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Abstract. Configurations of points in the plane constrained by only direc-

tions or by lengths alone lead to equivalent theories known as parallel drawings
and infinitesimal rigidity of plane frameworks. We combine these two theories

by introducing a new matroid on the edge set of the complete graph with dou-

bled edges to describe the combinatorial properties of direction–length designs.

1. Introduction

A plane configuration in Computer Aided Design (CAD) is a collection of geo-
metric objects such as points, line segments and circular arcs in the plane, together
with constraints on and between these objects [13]. Naturally the designer wants
to know if a realization of the configuration exists and is uniquely determined. A
realization of a plane configuration is called a plane design. Beyond simple unique-
ness of design, there are other fundamental design questions: If global uniqueness is
not achieved, is the design locally unique? If the design permits continuous defor-
mations, which additional constraints would give the appropriate uniqueness? Are
all constraints essential in producing the design or are there constraints which are
forced by the remaining ones?

Given a design, the constraints can be written as a system of algebraic equa-
tions whose variables are the coordinates and parameters of the geometric objects
[12, 15]. Some of the above questions may be answered by computing the rank of the
Jacobian of the system of constraint equations [13, 15]. Because of the size of the
system and possible degeneracies, computation may be slow and unstable. There-
fore a mathematical theory which answers these questions purely combinatorially
is desirable [12].

The classical problem of Euclidean Construction may be stated in the language
of plane designs, as well as other familiar geometric problems. Much is known about
length designs, where the objects are points and the distances between certain pairs
of points are prescribed, forming the familiar mathematical model for a bar and
joint framework. On the other hand, direction designs, in which the constraints
prescribe directions instead of distances between points, is also well understood
as the problem of parallel drawings. We present a combinatorial solution for the
Jacobian of direction-length designs, which incorporate both of these cases.

These results are a contribution to the more basic open case of lengths and
angles, a problem which arises in geodesy (making maps).

We will start out by summarizing results for frameworks and parallel drawings
in section 2, then define direction–length designs in section 3. Our main goal
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is to characterize robust designs (defined in section 4), which have independent
constraints and locally unique realizations. Limiting designs are used as tools in
our proofs and are explicitely described in section 5. In section 6 we describe a
direction– length construction and prove that the construction produces robust de-
signs. The convers is demonstrated in section 6, where the combinatorial properties
of direction–length designs are explored. Finally we indicate problems arising from
mixing lengths directions and angles and outline other topics for further research.

2. Frameworks and parallel drawings

2.1. Frameworks. Consider the set V = {1, . . . , n} and a function p from V into
R2. We call p a configuration and we will denote p(i) by pi. A configuration p
is generic if the coordinates in p are algebraically independent over the rationals.
[For convenience here, we will assume that all points in a configuration are distinct,
pi 6= pj , i 6= j. In certain limiting cases, we will bring vertices into coincidence and
redefine the associated constraint.]

If p is an embedding, we can associate to every graph G = (V,E) a framework
G(p), where the edge set E is interpreted as the collection of those pairs of vertices
whose images under p are joined by rigid bars. We call two frameworks G(p) and
G(q) equivalent if corresponding bars have the same length.

We may identify the configuration p with a point in R2n, and measure the
distance between pairs of vertices by evaluating the rigidity function ρ : R2n →
Rn(n+1)/2 defined by ρ(p)i,j = (pi−pj)2, for i < j ≤ |V |. Clearly ρ is continuously
differentiable with respect to p and we define R(p), the rigidity matrix for the
configuration p, by ρ′(p) = 2R(p). To every framework G(p) we can associate the
matrix R(G,p) consisting of those rows of R(p) corresponding to E. A solution,
u, of the system R(G,p)u = 0 consists of vectors ui in R2, one for each point pi

satisfying
(pi − pj) · (ui − uj) = 0

for each (i, j) ∈ E. u is called an infinitesimal motion of the framework. If |V | ≥ 2
and R(G,p) has rank 2n − 3, or equivalently if all solutions to R(G,p)x = 0
correspond to derivatives of congruences (translations or rotations), the framework
is called infinitesimally rigid. An infinitesimally rigid framework with independent
rows of the rigidity matrix is called isostatic.

A configuration p is said to be generic if any length design whose constraints are
dependent with respect to p are in fact dependent with respect to any embedding.
It is straightforward to show that almost all embeddings are generic, see [2]. If
the coordinates of p are algebraically independent over the rational field, then p
is generic. For a generic embedding, the linear independence of the rows of the
rigidity matrix depends only on the graph whose edges correspond to the rows, and
consequently the generic rigidity of a framework depends on the graph alone.

