
BIRIGIDITY IN THE PLANE

BRIGITTE SERVATIUS

Abstract. We consider the 2-dimensional generic rigidity matroid R(G) of

a graph G. The notions of vertex and edge birigidity are introduced. We
prove that vertex birigidity of G implies the connectivity of R(G) and that the

connectivity of R(G) implies the edge birigidity of G. These implications are
not equivalences.

A class of minimal vertex birigid graphs is exhibited and used to show that

R(G) is not representable over any finite field.

1. Introduction and Basic Definitions

Let G = (V,E) be a simple graph on the edge set E, vertex set V . We define
the support σ(F ) of a subset F of E to be the set of endpoints of edges in F .

We define a subset F of E to be independent if |F ′| ≤ 2|σ(F ′)| − 3 holds for all
subsets F ′ of F . It is well known, see [1] and [3], that these independent edge sets
are the independent sets of a matroid, the so-called 2-dimensional generic rigidity
matroid, R(G), of the graph G. The closure operator and rank function of this
matroid will be denoted by c and r respectively. The term circuit will always refer
to a circuit in R(G). Some properties of circuits are discussed in [4]. Note that
R(G) may be considered as a restriction of the rigidity matroid of a sufficiently
large complete graph.

G = (V,E) is called rigid if r(E) = 2n − 3, where |V | = n. G is called edge
birigid, if r(E − e) = 2n − 3 for every e ∈ E. G is called vertex birigid, if G is
rigid and r(E − star(v)) = 2(n − 1) − 3 = 2n − 5 for every v ∈ V , where star(v)
denotes the set of edges adjacent to v. We will henceforth abbreviate E − star(v)
with E − v.

To simplify notation and language we will not distinguish between sets of edges
and the subgraphs they induce. Some simple examples of graphs with specified
rigidity properties are given in figure 1.

The following observations are immediate consequences of the definitions. The
union of two graphs G1 and G2 having at most one vertex in common is not rigid,
and c(G1

⋂
G2) = c(G1)

⋂
c(G2). If two rigid graphs intersect in two or more

vertices, their union is rigid.
Let us call two edges of G related if they are both contained in a rigid subgraph

of G. Clearly the so defined relation is symmetric. An edge constitutes a rigid
subgraph, which shows reflexivity. For transitivity; if edges e and f are contained
in a rigid subgraph H1 of G and f and h are contained in a rigid subgraph H2

of G, then H1 and H2 intersect in at least two vertices, namely the endpoints
of f , so their union is a rigid graph containing e and h. Thus rigidity induces
an equivalence relation the edge set of G. The equivalence classes are called r-
components. It follows that r-components have at most one vertex in common and
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that birigid graphs are at least 3-connected. Moreover, R(G) can be written as
the direct sum over the r-components of G. This follows from the observation that
circuits are rigid, in fact edge birigid, see [4].

We shall often use the following property of R(G): Assume the edge set F induces
a subgraph of G containing a vertex, v, of valence three. Then F is independent if
and only if there is an edge e connecting neighbors of v such that e is not contained
in F and F−v+e is independent. We say R(G) satisfies the 1-extendability property,
see [1]. Note that e need not be contained in G.

If the vertices of G are ”generically” embedded in the plane, see [3], and the
edges of G are replaced by rigid bars, which are pin-jointed at their endpoints, the
resulting structure will be rigid if and only if G is rigid in the sense defined above.
See [2].

If the vertices of G are restricted to a line, and the edges of G are again replaced
by rigid bars, the resulting structure will be rigid if and only if G is connected, and
we may characterize the 1-dimensional generic rigidity matroid M(G), of the graph
G as follows: a subset F of E is independent if and only if |F ′| ≤ |σ(F ′)| − 1, holds
for all subsets F ′ of F , i.e., the independent sets in this matroid are simply the
edge sets of subforests of G. M(G), is called the cycle matroid M(G), of G, see [6].

Observe that M(G), and R(G) are matroids defined on the edge set of G, and
that the vertex set of G is used only via the support function, to define independent
sets. Consequently, there is no property of M(G), or R(G) that corresponds directly
to the connectivity of G. Whitney, [7], calls a matroid M on S connected if r(A) +
r(S−A) > r(S) holds for every non-empty proper subset a of S. With this definition
M(G), is connected if and only if G is biconnected. It is natural to ask for relations
between the connectivity of R(G) and the rigidity of G. This will be done in section
II.

