £(P) to L(F). Moreover, since 7 = 0 implies
that (h(t) | 7p(x)) =0 for all h(t) € F and p(x) € P, which in turn implies
that 7 = 0, we deduce that ¢ is injective. The next theorem describes the range
of ¢.

Theorem 19.17 A linear operator T € L(F) is the adjoint of a linear operator
L € L(P) if and only if T is continuous.

Proof. First, suppose that 7" = 7= for some 7 € L(P) and let o( f(t)) — oo. If
n > 0, then for all 0 < i < n we have

(T fu) | &) = (fu(t) | 72")

and so it is only necessary to take k large enough that o( fx(t)) > deg 7(z") for
all 0 < 7 < n, whence
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(T fu(t) | 2') =0

for all 0 <i <n and so o(7* fx(t)) > n. Thus, o(7* fi(t)) — oo and 7* is
continuous.

For the converse, assume that 7" is continuous. If 7" did have the form 7, then

(T | 2") = (7°t* | a") = (" | 72")

and since
Tt = <tk | T‘/L‘n> SUk
=0 k!
we are prompted to define T by
n o __ :
T = i °

k>0

This makes sense since o(Tt") — oo as k — oo and so the sum on the right is a
finite sum. Then
m n m n <Ttk | xn> m v m n
(P4 | a") = (" | Tty = Y (" | af) = (Tt [ ")
k>0 :

which implies that Tt = 7>t for all m > 0. Finally, since 7" and 7 are both
continuous, we have T' = 7*.[1

Umbral Operators and Automorphisms of the Umbral Algebra

Figure 19.1 shows the map ¢, which is an isomorphism from the vector space
L(P) onto the space of all continuous linear operators on F. We are interested
in determining the images under this isomorphism of the set of umbral operators
and the set of umbral shifts, as pictured in Figure 19.1.
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Surjective
Derivations
on &

Continuous linear
operators on

Figure 19.1

Let us begin with umbral operators. Suppose that A is the umbral operator for
the associated sequence p, (), with delta series f(¢) € F. Then

AFF@OF [2") = (fFO)" | Apa™) = (F)" | pul2)) = nlbus = (| 2")
for all k and n. Hence, A} f(¢)" = ¢* and the continuity of A} implies that
Afth = f(t)*
More generally, for any h(t) € F,
AFh(t) = h(f(t)) (19.9)
In words, A} is composition by f().

From (19.9), we deduce that /\f is a vector space isomorphism and that

M lg@h(®)] = g(F(£)h(F(2)) = Afg()AT h(t)
Hence, A ; is an automorphism of the umbral algebra F. It is a pleasant fact that

this characterizes umbral operators. The first step in the proof of this is the
following, whose proof is left as an exercise.

Theorem 19.18 If' T is an automorphism of the umbral algebra, then T
preserves order, that is, o(T f(t)) = o(f(t)). In particular, T is continuous.c]

Theorem 19.19 4 linear operator \ on P is an umbral operator if and only if
its adjoint is an automorphism of the umbral algebra F. Moreover, if \; is an
umbral operator, then
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Afh(t) = h(f(t))

forall h(t) € F. In particular, X} f(t) = t.

Proof. We have already shown that the adjoint of A; is an automorphism
satisfying (19.9). For the converse, suppose that \* is an automorphism of F.
Since A\* is surjective, there is a unique series f(t) for which A\*f(t) =t.
Moreover, Theorem 19.18 implies that f(¢) is a delta series. Thus,

b = (" | 2") = (N F(O)F | 2") = (F)" | Az")

which shows that Az” is the associated sequence for f(¢) and hence that A is an
umbral operator.[]

Theorem 19.19 allows us to fill in one of the boxes on the right side of Figure
19.1. Let us see how we might use Theorem 19.19 to advantage in the study of
associated sequences.

We have seen that the isomorphism A — A* maps the set &/ of umbral operators
on P onto the set aut(F) of automorphisms of F = P*. But aut(F) is a group
under composition. So if

Apia” — py(z) and Ay 2" — g, ()
are umbral operators, then since
(AgoAf) = Af o NS

is an automorphism of F, it follows that the composition A\;j o A; is an umbral
operator. In fact, since

(Ag o Ar)* flg(t)) = Af 0 Ag flg(t)) = AF F(1) =1
we deduce that A\j o A = Ayo,. Also, since
)\?O)\f :)\fO?:AtZL

we have )\JTl =X

Thus, the set ¢/ of umbral operators is a group under composition with
Ag 0 Af = Afog
and
—1 o _
A=Ay

Let us see how this plays out with respect to associated sequences. If the
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associated sequence for f(t) is

n

k

w) = § Pn.kT
k=0

then Af:a™ — p,(x) and so Apy = Ago Ay is the umbral operator for the
associated sequence

()‘g © )\f)SC - )‘gpn an k)\gx - an qu
This sequence, denoted by

pn anqu (1910)

is called the umbral composition of p,(z) with g,(z). The umbral operator

)\7 = /\171 is the umbral operator for the associated sequence 7,(x) = ZT7L7k;JJk
where

A;lx” =r,(x)
and so

n
"= Z T?I,kpk:(x)
k=0

Let us summarize.