2.2. Parallel drawings. If u is an infinitesimal motion of R(G), ui = (ui, vi),
then u⊥i − u⊥j is parallel to pi − pj for every edge (i, j), where u⊥i = (vi,−ui),
so G(p + u⊥) is a framework whose edges are all parallel to edges in G(p), see
Figure 1. G(p+u⊥) is said to be a parallel redrawing of G(p). If t is an infinitesimal
translation, then G(p + t⊥) is congruent to G(p). If r is an infinitesimal rotation,
G(p+ r⊥) is a dilation or contraction of G(p), and if p is a nontrivial infinitesimal
motion, G(p + p⊥) will not be similar to G(p).
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Figure 1. Infinitesimal motions and parallel redrawings

Conversely, every parallel redrawing of a framework in the plane induces an
infinitesimal motion of the framework. More directly, given a graph G = (V,E),
we can interpret the edges as line segments in the plane whose direction is to
be fixed and thereby obtain the theory of parallel drawings, or direction designs,
which is equivalent to the linearized problem obtained from interpreting the edges
of G as length constraints. In the following table we compare the corresponding
terminology used in these two theories.

Plane design Bar Frameworks Parallel Drawings

Locally unique solution rigid tight

locally unique solution with isostatic minimally tight
independent constraints

infinitely many non-trivial flexible loose
solutions

Table 1. 1st order terminology

3. Direction-length designs

The equivalent theories of parallel drawings and infinitesimal analysis of frame-
works make tractable plane designs of lengths alone, and directions alone. We now
mix these two types of constraints into a single system with an inclusive theory of
designs with both kinds of constraints.

To distinguish the two kinds of constraints in figures of designs, we will follow
the convention of indicating a length constraint between two points as an ordinary
edge, and a direction constraint between two points as an edge with two arrowheads
along its interior, see Figure 2. s
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Definition: A direction-length design is a double graph FG = (V ;D,L), where
D,L are two sets of edges (no loops), and an assignment p of points pi ∈ R2 for
each vertex i ∈ V . We call elements of D direction constraints and elements of L
length constraints. Together, these are written as the design FG(p). �

The edges L represent pairs of points whose lengths are held fixed. The edges D
represent pairs whose directions are fixed. Since D and L need not be disjoint, a
particular pair may have both types of connections. We also speak of the direction
graph F = (V,D) and the length graph G = (V,L). We say that a direction-
length design is pure if it only has edges of one type, and mixed otherwise. Two
direction-length designs are said to be equivalent if they differ by a translation, see
Figure 2.

We recall that, for lengths, the first-order constraints on ‘infinitesimal motions’
(derivatives of the point positions) are:

(pi − pj) · (ui − uj) = 0.

For plane directions, the constraint (qi −qj) = α(pi −pj) can also be rewritten in
derivative form. The first step is to recall that the vector (pi−pj) can be replaced
by a constant normal nij = (pi − pj)⊥, and the equation becomes:

nij · (p(t)i − p(t)j) = 0.

Taking derivatives, we obtain:

nij · (ui − uj) = 0,

or equivalently
(pi − pj)⊥ · (ui − uj) = 0,

Together, these produce a homogeneous linear system R(FG,p) × u = 0. The
matrix R(FG,p) is the constraint matrix of the design. A set of constraints is
independent if the corresponding rows of the matrix are independent. A solution
to this system of constraints is called a shake. The design (with distinct vertices)
is stiff if and only if this system has only the translations as solutions. Otherwise
it is shaky . A set of constraints is spanning on the configuration p if it creates a
stiff subdesign on these points. Equivalently, a spanning set of constraints spans
the row space for the complete design on the configuration p, with the complete
graph on these vertices as both length and direction constraints.

Example 1. Consider the simple design FG = ({1, 2}; {(1, 2)}, {(1, 2)}). The equa-
tions

|q1 − q2| = |p1 − p2| and q1 − q2 = α(p1 − p2)
are equivalent to the matrix equation

[
x1 − x2 y1 − y2 x2 − x1 y2 − y1

y2 − y1 x1 − x2 y1 − y2 x2 − x1

]
×


u1

w1

u2

w2

 =
[
0
0

]
.

If the points are distinct, it is easy to see that this system reduces to:

[
1 0 −1 0
0 1 0 −1

]
×


u1

w1

u2

w2

 =
[
0
0

]
.
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Thus u1 = u2 and w1 = w2, so the infinitesimal translation (u1, w1) is the only
solution.

We are essentially interested in the rank (and independence) of the constraint
matrix. The rank of the constraint matrix depends on both the double graph FG
and the configuration p. However all generic p give the same rank for R(FG,p),
maximal over all configurations. A set of constraints is generically independent
if it is independent for some (hence all) generic configurations. A set of edges is
generically spanning if it is spanning for some (hence all) generic configurations.

Since any non-empty design has a two dimensional space of translations in the
plane, the maximum rank that the matrix can have is 2|V | − 2. A unique solution
will therefore require 2|V | − 2 independent constraints, or equivalently 2|V | − 2
spanning constraints. Such sets, which are independent and spanning, induce a
robust design. We may observe the following.