Every pair of edges in a biconnected graph is contained in a cycle. A cycle is an
edge-minimal vertex-biconnected graph. Note that any cycle has exactly one edge
more than it needs to be connected. A biconnected graph can simply be thought
of as a union of sufficiently intersecting cycles.

It is natural to look for a rigid analogue: Given a birigid graph, can we write it
as a union of birigid graphs of minimal excess, where the excess of a rigid graph
G = (V,E) is defined to be |E| − r(E). Observe that the only birigid graph of
excess one is the complete graph on four vertices, since the average valence in a
birigid graph of excess one on n vertices is greater than or equal to 4 − (4/n).
Therefore, a birigid graph on more than four vertices contains a vertex of valence
at least four. The removal of a vertex of valence four decreases the excess by two,
therefore a birigid graph on more than four vertices has to have excess at least two.
In section 3 we show that there are infinitely many birigid graphs of excess two.
We give an inductive procedure to construct them all. We also show that they do
not, unfortunately, fullfill the role of universal building blocks of birigid graphs.

2. Birigidity of G and Connectivity of R(G)

Theorem 1. If G has no isolated vertices and more than one edge, and R(G) is
connected, then G is edge birigid, but not conversely.

Proof. G = (V,E) is rigid, otherwise R(G) could be written as the direct sum over
the rigid components of G. Hence r(E) = 2|V | − 3.



BIRIGIDITY IN THE PLANE 3

Assume that there is an edge, e, such that G − e is not rigid. Then r(E − e) =
2|V |−4 and r(E−e)+r(e) = r(E). The last equation contradicts the connectivity
of R(G).

The converse is not true: Let Go be minimally rigid, having no vertices and
2no − 3 edges. We attach to each edge ei a circuit Ci, 1 ≤ i ≤ (2no − 3), Ci

having ni vertices, by identifying one edge of each Ci with one edge of Go. Then
the resulting graph is clearly rigid and hence has rank 2n− 3, where

n = n0 +
2no−3∑

i=1

(ni − 2).

So
∑n

i=1 ni = n + 3n0 − 6. The rank if each Ci is 2ni − 3.
If we sum over the ranks, we get

2no−3∑
i=1

r(Ci) =
2no−3∑

i=1

(2ni − 3) = −3(2no − 3) + 2
2no−3∑

i=1

ni

= −6no + 9 + 2n + 6no − 12 = 2n− 3 = r(G).

So M(G)is not connected. On the other hand, G is clearly edge birigid. �

An example with n0 = 3 is drawn in figure 1(vi).

Theorem 2. If G = (V,E) is birigid and |V | > 3, then R(G) is connected but not
conversely.

Proof. Assume that G is birigid and that R(G) is not connected.
Consider the connected components Ri of R(G). Then there is a partition of E,

E = E1

⋃
E2

⋃
· · ·

⋃
Ek, such that

R(G) = R1 + R2 + ... + Rk,

where Ri = R(Gi), with Gi = (σ(Ei), Ei). Every Gi is rigid, so it follows that

(1) 2|V | − 3 = r(G) =
k∑

i=1

r(Gi) =
k∑

i=1

(2|σ(Ei)| − 3).

Let ni be the number of vertices in the support of Ei which are also contained in
the support of some Ej , i 6= j and let Ni be the number of vertices contained only
in the support of Ei. Denote by N the number of vertices of G which are contained
in exactly one of the σ(Ei)’s, and by n the number of vertices which occur in more
than one of these supports. Ni, N , ni, and n satisfy the following equations:

i. Ni = |σ(Ei)−
⋃
j 6=i

σ(Ej)| ii. |σ(Ei)| = ni + Ni

iii. N =
k∑

i=1

Ni iv. |V | = n + N.