Theorem 19.20
1) The set U of umbral operators on P is a group under composition, with

/\g o /\f = /\fog and /\]71 = )\?

2) The set of associated sequences forms a group under umbral composition

pn Z Dn, qu

In particular, the umbral composition p,(q(x)) is the associated sequence
for the composition f o g, that is,

>\ng5 " — pn(Q(x))

The identity is the sequence x™ and the inverse of p,(x) is the associated
sequence for the compositional inverse f(t).
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3) LetA\; € Uand g(t) € F. Then as operators,
Arg(t) = A7 g(t)As
4) Let \; € Uand g(t) € F. Then

Arg(F(t) = g(t)As

Proof. We prove 3) as follows. For any h(t) € F and p(x) € P,

(h(t) | Ag(t)p(x)) = ((A"g(D)]h(t) | p(x))
= (Mgt (A h(®)] |

= (gt (AT h(t) | Az

(A1) h(#) | ()

= (h(t) | X" g(t)Ap(z))

which gives the desired result. Part 4) follows immediately from part 3) since \f

is composition by f.]

Sheffer Operators

If s,,(z) is Sheffer for (g, f), then the linear operator ), s defined by

Ag,p(x") = sp(z)

is called a Sheffer operator. Sheffer operators are closely related to umbral
operators, since if p, () is associated with f(¢), then

sn(z) = gil(t)pn(m) = gil(t)Afx”

c
t)|h
p(z))
)
)

x))

and so

It follows that the Sheffer operators form a group with composition

)‘g.,f o )‘th = g_l(t)Afh_l(t))\k
=g 'R (F()A A
[g(t)h(f(t))]_l)\kof
),

and inverse

From this, we deduce that the umbral composition of Sheffer sequences is a
Sheffer sequence. In particular, if s,(x) is Sheffer for (g, f) and
t,(x) = St ;2" is Sheffer for (h, k), then
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>\fo)\hk Ztn},)\gfx

- Z tn,ksk (J,‘)
=0

is Sheffer for (g- (h o f),ko f).
Umbral Shifts and Derivations of the Umbral Algebra

We have seen that an operator on P is an umbral operator if and only if its
adjoint is an automorphism of F. Now suppose that 6; € £(P) is the umbral
shift for the associated sequence p,(x), associated with the delta series
f(t) € F. Then

(OF FOF | pa@)) = (F()" | 87pa(2))

= (f(O" | P (@)
= (n+ Dons1k
k( _1)|6nk 1

<kf< )k ! |pn( )>

and so
05 f(6)" = kf(H)" (19.11)
This implies that
OF LA F(Y] = 05 LF(OM () + F() 07 [f(2)) (19.12)
and further, by continuity, that
07 [g(t)h(t)] = [0F g()]h(t) + (1) [0 9(1)] (19.13)

Let us pause for a definition.

Definition Let A be an algebra. A linear operator O on A is a derivation if
d(ab) = (0a)b + adb
forall a,b € A.OJ

Thus, we have shown that the adjoint of an umbral shift is a derivation of the
umbral algebra F. Moreover, the expansion theorem and (19.11) show that 9;
is surjective. This characterizes umbral shifts. First we need a preliminary result
on surjective derivations.
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Theorem 19.21 Let O be a surjective derivation on the umbral algebra F. Then
Oc = 0 for any constant ¢ € F and o(Of(t)) = o(f(t)) — 1, if o(f(t)) > 1. In
particular, O is continuous.

Proof. We begin by noting that

91 = 912 = 91 + 91 = 201

and so dc = cd1 = 0 for all constants ¢ € F. Since 0 is surjective, there must
exist an h(t) € F for which

Oh(t) =1
Writing h(t) = ho + thi(t), we have
= O[ho + thi(t)] = (Ot)h1(t) + tOh4(t)

which implies that o(9t) = 0. Finally, if o(h(t)) = k > 1, then h(t) = t*hy(¢),
where o(hi(t)) = 0 and so

0[Oh(t)] = 0[0t"hi ()] = o[t*Oh(t) + Kkt 'hy()0t] = k — 1 a

Theorem 19.22 A linear operator 6 on P is an umbral shift if and only if its
adjoint is a surjective derivation of the umbral algebra F. Moreover, if 0 is an
umbral shift, then 87 = 0Oy is derivation with respect to f(t), that is,