Lemma 1. (1) An independent set of |L| = 2|V | − 3 lengths plus any single
direction constraint is an independent set of 2|V | − 2 constraints; (see Fig-
ure 3b)

(2) An independent set of |D| = 2|V | − 3 directions plus any single length
constraint is an independent set of 2|V | − 2 constraints; (see Figure 3c)

(3) A spanning tree, used once as L for lengths and a second time as D for
directions, is a spanning set of 2|V | − 2 constraints; (see Figure 3a)

(4) If there are only length constraints, then every infinitesimal rotation is a
shake;

(5) If there are only direction constraints, then any infinitesimal dilation is a
shake.

(6) A spanning set of constraints must contain both direction and length con-
straints.
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Figure 3. Three robust designs on 6 points.

3.1. Swapping. The form of the constraint matrix implies that lengths and direc-
tions play symmetric roles in the theory. In fact, we have a basic ‘duality’ between
these two constraints.
Definition: Given a double graph FG = (V ;D,L) the swapped double graph
is FGs = GF = (V ;L,D) where the roles of lengths and directions have been
switched. �

In Figure 3 (a) the swapped design is identical to the original, while (b) swaps
to (c).
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Theorem 1 (Swapping Theorem.). A direction-length design FG(p) and the swapped
design (the swapped double graph at the same points) FGs(p) = GF (p) have iso-
morphic solutions spaces of shakes.

In particular, a direction-length design FG(p) is stiff (robust) if and only if the
swapped design GF (p) is stiff (robust).

Proof. Consider the constraint matrix R(FG,p) for the first design. If we rotate
the design 90 degrees clockwise to form q, then the independence of any set of
constrains is unchanged and the matrices R(FG,q) and R(FGs,p) are identical up
to the sign of the rows. �

4. Robust designs

If a direction-length design has 2|V |−2 independent constraints, then the design
is stiff, and the removal of any constraint introduces a shake. We called such a
design robust. If a double graph FG has a configuration p for which the design
FG(p) is robust, we say the FG is robust. Equivalently, FG is robust if FG(p) is
robust for all generic configurations p.

The term robust is used to indicate that small changes in the parameters of a
design yield a ‘nearby’ design with identical stiffness properties, which is highly
desirable for ease of rendering and computability. This is indeed the case for ro-
bust double graphs, since the generic configurations comprise an open dense set of
configurations.

5. Limiting designs

For our analysis, it is useful to expand the allowable designs to include typical
limiting cases. For a given direction-length design FG(p), the normalized constraint
matrix, Rn(FG,p), is obtained from R(FG,p) by scaling the rows; multiplying row
(i, j) by |pi − pj |−1. The advantage of the normalized constraint matrix is that
it has the same row dependencies as the original matrix, while its entries remain
finite and non-zero under the limits limpi→∞ and limpi→pj

.

5.1. Vertices at infinity. Let p be a configuration of FG, and consider the limit
of Rn(FG,p) as pi

q−→ ∞ in the direction of a unit vector q. Then the limit of
a row corresponding to length constraint l(i, j) of Rn has entries q in the columns
corresponding to i, and −q in the columns corresponding to j, and the limit of a
row corresponding to direction constraint d(i, j) of Rn has entries q⊥ in the columns
corresponding to i, and −q⊥ in the columns corresponding to j.

If the vertex i has two distinct neighbors, then lim
pi

q−→∞Rn(FG,p) is not the
constraint matrix of a direction-length design, since the vertex i has no possible
location. We will indicate a vertex at infinity as in Figure 4.

As a vertex tends to infinity, the edges in its star tend to parallelism, and so if a
vertex has only direction constraints, or only length constraints, then the limiting
design has an infinitesimal motion even if none of the ordinary direction-length
designs of the configuration do.

Example 2. Suppose we consider the complete graph on four vertices, p0 = (−1,−1),
p1 = (+1,−1), p2 = (0, 0), and p3 = (0, 1), see Figure 4a. The constraint matrix
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Figure 4. A point passing to infinity

is

R(FG,p) =


0 −2 0 2 0 0 0 0

−1 −1 0 0 1 1 0 0
0 0 1 −1 −1 1 0 0

−1 −2 0 0 0 0 1 2
0 0 1 −2 0 0 −1 2
0 0 0 0 0 −1 0 1


and the normalized matrix is

Rn(FG,p) =


0 −1 0 1 0 0 0 0

−α −α 0 0 α α 0 0
0 0 α −α −α α 0 0

−β −2β 0 0 0 0 β 2β
0 0 β −2β 0 0 −β 2β
0 0 0 0 0 −α 0 α


where α = 1√

2
and β = 1√

5
) The limit as p3

q−→ ∞, q = (0, 1), is the limit design
on the right, with normalized matrix

lim
p3

q−→∞
Rn(FG,p) =


0 −1 0 1 0 0 0 0

−α −α 0 0 α α 0 0
0 0 α −α −α α 0 0
0 −1 0 0 0 0 0 1
0 0 0 −1 0 0 0 1
0 0 0 0 0 −1 0 1


1

−1
1

and infinitesimal motion u3 = (1, 0) and u0 = u1 = u2 = (0, 0). The numbers to
the right of the matrix indicate the coefficients of a linear dependence of the rows.
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The normalized matrix of the limit design in Figure 4b is

lim
p3

q−→∞
Rn(FG,p) =


0 −1 0 1 0 0 0 0

−α −α 0 0 α α 0 0
0 0 α −α −α α 0 0
0 −1 0 0 0 0 0 1
0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 1


which allows no non-trivial motion.