So

(2) n ≤ 1
2

k∑
i=1

ni.
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Rewriting 1 in this new notation we obtain

2n + 2N − 3 =
k∑

i=1

(2(ni + Ni)− 3)

or

(3) 2n = 3(1− k) +
k∑

i=1

2ni

so that 2 and 3 give

[
k∑

i=1

2ni]− 3(k − 1) ≤
k∑

i=1

ni,

or

(4)
k∑

i=1

ni ≤ 3(k − 1).

Furthermore, since every cutset in a birigid graph has cardinality at least 3, we
have that

|σ(Ei)
⋂
i 6=j

σ(Ej)| ≥ 3,

which implies that ni ≥ 3 for all i. This combined with 4 gives

3k ≤
k∑

i=1

ni ≤ 3(k − 1),

a contradiction.
If R(G) is connected, G need not be birigid: If G is a wheel, R(G) consists of a

single circuit and hence is connected. �

But the removal of the center vertex leaves a non-rigid graph if the number of
spokes is larger than 3.

3. Birigid Graphs of Excess Two

G is called edge minimally birigid if G is birigid but G − e is not birigid for all
e ∈ E(V ).

In this section we will restrict our attention to an edge minimal vertex birigid
graph G = (V,E), which has exactly two edges more than it needs to be rigid, i.e.

|E| = 2|V | − 1,

r(E) = 2|V | − 3.

We first list some elementary properties of G.

Proposition 1. Let G be a birigid graph of excess two. Then
(1) G contains at least five vertices,
(2) If e ∈ E(G), then G− e is not birigid, and
(3) G has exactly two vertices of valence three and the remaining vertices each

have valence four.

Proof. (1) Simple graphs on less than five vertices do not contain enough edges
to satisfy |E| = 2|V | − 1.
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(2) G− e is not a complete graph. G− e has excess one. Since the only birigid
graph of excess one is K4, G− e is not birigid.

(3) Since G is rigid, it contains no vertex of valence less than two. Suppose
that G had a vertex v of valence two. Let w be adjacent to v. Then G−w
contains a vertex of valence one and is not rigid. Now suppose G has a
vertex v of valence k. Then G− v has n− 1 vertices and 2(n− 1)− (k− 1)
edges. Since G− v is rigid, k − 1 < 4, which implies that k < 5. Finally, if
there are m vertices of valence three, we have 3m + 4(n−m) = 2(2n− 1),
which gives m = 2.

�

The simplest birigid graph of excess two can be obtained from K5 by deleting
an edge. This graph contains two copies of K4 as subgraphs. By “attaching” to
K4 two adjacent vertices of valence three, we obtain a birigid graph on six vertices.
We remark that birigid graphs on more than 6 vertices do not contain a birigid
subgraph of positive excess.

Next, we examine the circuit structure of R(G):

Theorem 3. A graph on n vertices with 2n− 1 edges is birigid if and only if there
is a partition of the edge set E of G, E = E1

⋂
E2

⋂
· · ·

⋂
Ek such that E − Ei is

a circuit in R(G) for all i, and either
(1) Ei is an edge for 3 ≤ i ≤ k and E1 and E2 are stars of two vertices of

valence three, or,
(2) Ei is an edge for 2 ≤ i ≤ k and E1 is the union of stars of two adjacent

vertices of valence three.

Proof. Assume that there exists such a partition. Consider a class containing ex-
actly one element e. Then E − e is a circuit of R(G), so G − e is a graph with
minimum valence at least three, and e has endpoints of valence at least four in G.
Condition i) or ii) imply that G has 2 vertices of valence three and we conclude by
a simple counting argument that all other vertices are of valence four.

Depending on whether or not the two vertices of valence three are adjacent in G,
conditions i) or ii) imply that the removal of a vertex of valence three of G results
in a circuit or in a circuit with a vertex of valence two attached, a rigid graph in
both cases.

Consider a vertex v of valence four in G. Remove an edge e of star(v) with
endpoints of valence four. E− e is a circuit by assumption, and v has valence three
in this circuit. Recall that a circuit is edge birigid. By deleting an edge in star v,
we therefore obtain a rigid graph in which v has valence two. The removal of a
vertex of valence two does not destroy the rigidity of a graph, so E − v is rigid.