07 fF(t)" = kf(t)""

forall k > 0. In particular, 05 f(t) =
Proof. We have already seen that 9? is derivation with respect to f(¢). For the

converse, suppose that 6 is a surjective derivation. Theorem 19.21 implies that
there is a delta functional f(¢) such that 0% f(¢) = 1. If p,(x) is the associated
sequence for f(t), then

(F@OF | 0pu()) = (0 f(O)" | pal2))
= (kf(@&)" 107 f(t) |
= (kf ()" | pal@))
=(n+

=

n+ Dloni1k
f( ) |pn+1( )>

Hence, 0p, (z) = pn+41(x), that is, § = 6 is the umbral shift for p,,(z).0

We have seen that the fact that the set of all automorphisms on F is a group
under composition shows that the set of all associated sequences is a group
under umbral composition. The set of all surjective derivations on F does not
form a group. However, we do have the chain rule for derivations!
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Theorem 19.23 (The chain rule) Let Oy and 0, be surjective derivations on F.
Then

= (9,f(1))0¢
Proof. This follows from

0y f () = kf ()10, f(t) = (9,f ()01 (1)

and so continuity implies the result.(]
The chain rule leads to the following umbral result.

Theorem 19.24 If 0 and 0, are umbral shifis, then
0y =070 0,f(t)
Proof. Taking adjoints in the chain rule gives
0y = 070 (9,f(1))" = 0f 0 0, f () O

We leave it as an exercise to show that 9, f(t) = [0;g(t)]"'. Now, by taking
g(t) =t in Theorem 19.24 and observing that 62" = z"*! and so 6; is
multiplication by x, we get

05 = 2oyt = 2 ()] = 2[f (5]

Applying this to the associated sequence p,(x) for f(t) gives the following
important recurrence relation for p, ().

Theorem 19.25 (The recurrence formula) Let p,(x) be the associated
sequence for f(t). Then

D pui() = 2l ()] pala)

2) poni(@) = zAf[f(1)]'2"

Proof. The first part is proved. As to the second, using Theorem 19.20 we have
pn+1( ) [ ()] 1p( ) .
= a[f' ()] A2

—ff/\f "(F)) e

®)]'z"

Example 19.9 The recurrence relation can be used to find the associated

sequence for the forward difference functional f(t) = e’ — 1. Since f'(t) = €,
the recurrence relation is

[f
= aXf[f

Pn+1(1’) = xeitpﬂ(z) = $pn(£8 -1
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Using the fact that py(z) = 1, we have
pi(z) =z, pp(z) = o(z — 1), ps(z) = z(z —1)(z - 2)
and so on, leading easily to the lower factorial polynomials
() =2(x—=1)(z—n+1)=(2), O
Example 19.10 Consider the delta functional
f(t) =log(1 +1)

Since f(t) = €' — 1 is the forward difference functional, Theorem 19.20 implies
that the associated sequence ¢,(x) for f(t) is the inverse, under umbral
composition, of the lower factorial polynomials. Thus, if we write

$n(z) = S(n,k)z"
k=0

then

n

' = ZS’(n, E)(x)g

k=0

The coefficients S(n, k) in this equation are known as the Stirling numbers of
the second kind and have great combinatorial significance. In fact, S(n, k) is
the number of partitions of a set of size n into k blocks. The polynomials ¢,, ()
are called the exponential polynomials.

The recurrence relation for the exponential polynomials is
G () = 2(1+ )dn(2) = 2(dn(2) + ¢,,(2))

Equating coefficients of 2* on both sides of this gives the well-known formula
for the Stirling numbers

S(n+1,k)=S(n,k—1)+kS(n,k)

Many other properties of the Stirling numbers can be derived by umbral
means.[]

Now we have the analog of part 3) of Theorem 19.20.

Theorem 19.26 Let 0 be an umbral shift. Then
G?g(t) =g(t)8y — O59(t)
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Proof. We have
(f5(t) 1 67 g(D)pu(a)) = (1659
-9 t)é’f FF@) [ pal)
] @) = (kg() F*71(8) | pal))
< kft 1( ) | g(t)pn(x
f

from which the result follows.[]

If f(t) = t, then 6is multiplication by x and 0} is the derivative with respect to
t and so the previous result becomes

g (1) =g(t)r — xg(t)

as operators on P. The right side of this is called the Pincherle derivative of
the operator g(t). (See [104].)