Since the limit of a dependent set is a dependent set in the limit design, an
independent set in the limit design implies the nearby regular designs are also
independent. If the limit design is spanning, then the nearby designs are also
spanning.

5.2. Infinitesimal edges. The points in a direction-length design are assumed to
be distinct. However, it is sometimes useful to consider the limit design as one point
pi approaches another point pj , in the direction of the unit vector q. The row for
a length constraint l(i, j) in the limit of the normalized constraint matrix will have
q in the columns corresponding to i and −q in the columns corresponding to j.
The row for a direction constraint d(i, j) in the limit of the normalized constraint
matrix will have q⊥ in the columns corresponding to i and −q⊥ in the columns
corresponding to j.

Example 3. Consider the designs of Figure 5a and b. It is straightforward to check
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Figure 5.

that both designs are generically independent.
If we take the limit as p3 approaches p0 along the direction (1, 1), Figure 5c,

then the limit of design 5a has matrix
0 −1 0 1 0 0 0 0
1 0 0 0 −1 0 0 0
0 0 α α −α −α 0 0
α α 0 0 0 0 −α −α
0 0 1 0 0 0 −1 0
0 0 0 0 0 1 0 −1
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which has rank 6, while the limit of design 5b has matrix
0 −1 0 1 0 0 0 0
1 0 0 0 −1 0 0 0
0 0 α α −α −α 0 0

−α α 0 0 0 0 α −α
0 0 1 0 0 0 −1 0
0 0 0 0 0 1 0 −1


α
α
1
1

−α
−α

which has rank 5, (α = 1√
2
).

Again, the limit of a dependent set is a dependent set in the limit design and an
independent (spanning) set in the limit design implies the nearby regular designs
are also independent (spanning).

5.3. Cycles on 3 vertices. In this section we describe small cycles which will be
useful in subsequent arguments.

A cycle is a minimally dependent set of constraints. Among 3 vertices any set
of 5 constraints is dependent, so the designs of Figures 6a and 6b are dependent.
To see they are cycles, we need only observe that removing any constraint yields a
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Figure 6. Cycles with 3 vertices.

robust design. These are both generic cycles. We can have a cycle on fewer than 5
edges if the position is special.

The design of Figure 6c is clearly a cycle, with matrix 1 0 −1 0 0 0
0 0 1 0 −1 0
2 0 0 0 −2 0

 2
2

−1

and dependence given in the right column, similarly for Figure 6d.
The design of Figure 6e has point 1 approach ∞ in the vertical direction. The

matrix is  0 −1 0 1 0 0
0 1 0 0 0 1
0 0 0 1 0 −1

 1
−1

1
and similarly for Figure 6f.
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Lastly, the design of Figure 6g has point 1 approach point 2 in the vertical
direction (0, 1) with the direction edge d(1, 2). The matrix is −1 0 1 0 0 0

−1 0 0 0 1 0
0 0 −1 0 1 0

 1
−1

1

and similarly for Figure 6h with vertical length edge l(1, 2).

6. Extendability

For plane rigidity and for plane directions, the simple inductive constructions
for the independent (rigid) structures are the oldest characterizations, see [5]. In
the proof of our broader combinatorial characterization, an inductive construction
for robust direction-length designs remains a key step.

6.1. 0-extensions. Definition: Let FG = (V ;D,L) be a double graph. Let
FG′ be the double graph obtained from FG by adjoining a new vertex v whose
total degree is 2. We say that FG′ is a 0-extension of FG, see Figure 7a. �

The neighbors of the new vertex v need not be distinct vertices if the two new
constraints at v are of different type.'
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Figure 7. Extensions

Let FG′ be a 0-extension of FG and let v be the new vertex. Then the matrix
of FG′ is in block form  A 0

B
(xv − xa) (yv − ya)
(xv − xb) (yv − yb)


if the new edges are both lengths, A 0

B
−(yv − ya) (xv − xa)
−(yv − yb) (xv − xb)


if they are both directions, and A 0

B
(xv − xa) (yv − ya)
−(yv − yb) (xv − xb)
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if there is one of each type. So the rows corresponding to the new constraints in the
new matrix are independent of the other rows if the new edges are not parallel, in
the first two cases, or perpendicular, in the third case, and we have the following.