Conversely, assume that G is edge birigid on n vertices and 2n− 1 edges. Since
r(E) = |E|−2, and every edge is contained in a circuit, E is the union of two distinct
circuits, and can be partitioned into a collection of sets Ei such that E − Ei is a
circuit for each i, and |E − Ei| = 2|σ(E − Ei)| − 2, see for example [5] or [6].
Subtracting this equation from |E| = 2|σ(E)| − 1 gives

∗ |Ei| = 2|σ(E)− σ(E − Ei)|+ 1.

If E and E−Ei have the same support then Ei is a single edge. If σ(E)−σ(E−
Ei) = 1, then Ei contains all edges of the star of a vertex in G. The equation *
gives |Ei| = 3. Since every vertex in G has valence at least three, Ei must be a
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star of a vertex of valence three, and the two vertices of valence three in G are not
adjacent because E − Ei is a circuit.

If |σ(E)−σ(E−Ei)| = 2, then Ei contains all edges of the stars of two vertices of
G. The equation * gives |Ei| = 5, so Ei must be the union of two adjacent vertices
of valence three in G.

If |σ(E)−σ(E−Ei)| > 2, then Ei contains all edges of the star of 3 vertices of G.
One of these must be of valence four. But the removal of a vertex of valence four
leaves an independent set since G is birigid. The desired partition is so established
and the proof of the theorem is complete. �

Examples of graphs with a partition of type i) and ii) are given in the figure
below.

Clearly we can ”string together” as many triangles as we wish to obtain birigid
graphs of excess two of arbitrarily large size. Also the number of classes in the
partition described in theorem 1 is unbounded. From a theorem of Tutte [5], we
know that, if M is a matroid representable over a finite field k of order n and S is
the union of two cycles of M with r(S) = |S| − 2 and S1, · · · , Sm is a partition of
S such that S − Si is a cycle of M, then m is bounded by n + 1. Hence we have
proved

Corollary 1. There is no finite field k such that R(G) is representable over k for
all G.

Consider an edge minimal birigid graph G = (V,E). For every edge e in E there
exists a nonempty set Ve of vertices of G such that E − e − v is nonrigid for all
v ∈ Ve. Elements of Ve are called essential vertices for the edge e.

From a given birigid graph of excess two, we want to construct a larger birigid
graph of excess two, by attaching a vertex of valence three and removing one edge
from the given graph.

To formalize this idea, we introduce some notation:
Let T be a graph on four vertices and three edges, where one vertex is of valence

three and construct a graph G + T by identifying vertices a, b, c of G with the
vertices of valence one in T .

We can now prove

Theorem 4. Let G be a birigid graph of excess two, and let T and {a, b, c} be as
described above. Then:

(1) G + T is birigid,
(2) a necessary and sufficient condition for G + T to be edge minimally birigid

is that the set {a, b, c} not be contained in V − Ve for any edge e of G;
(3) if G + T is not edge minimally birigid, then there is an edge e such that

G + T − e is birigid of excess two; and
(4) there is always a choice of {a, b, c} such that G− T is not edge minimal.

Proof. (1) The removal of T results in a birigid, and hence rigid graph, and the
removal of any vertex v ∈ G from G+T removes at most one edge from T ,
and since G− v is rigid, so is G + T − v.

(2) Sufficiency:: Let e be any edge of G. Since the intersection of Ve with
{a, b, c} is nonempty, the removal of e and any vertex v in this inter-
section leaves a nonrigid graph, G− e− v, which has the same rigidity
properties as G + T − e− v.
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Necessity:: Assume the existence of an edge e of G such that {a, b, c}
is contained in V − Ve. Observe that all vertices of valence four of G
which are not endpoints of e are elements of Ve. Therefore least one
vertex in the set {a, b, c} is an endpoint of e.
There are two cases.

(a) a and b are endpoints of e and c is of valence three in G.
Theorem 3.1 implies that a vertex v of valence three is essential
for a nonempty set of edges only if the two vertices of valence
three in G are adjacent. In this case v is essential for the two
edges not contained in a circuit in G − v. It follows that c is
not adjacent to a possible endpoint of e of valence three and all
essential vertices for e are of valence four. This means that E−v
is rigid of zero excess, i.e. independent for all v ∈ Ve. Therefore
E − v − e is independent and e is not in its closure. By the
1-extendability property E +T −e−v is independent and hence
rigid.