Sheffer Shifts
Recall that the linear map
0g.s[sn(2)] = sni1(x)

where s, (z) is Sheffer for (g(t), f(¢)) is called a Sheffer shift. If p,(x) is
associated with f(t), then g(t)s, () = p,(z) and so

g () pnsi () = Oy 5[~ () pa(2)]

and so

Og.r = g~ (t)079(t)

From Theorem 19.26, the recurrence formula and the chain rule, we have

Oo.r =9 ()0rg(t)
=g '(t )[ ()0 — 07 9(t)]
=0; —g ' (t)0rg(t)
=0 — 1(t)afg(t)
=0 — g ' (t)0stdig(t)
=z[f' ()] =g O] (1)

- [‘” (zf)) ] f’l(t)

We have proved the following.
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Theorem 19.27 Let 0, ; be a Sheffer shift. Then

_ g _1
1) 045 = {m - g(t)] 7o)

2) spi(x) = [x — ggg))} %s”(m) O

The Transfer Formulas

We conclude with a pair of formulas for the computation of associated
sequences.

Theorem 19.28 (The transfer formulas) Let p,(x) be the associated sequence
for f(t). Then
-1

1) pn(iC):f%ﬂ(@)*n o

2) pux) = x(@>_ !
Proof. First we show that 1) and 2) are equivalent. Write g(t) = f(¢)/t. Then

f/(t)g(t)—n—lwn _ [tg(t)]'g(t)‘"‘lx"
)7nxn + tg'(t)g(t)fn*lx”
t)"x" 4 ng (t)g(t) "z

To prove 1), we verify the operation conditions for an associated sequence for
the sequence q,(x) = f'(t)g(t)~" 'a". First, when n > 1 the fourth equality
above gives

(t" | gu(@)) = (£ ] f'(t)g(t) ™" "2")
— <7f0 | g t)—n,xn _ [g(t)_"]'a:"’_1>
= (g()™" | 2") = ([g&) "] [ 2"")
= (9(®)" [ 2") = (g(t) " | ="
=0

If n = 0, then (t" | g,(x)) = 1, and so in general, we have (t° | g,(z)) = 6, as
required.

For the second required condition,

FHau(@) = £ F (Hg(t) " a"
= tg(t)f/(t)g(t)7’L71$7L
= nf/(t)g<t)—n—1xn_1
= NQGp-1 (33)

Thus, g,(x) is the associated sequence for f(¢).00
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A Final Remark

Unfortunately, space does not permit a detailed discussion of examples of
Sheffer sequences nor the application of the umbral calculus to various classical
problems. In [105], one can find a discussion of the following polynomial
sequences:

The lower factorial polynomials and Stirling numbers
The exponential polynomials and Dobinski's formula
The Gould polynomials

The central factorial polynomials

The Abel polynomials

The Mittag-Leffler polynomials

The Bessel polynomials

The Bell polynomials

The Hermite polynomials

The Bernoulli polynomials and the Euler-MacLaurin expansion
The Euler polynomials

The Laguerre polynomials

The Bernoulli polynomials of the second kind

The Poisson—Charlier polynomials

The actuarial polynomials

The Meixner polynomials of the first and second kinds
The Pidduck polynomials

The Narumi polynomials

The Boole polynomials

The Peters polynomials

The squared Hermite polynomials

The Stirling polynomials

The Mahler polynomials

The Mott polynomials

and more. In [105], we also find a discussion of how the umbral calculus can be
used to approach the following types of problems:

The connection constants problem

Duplication formulas

The Lagrange inversion formula

Cross sequences

Steffensen sequences

Operational formulas

Inverse relations

Sheffer sequence solutions to recurrence relations
Binomial convolution
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Finally, it is possible to generalize the classical umbral calculus that we have
described in this chapter to provide a context for studying polynomial sequences
such as those of the names Gegenbauer, Chebyshev and Jacobi. Also, there is a
g-version of the umbral calculus that involves the q-binomial coefficients (also
known as the Gaussian coefficients)

<n> _ (1-q)--(1-q")
kg (1=q)(1=¢")(1-q)(1-q"")
in place of the binomial coefficients. There is also a logarithmic version of the

umbral calculus, which studies the harmonic logarithms and sequences of
logarithmic type. For more on these topics, please see [103], [106] and [107].

Exercises

1. Prove that o(fg) = o(f) + o(g), forany f,g € F.

2. Prove that o(f + g) > min{o(f),0(g)}, forany f,g € F.

3. Show that any delta series has a compositional inverse.

4. Show that for any delta series f, the sequence f ¥ is a pseudobasis.

5. Prove that 9; is a derivation.

6. Show that f € F is a delta functional if and only if (f|1) =0 and

(f | ) #0.

Show that f € F is invertible if and only if (f | 1) # 0.

8. Show that (f(at) | p(z)) = (f(t) | plazx)) for any ac C, f & F and
peP.

. Show that (te” | p(x)) = p/(a) for any polynomial p(z) € P.

10. Show that f =g in F if and only if f = g as linear functionals, which
holds if and only if f = g as linear operators.

1. Prove that if s, (x) is Sheffer for (g(t), f(t)), then f(¢)s,(z) = ns,—1(z).
Hint: Apply the functionals g(t) f*(t) to both sides.