Lemma 2. Let FG′ be a 0-extension of FG and suppose FG is independent with
respect to some configuration p. Then p may be extended to the new vertex so that
FG′ is also independent.

In particular, if FG is generically independent or robust, then any 0-extension
of FG is generically independent or robust, respectively.

6.2. 1-extensions. Definition: Let FG = (V ;D,L) be a double graph with
edge f . A 1-extension of FG, FG′ is obtained from FG by removing the edge f
and adding a new vertex v of degree 3 so that

(1) the neighbors of v include both endpoints of e
(2) neither D nor L decrease in size.

�
We can think of the new edges (v, a) and (v, b) as splitting the constraint l(a, b)

or d(i, j), see Figure 7b. Condition 2 is satisfied as long as a length constraint is
not replaced by three direction constraints, or vice versa. A configuration is general
if no three points are collinear.

Lemma 3. Let FG′ be a 1-extension of FG, and let FG be independent (spanning)
with respect to a general configuration p. Then p can be extended so that FG′ is
also independent (spanning).

Proof. By the Swapping Theorem, (Theorem 1), we assume w.l.o.g. that f ∈ L.
Let {a, b} be the endpoints of f and let v denote the new vertex with new edges

(v, a), (v, b) and (v, c).
Case 1:: Let l(v, a), l(v, b) ∈ L, c distinct from a and b. We can adjoin v by a

0-extension to vertices a and c with constraints l(v, a), l(v, b) with the new
vertex v placed along the segment from pa to pb. Then, since a triangle
of lengths with vertices on a line is a cycle, we can replace the constraint
l(a, b) with the constraint l(v, b) so that FG′ is independent (spanning).

Case 2:: Let l(v, a) ∈ L and d(v, b) ∈ D. We can adjoin v by a 0-extension
with constraints l(v, a) and l(v, c) and take the limit pa

q−→ pb in the
direction q perpendicular to (a, b). Since the rows for l(a, b), l(v, a) form
a cycle with the infinitesimal direction d(v, b), we can replace l(a, b) with
d(b, v) and the limiting design is independent (spanning). Therefore any
nearby generic configuration gives an independent (spanning) design.

Case 3:: Let d(v, a), d(v, b) ∈ D, c distinct from a and b. Then again adjoin
v by a 0-extension, and let v approach ∞ in the direction q perpendicular
to (a, b). In this position, the rows for l(a, b), d(v, a) and d(v, b) form a
cycle with (v, b), so we can replace l(a, b) with d(b, v) and the limiting
design is independent (spanning). Again, any generic p is also independent
(spanning).

�

Remark: Notice that the ‘limiting design’ argument does, indeed, break down
if we try the forbidden replacements: replace a single direction with three lengths,
or replace a single length by three directions. With a limiting point ‘at infinity’,
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all three directions (or lengths) will be parallel rows of the matrix, and the initial
0-extension will fail to be independent.

6.3. Direction-Length Constructions. In the spirit of the classical Henneberg
sequences, we now describe how to obtain complex robust designs from a single
vertex using only the simple extensions just developed.
Definition: A direction-length construction of the double graph FG = (V ;D,L)
is a sequence of direction-length double graphs,

FG1, FG2, . . . FG|V |

beginning with the single vertex graph FG1, ending with FG|V | = FG, such that
FGk is a 0-extension or 1-extension of FGk−1. �
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Figure 8. A direction-length construction

From Lemmas 2 and 3 we have the following theorem.

Theorem 2. A double graph FG with a direction-length construction is generically
robust.

In § 7, the converse is demonstrated. Since the class of constructions is closed
under swapping, the class of constructible designs is closed under swapping.

6.4. Generic cycles on 4 vertices. Let us enumerate the generic cycles on 4 ver-
tices, that is, those double graphs whose edges correspond to minimally dependent
sets of constraints.

A generic cycle cannot have a vertex of total valence 2 (or less) since that would
be a 0-extension of an independent set, or a 0-extension of a smaller cycle. On the
other hand, on 4 vertices, a set of 6 directions or 6 lengths must be dependent, as
well as a set of seven edges of mixed type. Thus a cycle on 4 vertices is either

(1) a tetrahedron of lengths;
(2) a tetrahedron of directions;
(3) the edges of both types form a tetrahedron with a doubled edge (the graph

is vertex 3-connected);
(4) the edges of both types form two attached triangles, with a doubled edge

in each (not the shared edge) (the graph is vertex 2-connected).
Moreover, the third type must have at least two edges of each kind, since if there
was only one, then deleting it would leave a pure tetrahedron which is dependent.
Also cycles of type 4 must have at least two edges of each kind, since there is a pair
of doubled edges.

All candidates of types 1 – 3 are listed in Figure 9. To see that the mixed graphs
are all in fact generic cycles, one may easily give a direction-length construction for
each of the graphs with any one edge deleted.