(b) e has endpoints of valence four in G, one of them being a, and
b and c are of valence three. Remove e and star(v) for some
v ∈ Ve. Repeating the argument in (a) we show that E − e − v
is independent and non-rigid. Consider the r − components of
E− e−v, and assume that a, b, and c are contained in the same
r-component. This component is independent, and we count
that exactly 3 edges of G− e are incident with it, contradicting
the fact that G− e is a circuit by theorem 1. So, {a, b, c} is not
contained in one r- component of E−e−v and the 1-extendability
property implies that E + T − e − v is independent and hence
rigid for all v in Ve, so G + T − e is birigid.

(3) If G + T is not edge minimally birigid, then there is an edge e in G + T
such that G + T − e is birigid. G + T − e has excess two.

(4) For an edge e with endpoints a and b, both of valence four, a vertex c of
valence three is not essential by theorem 1.

The proof of the theorem is now complete. �

Given an edge minimal vertex birigid graph of excess two on n vertices, we can
get an edge minimal vertex birigid graph on n + 1 vertices by choosing an edge e
in G with |V − Ve| ≥ 3 and forming (G − e) + T by identifying three vertices of
V −Ve with the endpoints of T of valence one. In fact, we obtain all birigid graphs
of excess two by this process.

Theorem 5. Let G be a birigid graph of excess two with |V | > 5.
Let v be one of its vertices of valence three, T = star(v) and let x, y, and z denote

the vertices adjacent to v. Then there is an edge e with endpoints in {x, y, z} such
that e is not an edge of G and G− T + e is birigid.

Proof. : |V | > 5 insures that G− T is not complete. There are two cases.
(1) The two vertices of valence three in G are adjacent. By Theorem 1, the

removal of v leaves a circuit, C, with a vertex, x, of valence two attached.
Assume x and y are in the same rigid component of C + x−w, where w is
a vertex of valence four in C. We count that exactly three edges leave this
component, contradicting the fact that a cutset of C has cardinality greater
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than three. Observe that x is not adjacent to y or z, this would contradict
the birigidity of G. So x and y are never in the same rigid component of
C + x− w, and neither are y and z, therefore C + x− w + e is rigid if e is
one of (x, y), (x, z) respectively.

(2) the two vertices of valence three in G are not adjacent.
By Theorem 1, if we remove v, we are left with a circuit, C. Let w be

a vertex of valence four in C. C − w + T is rigid of zero excess, hence
independent and consequently C − w is independent and nonrigid. By the
1-extendability property there exists an edge e with endpoints in {x, y, z}
such that C − w + e is rigid. However, the choice of e depends on w, and
we have to find an e that achieves rigidity independently from the choice
of the removed vertex w.

If C contains already two of the possible three edges with endpoints in
x, y, z we are done. Assume now that C does not contain e = (x, z) and
f = (y, z) and there is a vertex w of valence four in C such that x and
z are in the same rigid component A of C − w, but C − w + f is rigid
and that there is a vertex u of C such that y and z are in the same rigid
component B of C −u and C −u + e is rigid. A and B intersect in at least
one edge, since z is of valence three in C, and their union is not equal to
C. a contains at least two vertices which are not in B, so there are at least
three edges of A − B incident with vertices of B, and by symmetry, three
edges of B −A are incident with vertices of A. We count that exactly four
edges leave each of A and B. So |C − (A

⋃
B)| ≤ 2, contradicting the fact

that C − (A
⋃

B) contains a vertex.
Therefore, we can always find an edge e with endpoints in {x, y, z} such

that C − w + e is rigid for all vertices w in C, i.e., G− T + e is birigid.
�

We have now found all birigid graphs of excess two, and we have seen that they
are not only edge minimally birigid, but also minimal in the sense that they do not,
with the exception of the ones on five and six vertices, contain any birigid subgraph
of positive excess. Now we ask if every birigid graph on more than six vertices
contains a birigid graph of excess two. The answer is no: The graph in figure 3 is
birigid, has excess three and is minimal. The question if there are minimally birigid
graphs of arbitrary excess is still open.
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Figure 1. This is our favorite figure
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