12. Verify that the Abel polynomials form the associated sequence for the Abel
functional.

13. Show that a sequence s,(x) is the Appell sequence for ¢(t) if and only if
sp(z) = g(t)Lam™.

14. If f is a delta series, show that the adjoint )\fx of the umbral operator Ay is a

=~

vector space isomorphism of F.

15. Prove that if T is an automorphism of the umbral algebra, then 7" preserves
order, that is, o(T f(¢)) = o(f(t)). In particular, T is continuous.

16. Show that an umbral operator maps associated sequences to associated
sequences.

17. Let p,(z) and ¢, (z) be associated sequences. Define a linear operator « by
a: pp(2) — ¢u(x). Show that v is an umbral operator.

18. Prove that if Oy and 0O, are surjective derivations on F, then

9, f (1) = [959(0)) .
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Index of Symbols

C[p(z)]: the companion matrix of p(z)

¢ (x): characteristic polynomial of 7

crk(A): column rank of A

cs(A): column space of A

diag(A, ..., A,): ablock diagonal matrix with A;'s on the block diagonal
ElemDiv(7): the multiset of elementary divisors
InvFact(7): the multiset of invariant factors of 7

J (N, €;5): Jordan block

m.(x): minimal polynomial of 7

null(7): the nullity of 7

mg: canonical projection modulo S

R;: Riesz vector for f € V*

tk(7): the rank of 7

rrk(A): row rank of A

rs(A): row space of A

pA,p: projection onto A along B

74: the multiplication by A operator

supp(f): the support of a function

V.: the F-vector space/F[x]-module where p(z)v = p(1)v
VC: the complexification of V/

:= : assignment, for example, u := (S) means that « stands for (S)
: subspace or submodule

: proper subspace or proper submodule

): subspace/ideal spanned by S

)): submodule spanned by S

TBAING

:an embedding that is an isomorphism when all is finite-dimensional.
: similarity of matrices or operators, associate in a ring.
: cartesian product
: orthogonal direct sum
: external direct product
: external direct sum
: internal direct sum
iz My means (z,y) = (y, x)

XOBHKO X 2 [



514 Index of Symbols

A : wedge product

® : tensor product

: n-fold tensor product

: n-fold cartesion product

(a,b) = 1: a and b are relatively prime
>, affine combination



Index

Abel functional, 477, 489
Abel operator, 479

Abel polynomials, 489
abelian, 17

absolutely convergent, 330
accumulation point, 306
adjoint, 227, 231

affine basis, 435

affine closed, 428

affine combination, 428
affine geometry, 427
affine group, 436

affine hull, 430

affine hyperplane, 416
affine map, 435

affine span, 430

affine subspace, 57

affine transformation, 435
affine, 424

affinely independent, 433
affinity, 435

algebra homomorphism, 455
algebra, 31, 451

algebraic, 100, 458
algebraic closure, 30
algebraic dual space, 94
algebraic multiplicity, 189
algebraic numbers, 460
algebraically closed, 30
algebraically reflexive, 101
algorithm, 217

almost upper triangular, 194
along, 73

alternate, 260, 262, 391
alternating, 260, 391
ancestor, 14

anisotropic, 265
annihilator, 102, 115, 459
antisymmetric, 259, 390, 395

antisymmetric tensor algebra, 398
antisymmetric tensor space, 395, 400
antisymmetry, 10

Apollonius identity, 223

Appell sequence, 481
approximation problem, 331

as measured by, 357

ascending chain condition, 26, 133
associate classes, 27

associated sequence, 481
associates, 26

automorphism, 60

barycentric coordinates, 435
base ring, 110

base, 427

basis, 47, 116

Bernoulli numbers, 477
Bernstein theorem, 13
Bessel's identity, 221
Bessel's inequality, 220, 337, 338, 345
best approximation, 219, 332
bijection, 6

bijective, 6

bilinear form, 259, 360
bilinear, 206, 360

binomial identity, 486
binomial type, 486

block diagonal matrix, 3
block matrix, 3

blocks, 7

bottom, 10

bounded, 321, 349

canonical form, 8
canonical injections, 359
canonical map, 100
canonical projection, 89
Cantor's theorem, 13



516 Index

cardinal number, 13
cardinality, 12, 13
cartesian product, 14
Cauchy sequence, 311