The circuits of type 4 can be constructed from two of the cycles on three vertices
by cycle exchange. Figure 10 illustrates this process: The single lines represent
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Figure 9. Generic 3-connected cycles on 4 vertices.
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Figure 10. Generic 2-connected cycles on 4 vertices.

constraints of either kind, while the double lines indicate that constraints of both
kinds are present. Altogether there are twelve circuits of type 4.

With the exception of the two pure cycles, all generic cycles on 4 vertices may
be obtained from the generic cycles on 3 vertices by either 1-extension or cycle-
exchange. It seems plausible that all generic cycles may be obtained from the
generic cycles on 3 and 4 vertices by a sequence of extensions and cycle exchanges,
but to date no proof is known, not even in the case of pure designs.

7. The generic matroid

Consider a complete double graph K2
n = (V ;Dc, Lc) on V = {1, . . . , n} together

with a generic configuration p. Since we are interested in the combinatorial proper-
ties of the matrix R(K2

n) = R(K2
n,p), we examine the matroid CADdl(n) defined by

the rows of R(K2
n) which we call the generic dl-cadroid on n vertices. Theorem 2

states that every double graph on n vertices with a direction-length construction is
a basis of CADdl(n).

We know that the rank of the full constraint matrix for a generic configuration
of n points in R2 has rank 2n− 2. Also, for all k < n, CADdl(k) may be viewed as
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a restriction of CADdl(n). Therefore we can offer clear necessary conditions for a
basis B of CADdl(n).

: CADdl1: |B| = 2n− 2;
: CADdl2: for all non-empty subsets E ⊆ B

|E| ≤ 2|V (E)| − 2;

: CADdl3: for all pure non-empty subsets E ⊆ B,

|E| ≤ 2|V (E)| − 3.

Theorem 4 will show that these are also sufficient.
We first show that CADdl1, . . . , CADdl3 define the bases of a matroid Count(n)

on Dc ∪ Lc and then show that this matroid is isomorphic to CADdl(n).

Theorem 3. Let K2 = (V ;Lc, Dc) denote the complete double graph on |V | ver-
tices. Then the collection of subsets B ⊆ Lc∪Dc which satisfy CADdl1, . . . , CADdl3
are the bases of a matroid on Lc ∪Dc.

Proof. We will show that the collection C of minimal sets which violate CADdl1,
. . . , CADdl3 satisfy the cycle axioms for a matroid.

If C ∈ C is pure, then |C| = 2|V (C)| − 2 and |C ′| ≤ 2|V (C ′)| − 3 for all proper
nonempty subsets C ′ of C.

If C ∈ C and C is mixed, then C must contain at least two elements from both
Dc and Lc. We have |C| = 2|V (C)| − 1 and all proper subsets of C must be
independent, i.e., satisfy CADdl3.

We need to show that if C1, C2 ∈ C, and x ∈ C1 ∩ C2, then there exists C3 ∈ C,
C3 ⊆ C1 ∪ C2 − x.

Let the supports of C1 and C2 have cardinalities m and n respectively, and let
the support of C1 ∩ C2 be i.

If C1 and C2 are both mixed, then we have :

|C1 ∪ C2 − e| = |C1|+ |C2| − |C1 ∩ C2| − 1
≥ 2n− 1 + 2m− 1− (2i− 2)− 1 = 2(m + n− i)− 1
= 2|V (C1 ∪ C2)| − 1,

so C1 ∪ C2 − e contains an element of C since it violates CADdl2.
If C1 is mixed and C2 is pure, then their intersection has at most 2i − 3 edges

and C2 also has one edge fewer than before, so we arrive at the conclusion:

|C1 ∪ C2 − e| = 2(m + n− i)− 1 = 2|V (C1 ∪ C2)| − 1.

If C1 and C2 are both pure (of the same type, since they have non-empty intersec-
tion) then:

|C1 ∪ C2 − e| = 2(m + n− i)− 2 = 2|V (C1 ∪ C2)| − 2.

Since C1 ∪ C2 is also pure, this gives the dependence. �

This result is a particular case of a more general construction of matroids from
‘submodular counts’ described in [23].

Observe that the generic cycles of CADdl(n) listed in Figure 6 and Figure 9 are
also cycles in Count(n) and these cycles are in fact all the cycles of Count(n) on 3
or 4 vertices. Notice also that the symmetry of the definition of Count(n) directly
demonstrates the invariance of all matroidal properties under swapping.

We need the following lemmas.
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Lemma 4. If B is a basis of Count(n) then the double graph induced by B is edge
2-connected.

Proof. If B − e is disconnected with two components on k and l vertices, then the
rank of B is at most 2(k + l)− 3. �

Lemma 5. Let I be independent in a matroid and let C be a cycle in this matroid.
Then for each element e ∈ I ∩C there is an element f ∈ C − I so that I − e + f is
independent.