Cauchy—Schwarz inequality, 208, 303, 325

Cayley-Hamilton theorem, 170
center, 452

central, 452

centralizer, 464, 469

chain, 11

chain rule, 501

change of basis matrix, 65
change of basis operator, 65

change of coordinates operator, 65

characteristic, 30
characteristic equation, 186
characteristic polynomial, 170
characteristic value, 185
characteristic vector, 186
Cholsky decomposition, 255
circulant matrices, 457
class equation, 464
classification problem, 276
closed ball, 304

closed half-spaces, 417
closed interval, 143

closed, 304, 414

closure, 306

codimension, 93
coefficients, 36

column equivalent, 9
column rank, 52

column space, 52

common eigenvector, 202
commutative, 17, 19, 451
commutativity, 15, 35, 384
commuting family, 201
compact, 414

companion matrix, 173
complement, 42, 120
complemented, 120
complete, 40, 311

complete invariant, 8
complete system of invariants, 8
completion, 316

complex operator, 59

complex vector space, 36
complexification, 53, 54, 82
complexification map, 54
composition, 472

cone, 265, 414

congruence classes, 262
congruence relation, 88
congruent modulo, 21, 87
congruent, 9, 262

conjugacy class, 463
conjugate isomorphism, 222
conjugate linear, 206, 221
conjugate linearity, 206
conjugate representation, 483
conjugate space, 350
conjugate symmetry, 205
connected, 281

continuity, 340

continuous, 310, 492
continuous dual space, 350
continuum, 16

contraction, 389
contravariant tensors, 386
contravariant type, 386
converge, 339, 210, 305, 330
convex combination, 414
convex, 332,414

convex hull, 415

coordinate map, 51
coordinate matrix, 52, 368
correspondence theorem, 90, 118
coset, 22, 87, 118

coset representative, 22, 87
countable, 13

countably infinite, 13
covariant tensors, 386
covariant type, 386

cycle, 391

cyclic basis, 166

cyclic decomposition, 149, 168
cyclic group generated by, 18
cyclic group of order, 18
cyclic submodule, 113
cyclotomic polynomial, 465

decomposable, 362



degenerate, 266

degree, 5

deleted absolute row sum, 203
delta functional, 475
delta operator, 478

delta series, 472

dense, 308

derivation, 499
descendants, 13
determinant, 292, 405
diagonal, 4
diagonalizable, 196
diagonally dominant, 203
diameter, 321
dimension, 50, 427
direct product, 41, 408
direct sum, 41, 73, 119
direct summand, 42, 120
discrete metric, 302
discriminant, 263
distance, 209, 322
divides, 5, 26

division algebra, 462
division algorithm, 5
domain, 6

dot product, 206

double, 100

dual basis, 96

dual space, 59, 100

eigenspace, 186

eigenvalue, 185, 186, 461
eigenvector, 186

elementary divisor basis, 169
elementary divisor form, 176
elementary divisor version, 177
elementary divisors, 155, 167, 168
elementary divisors and dimensions, 168
elementary matrix, 3

elementary symmetric functions, 189
embedding, 59, 117

endomorphism, 59, 117
epimorphism, 59, 117

equivalence class, 7

equivalence relation, 7

equivalent, 9, 69
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essentially unique, 45
Euclidean metric, 302
Euclidean space, 206
evaluation at, 96, 100
evaluation functional, 474, 476
even permutation, 391

even weight subspace, 38
exponential polynomials, 502
exponential, 482

extension by, 103

extension, 6, 273

exterior algebra, 398

exterior product, 393

exterior product space, 395, 400
external direct sum, 40, 41, 119

factored through, 355, 357
factorization, 217

faithful, 457

Farkas's lemma, 423

field of quotients, 24

field, 19, 29

finite support, 41

finite, 1, 12, 18
finite-dimensional, 50, 451
finitely generated, 113

first isomorphism theorem, 92, 118, 469
flat representative, 427

flat, 427

form, 299, 382

forward difference functional, 477
forward difference operator, 479
Fourier coefficient, 219

Fourier expansion, 219, 338, 345
free, 116

Frobenius norm, 450, 466
functional calculus, 248
functional, 94

Gaussian coefficients, 57, 506
generating function, 482, 483
geometric multiplicity, 189
Gersgorin region, 203
Gersgorin row disk, 203
GerSgorin row region, 203
graded algebra, 392
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Gram-Schmidt augmentation, 213 invariant factor form, 178
Gram-Schmidt orthogonalization process, 214 invariant factor version, 179
greatest common divisor, 5 invariant factors, 157, 167, 168
greatest lower bound, 11 invariant factor decomposition theorem, 157
group algebra, 453 invariant ideals, 157
group, 17 invariant under, 73

inverses, 17
Hamel basis, 218 invertible functional, 475
Hamming distance function, 321 involution, 199
Hermite polynomials, 224, 489 irreducible, 5, 26, 83
Hermitian, 238 isometric isomorphism, 211, 326
Hilbert basis theorem, 136 isometric, 271, 316
Hilbert basis, 218, 335 isometrically isomorphic, 211, 326
Hilbert dimension, 347 isometry, 211, 271, 315, 326
Hilbert space adjoint, 230 isomorphic, 59, 62, 117
Hilbert space, 315, 327 isotropic, 265
Holder's inequality, 303
homogeneous, 392 join, 40
homomorphism, 59, 117 Jordan basis, 191
Householder transformation, 244 Jordan block, 191
hyperbolic basis, 273 Jordan canonical form, 191
hyperbolic extension, 274
hyperbolic pair, 272 kernel, 61
hyperbolic plane, 272 Kronecker delta function, 96
hyperbolic space, 272 Kronecker product, 408