Proof. Let e ∈ I ∩ C. Asssume that for each f ∈ C − I, I − e + f is dependent.
Then C − e is a subset of the closure of I − e. Since e is in the closure of C − e, e
is in the closure of I − e. Since e ∈ I and I is independent, this is a contradiction.

�

Theorem 4. For any set B of edges in K2
n the follwing are equivalent:

(1) B is a basis of Count(n);
(2) B is a basis of CADdl(n);
(3) B has a direction-length construction.

Proof. (3) ⇒ (2). By Theorem 2, every set with a direction-length construction is
a basis of CADdl(n).
(2) ⇒ (1). Every basis of CADdl(n) satisfies CAD1, . . . , CAD3, and so is a basis for
Count(n).
(1) ⇒ (3). The proof is by induction on the number of vertices. It is trivial for 2
vertices.

Assume it is true for n − 1 vertices. Since the average valence of a basis in
Count(n) is 4(1 − 1/n) < 4, there is some vertex of total valence ≤ 3. By the
2-connectivity, this vertex must have valence either 2 or 3. If the valence is 2, then
the robust set is the 0-extension of a smaller independent set, and we are done.

Assume B has a vertex v of valence 3. If star(v), the set of constraints with
endpoint v, is mixed (has constraints of both types), we add constraints among the
neighbors of v to create a Count(k), k = 2 or 3, basis Bv for these neighbors. Adding
the three valent vertex v, we have a dependent set in Count(n) - and therefore a
small cycle C containing v. We have C 6⊆ B, but star(v) ⊆ C ∩ B. By Lemma 5,
for any edge e in star(v), there is an f ∈ C−B such that B− e+ f is independent,
in fact, a basis, B′. Therefore, Bn−1 = B′ − star(v) is a basis of Count(n− 1), and
by induction it has a construction. Since every replacement of a constraint f by a
mixed vertex is a valid 1-extension, B is a 1-extension of Bn−1. Therefore B has a
construction.

If star(v) is pure (say all lengths up to swapping), then it has 3 distinct neighbors.
Adding length constraints among these neighbors will produce a unique pure cycle
C – the complete graph on 4 vertices. As before, for any edge e ∈ star(v), we
can find a length constraint f ∈ C − B such that B − e + f is independent. The
replacement of a length f in Bn−1 by the 3-lengths at v is a valid 1-extension.

This completes the induction. �

Remark. The characterization of Count(n), by the count, appears to be exponen-
tial: ‘for all subsets B′ . . . ‘. However, by a theorem of Nash-Williams, [10, 11],
independent sets are decomposable into two spanning forests with the additional
condition that no two subtrees that both only contain edges of D or edges of L do
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not have the same span. A general matroidal algorithm by Edmonds can be used to
provide such a decomposition in polynomial time. Also Sugihara [15] and Imai [6]
have general polynomial time algorithms to verify such conditions.

For length designs (and therefore also direction designs) Crapo has adapted
Edmonds’ algorithm to also give a low degree polynomial algorithm for the tree
structures which correspond to the counts 2|V (E)|−3. It is clear that this approach
could be modified for our closely related counts, giving polynomial time algorithms
to confirm a basis (or extract a basis from a spanning set). This algorithm would
have the additional advantage that its output (the two trees mentioned above)
could be displayed for rapid visual verification.
Remark: There are some additional results on both necessary and sufficient
connectivity for spanning sets. All of these results are, in some form, the direct
analogs of results for length designs (plane frameworks). All of the proofs are based
on the counting properties of Count(n).

(1) Circuits in CADdl(n) are vertex 2-connected and edge 3-connected.
(2) All circuits of CADdl(n) are spanning on their vertices.
(3) If a direction-length design is vertex 6-connected and mixed, then it is

spanning. This is a direct analog of a result of [9] for frameworks. Their
proof (also based on counts) extends with small modifications.

In the 5-connected 5-regular frameworks example of Lovazs and Yemini [9], we
can double one of the 5-cliques to get an example of a 5-connected double graph
which is not stiff.

8. Concluding Remarks

Our entire analysis of constraints has been ‘local’, with robustness guaranteeing
local uniqueness for small changes in the configuration, up to congruence. As we
mentioned in the Introduction, the problem of global uniqueness up to congruence,
for all configurations is more difficult. This is no longer a matter of linear alge-
bra and matroids, it is quadratic algebra with all the attendant difficulties. For
frameworks, this global uniqueness is called ‘global rigidity’ [1]. For pure lengths,
any basis of the generic rigidity matroid will not be globally rigid, except in special
singular (non-generic) configurations, where the design is dependent [4].

On the other hand, for pure directions, both global and local transformations are
described by linear equations, and the design is globally unique, up to translations
and dilations, if and only if it is locally unique.

For direction-length designs, we have both types of cases.

(1) A robust direction-length design with one length and 2n− 3 directions will
be globally unique, up to translation and dilation by −1, if and only if it is
locally unique.

(2) A direction-length design with one direction and the remaining constraints
lengths will be globally unique, up to translation, dilation by −1 and re-
flection in the line of the single direction, if and only if the length design is
globally unique, up to congruence.

(3) A direction-length design which is globally unique, up to translation and
dilation by −1, is 2-connected in a vertex sense. (Otherwise, we can take
the point of disconnection, and dilate one of the components by −1 in this
center.)
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An inspection of a result, and proof, of Hendrickson [4] indicates that the fol-
lowing result also holds.

Proposition 1. A robust direction-length design FG with more than one length is
not globally unique.

As we mentioned in the introduction, our work with lengths and directions was
motivated by a broader unsolved problem in plane CAD. Consider a design con-
strained by lengths between pairs of points and angles between lines. This angle
constraint could involve two edges sharing a vertex or simply be the angle between
to disjoint edges (‘the following two lines are parallel’). The problem of a polynomial
time algorithm, or direct combinatorial algorithm, for these constraints is unsolved
and difficult [24]. [We do have the corresponding constraint matrices (which have
non-zero vector entries under up to four vertices per angle row). By using variables
for the coordinates of points, we have a well defined generic matroid for the con-
straints CADdl(n). Taking determinants, we get a superexponential ‘combinatorial’
algorithm to check for bases, or independence in CADdl(n).]

Writing A for the set of angle constraints (actually partially ordered triples and
quadruples), and L for the length constraints, there is a necessary set of counts for
B to be a basis of the matroid CADsfda(n):

: CADsfda1: |B| = 2n− 3;
: CADsfda2: for all non-empty subsets E ⊆ B

|E| ≤ 2|V (E)| − 3;

: CADsfda3: for all non-empty subsets of angles E ⊆ B, E ⊆ A

|E| ≤ 2|V (E)| − 4.

The subtracted constant 3 in CADsfda(n) corresponds to the translations and ro-
tations of a robust design. The subtracted constant 4 in CADsfda3 corresponds to
the translations, rotations and dilation permitted by a maximal pure angle design.

However, these conditions are not enough: any ‘polygon of angles’ will be de-
pendent, and in a quadrilateral, these four angles on four points will not violate
the condition CADsfda3. Even if we carefully insert this ‘polygon condition’ (by
adding variables directly for the edges, etc.) the added count will not be sufficient
to define a matroid (as occurred for Count(n)). In practice, the appearance of
such ‘non-spanning’ circuits is a sign that the techniques employed in this paper,
adapted from the study of plane frameworks, will be inadequate.

Figure 11. Generic cycles with angles.

However, if we have an angle design in which the angles are linked together
as a connected set among the attached edges (ideally a tree since any polygon
is dependent), the design can be analyzed with our theory. Taking any one of
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the edges in these angles, and defining an arbitrary direction to it, we can work
through the attached angles to assign a direction constraint for each of the angle
constraints. This induces a direction-length design whose properties of robustness,
independence etc. directly correspond to the robustness, independence etc. of the
original angle-length design. The reader can check that, with one added direction,
and each angle converted to a direction constraint, the three conditions CADsfda1,
CADsfda2,CADsfda3 convert to the axioms for Count(n). We have solved this spe-
cial case of the general unsolved problem of angle-length designs.

If the angles form a forest of several trees, the combinatorial analysis becomes
difficult and unsolved. One key difficulty is that we do not yet have an adequate list
of inductive constructions which are guaranteed to generate all bases of the matroid
CADsfda(n). Moreover, this list will have to involve inductive principles for vertices
attached to up to 7 constraints, since each angle may involve up to four vertices.
It is unclear whether there will be any polynomial time algorithm for general bases
in CADsfda(n).

More generally, the lines could contain many points (not just two) and we would
have additional incidence constraints for vertices lying on lines. This takes us
into several other unsolved problems, both for incidences alone, and for mixes of
incidences, lengths and angles [23].

Finally, we could convert ‘direction constraints’ into directions for lines, but
replace incidences with possibly non-zero distances from points to lines. Again
certain special cases of this can be solved [14] and other extensions are unsolved.

We have focused on constraints in plane CAD because we have some substantial
results. Many of the related problems in 3-space are substantially more difficult.
For example, the problem of independent length constraints alone in 3-space is
unsolved. While there is a corresponding matrix, and a partial list of inductive
constructions, there is no combinatorial characterization (beyond the constraint
matrix with variable entries and the associated superexponential algorithm).

For direction constraints in 3-space, there are substantial results. A ‘direction’
for a line segment becomes two rows in the constraint matrix, corresponding to
two planes, with assigned normals, containing the line. The entire theory of plane
directions has an appropriate extension to this ‘polymatroid’ (two rows for each
edge). This approach is described in more detail in [17, 19, 24].
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