hyperplane, 416, 427
Lagrange interpolation formula, 248

ideal generated by, 21, 455 Laguerre polynomials, 490
ideal, 20, 455 largest, 10

idempotent, 74, 125 lattice, 39, 40

identity, 17 leading coefficient, 5

image, 6, 61 leading entry, 3

imaginary part, 54 least, 10

indecomposable, 158 least squares solution, 448
index of nilpotence, 200 least upper bound, 11

induced, 305 left inverse, 122, 470

inertia, 288 left regular matrix representation, 457
infinite, 13 left regular representation, 457
infinite-dimensional, 50 left singular vectors, 445
injection, 6, 117 left zero divisor, 460

inner product, 205, 260 left-invertible, 470

inner product space, 205, 260 Legendre polynomials, 215
integral domain, 23 length, 208

invariant, 8, 73, 83, 165 limit, 306

invariant factor basis, 179 limit point, 306

invariant factor decomposition, 157 line, 427, 429



linear code, 38

linear combination, 36, 112
linear function, 382

linear functional, 59, 94

linear hyperplane, 416

linear least squares, 448

linear operator, 59

linear transformation, 59
linearity, 340

linearity in the first coordinate, 205
linearly dependent, 45, 114
linearly independent, 45, 114
linearly ordered set, 11

lower bound, 11

lower factorial numbers, 471
lower factorial polynomials, 488
lower triangular, 4

main diagonal, 2

matrix, 64

matrix of, 66

matrix of the form, 261
maximal element, 10

maximal ideal, 23

maximal orthonormal set, 218
maximum, 10

measuring family, 357
measuring functions, 357
mediating morphism map, 367
mediating morphism, 357, 362, 383
meet, 40

metric, 210, 301

metric space, 210, 301

metric vector space, 260
mimimum, 10

minimal element, 11

minimal polynomial, 165, 166, 459
Minkowski space, 260
Minkowski's inequality, 37, 303
mixed tensors, 386

modular law, 56

module, 109, 133, 167

modulo, 22, 87, 118

monic, 5

monomorphism, 59, 117

Moore-Penrose generalized inverse, 446

Index

Moore-Penrose pseudoinverse, 446
MP inverse, 447

multilinear, 382

multilinear form, 382

multiplicity, 1

multiset, 1

natural map, 100

natural projection, 89

natural topology, 80, 82
negative, 17

net definition, 339

nilpotent, 198, 200
Noetherian, 133
nondegenerate, 266
nonderogatory, 171
nonisotropic, 265
nonnegative orthant, 225, 411
nonnegative, 225, 411
nonsingular, 266

nonsingular completion, 273
nonsingular extension theorem, 274
nontrivial, 36

norm, 208, 209, 303, 349
normal equations, 449
normal, 234

normalizing, 213

normed linear space, 209, 224
null, 265

nullity, 61

odd permutation, 391
one-sided inverses, 122, 470
one-to-one, 6

onto, 6

open ball, 304

open half-spaces, 417

open neighborhood, 304
open rectangles, 79

open sets, 305

operator adjoint, 104
operator characterization, 484
order, 18, 101, 139, 471
order ideals, 115

ordered basis, 51
order-reversing, 102

519
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orthogonal complement, 212, 265 projection theorem, 220, 334

orthogonal direct sum, 212, 269 projection, 73

orthogonal geometry, 260 projective dimension, 438

orthogonal group, 271 projective geometry, 438

orthogonal resolution of the identity, 232 projective line, 438

orthogonal set, 212 projective plane, 438

orthogonal similarity classes, 242 projective point, 438

orthogonal spectral resolution, 237 proper subspace, 37

orthogonal transformation, 271 properly divides, 27

orthogonal, 75, 212, 231, 238, 265 pseudobasis, 472

orthogonality conditions, 480 pure in, 161

orthogonally diagonalizable, 233

orthogonally equivalent, 242 g-binomial coefficients, 506

orthogonally similar, 242 quadratic form, 239, 264

orthonormal basis, 218 quaternions, 463

orthonormal set, 212 quotient algebra, 455
quotient field, 24

parallel, 427 quotient module, 118

parallelogram law, 208, 325 quotient ring, 22

parity, 391 quotient space, 87, 89

Parseval's identity, 221, 346

partial order, 10 radical, 266

partially ordered set, 10 range, 6

partition, 7 rank, 53, 61, 129, 369

permutation, 391 rank plus nullity theorem, 63

Pincherle derivative, 503 rational canonical form, 176-179

plane, 427 real operator, 59

point, 427 real part, 54

polar decomposition, 253 real vector space, 36

polarization identities, 209 real version, 53

posets, 10 recurrence formula, 501

positive definite, 205, 250, 301 reduce, 169

positive square root, 251 reduced row echelon form, 3, 4

power of the continuum, 16 reflection, 244, 292

power set, 13 reflexivity, 7, 10

primary, 147 relatively prime, 5, 27

primary cyclic decomposition theorem, 153, 168 representation, 457

primary decomposition theorem, 147 resolution of the identity, 76

primary decomposition, 147, 168 restriction, 6

prime subfield, 97 retract, 122

prime, 26 retraction map, 122

primitive, 465 Riesz map, 222

principal ideal domain, 24 Riesz representation theorem, 222, 268, 351

principal ideal, 24 Riesz vector, 222

product, 15 right inverse, 122, 470

projection modulo, 89 right singular vectors, 445



right zero divisor, 460
right-invertible, 470
ring, 18

ring homomorphism, 19
ring with identity, 19
roots of unity, 464
rotation, 292

row equivalent, 4

row rank, 52

row space, 52

scalar multiplication, 31, 35, 451
scalars, 2, 35, 109

Schroder, 13

Schur's theorem, 192, 195

second isomorphism theorem, 93, 119
self-adjoint, 238

separable, 308

sesquilinear, 206

Sheffer for, 481

Sheffer identity, 486

Sheffer operator, 491, 498

Sheffer sequence, 481

Sheffer shift, 491

sign, 391

signature, 288

similar, 9, 70, 71

similarity classes, 70, 71

simple, 138, 455

simultaneously diagonalizable, 202
singular, 266

singular values, 444, 445
singular-value decomposition, 445
skew self-adjoint, 238
skew-Hermitian, 238
skew-symmetric, 2, 238, 259, 390
smallest, 10

span, 45, 112

spectral mapping theorem, 187, 461
spectral theorem for normal operators, 236, 237
spectral resolution, 197

spectrum, 186, 461

sphere, 304

split, 5

square summable, 207

square summable functions, 347
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standard basis, 47, 62, 131
standard inner product, 206
standard topology, 79

standard vector, 47

Stirling numbers of the second kind, 502
strictly diagonally dominant, 203
strictly positive orthant, 411
strictly positive, 225, 411

strictly separated, 417

strongly positive orthant, 225, 411
strongly positive, 56, 225, 411
strongly separated, 417

structure constants, 453

structure theorem for normal matrices, 247
structure theorem for normal operators, 245
subalgebra, 454

subfield, 57

subgroup, 18

submatrix, 2

submodule, 111

subring, 19

subspace spanned, 44

subspace, 37, 260, 304

sup metric, 302

support, 6, 41

surjection, 6

surjective, 6

Sylvester's law of inertia, 287
symmetric, 2, 238, 259, 390, 395
symmetric group, 391

symmetric tensor algebra, 398
symmetric tensor space, 395, 400
symmetrization map, 402
symplectic basis, 273

symplectic geometry, 260
symplectic group, 271

symplectic transformation, 271
symplectic transvection, 280

tensor algebra, 390

tensor map, 362, 383

tensor product, 362, 383, 408
tensors of type, 386

tensors, 362

theorem of the alternative, 413
third isomorphism theorem, 94, 119
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top, 10

topological space, 305
topological vector space, 79
topology, 305

torsion element, 115
torsion module, 115
torsion-free, 115

total subset, 336

totally degenerate, 266
totally isotropic, 265
totally ordered set, 11
totally singular, 266

trace, 188

transfer formulas, 504
transitivity, 7, 10

translate, 427

translation operator, 479
translation, 436

transpose, 2

transposition, 391

triangle inequality, 208, 210, 301, 325
trivial, 36

two-affine closed, 428
two-sided inverse, 122, 470

umbral algebra, 474

umbral composition, 497
umbral operator, 491

umbral shift, 491
uncountable, 13

underlying set, 1

unipotent, 300

unique factorization domain, 28
unit vector, 208

unit, 26

unital algebras, 451

unitarily diagonalizable, 233
unitarily equivalent, 242
unitarily similar, 242
unitarily upper triangularizable, 196
unitary, 238

unitary metric, 302

unitary similarity classes, 242
unitary space, 206

universal, 289

universal for bilinearity, 362

universal for multilinearity, 382
universal pair, 357

universal property, 357

upper bound, 11

upper triangular, 4

upper triangularizable, 192

Vandermonde convolution formula, 489
Vector Space, 167

vector space, 35

vectors, 35
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