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Abstract. Let A be the collection of groups which can be assembled from in-

finite cyclic groups using the binary operations free and direct product. These
groups can be described in several ways by graphs. The group (Z ∗Z)×(Z ∗Z)

has been shown by [1] to have a rich subgroup structure. In this article we

examine subgroups of A–groups.

DefineA to be the smallest class of groups which contains the infinite cyclic group
Z, and which contains both the free product and the direct product of any two of its
members. So A contains f.g. free groups, f.g. free abelian groups, direct products
of f.g. free groups, free products of f.g. free abelian groups, etc., see Figure 1.
In particular, groups in A are finitely generated. Groups in A are examples of

Z ��

@@ Zn = Z × · · · × Z

Fn = Z ∗ · · · ∗ Z

Zn1 ∗ · · · ∗ Znk

Fn1 × · · · × Fnk

· · ·

· · ·

Figure 1. Generating groups in A

graph groups [4]. Given a graph Γ = (V,E), the graph group FΓ is generated by the
vertex set V , with a defining relation vw = wv whenever the pair of vertices (v, w) is
connected by an edge. The monoid with this presentation, SΓ, was introduced in [2]
in the study of derangements of sets. Given a graph Γ = (V,E), the complement of
Γ is the graph Γc = (V,Ec), where e ∈ E ⇐⇒ e 6∈ Ec. Given graphs Γ and Σ, ΓtΣ
denotes their disjoint union, and Γ on Σ their join: Γ on Σ = (Γc t Σc)c. That is,
Γ on Σ is obtained from Γ t Σ by setting every vertex of Γ adjacent to each vertex
of Σ. It is clear from the presentations that FΓtΣ = FΓ ∗FΣ and FΓonΣ = FΓ×FΣ.

We call a finite graph an assembly if it belongs to the smallest collection of graphs
containing the one-point graph K1, and which is closed under the operations t and
on. It is straightforward to verify that a finite graph Γ is an assembly if and only
if no four vertices of Γ induce the subgraph L = • • • •, and that a group G
belongs to A if and only if G ∼= FA for some assembly A.

For any element u ∈ FΓ, the length of u, |u|, is the length of any shortest word
in the letters V ±1 = V ∪ V −1 representing u, and the support of u, supp(u), is
the collection of letters occurring in any one such word. We call a shortest word
reduced . Any two reduced words representing the same element are composed of the
same letters, perhaps rearranged as allowed by the adjacencies, hence the support
of an element in FΓ is well-defined [9]. Let link(u) denote the set of vertices which
are adjacent to every vertex of supp(u). If u, v ∈ FΓ and |uv| = |u| + |v|, we say
that the product uv is reduced as written.
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A group is said to be freely indecomposable if it cannot be written as the free
product of two non–trivial subgroups.

Proposition 1. Let Γ be a connected graph. Then FΓ is freely indecomposable.

Proof. This is clear if Γ = K1. Otherwise, suppose FΓ = G∗H. Choose two vertices
v and w which are adjacent in Γ. Then, since v and w commute and generate a
non-cyclic subgroup of FΓ, they must lie in the same conjugate of either G or of
H [8, Corollary 4.1.6]. So, since Γ is connected, it follows that all the vertices of Γ
are conjugate to elements in, say, G. Since such elements cannot generate G ∗H,
we have a contradiction. �

Let G be any group, and suppose that

G ∼= G1 ∗G2 ∗ · · · ∗Gn
∼= H1 ∗H2 ∗ · · · ∗Hm

where all the groups Gi and Hj are freely indecomposable. Then [8, remarks
after Corollary 4.9.2] n = m, and the Gi can be renumbered so that for each i,
Gi

∼= Hi. In particular, if G is finitely generated, and G ∼= A ∗ B, then the Gi

can be renumbered so that A ∼= G1 ∗ · · · ∗ Gk and B ∼= Gk+1 ∗ · · · ∗ Gn. Thus, by
Proposition 1 we can conclude that any free factor of an assembly group is itself an
assembly group.

We shall need the following classical result from combinatorial group theory
(see [8], Corollary 4.9.1):

Theorem 1 (Kurosh Subgroup Theorem). If G ∼= G1 ∗ G2 ∗ · · ·Gn, then any
subgroup of G is itself a free product of groups, each of which is either infinite
cyclic or isomorphic to a subgroup of one of the Gi.

In [7] it was shown that any finitely generated graph monoid SΓ embeds in the
direct product of the submonoids generated by pairs of vertices of Γ and that this
product monoid is isomorphic to SΣ, where Σ is an assembly. By contrast, we will
show that a graph group which embeds in any assembly group must itself be an
assembly group.

Lemma 1. Let Γ be a graph with more than one vertex, and suppose that Γc is
connected. If x and y are nontrivial elements of FΓ, then some conjugate of y does
not commute with x.

Proof. Let V be the vertex set of Γ and let [x, y] = 1. Suppose that supp(x) = V ,
then the centralizer of x is cyclic [9]. Let r be a generator of the centralizer of x.
Then supp(r) = V , x = rn for some n, and y = rm for some m. If v is any vertex
of Γ, then v−1rv 6= rk for any k, since supp(r) contains vertices not adjacent to v.
Consequently, v−1yv does not commute with x.

On the other hand, suppose that supp(x) and supp(y) are proper subsets of V .
Since Γc is connected, supp(x) t link(x) and supp(y) t link(y) are proper subsets
of V . Let a ∈ (supp(x) t link(x))c and b ∈ (supp(y) t link(y))c, and choose a
path a = v0, v1, · · · , vn = b in Γc. Define g = v0 · · · vn. Then the product gyg−1

is reduced as written, and supp(gyg−1) 6⊆ supp(x) t link(x), and consequently [9],
gyg−1 does not commute with x. �

Lemma 2. Let G1 and G2 be groups and let Γ have connected complement. If
FΓ ≤ G1 × G2, then one of the projections pi : G1 × G2 → Gi is injective when
restricted to FΓ.
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Proof. Let h1 and h2 be non-trivial elements of FΓ which belong to ker(p1) and
ker(p2) respectively. Then every conjugate of h1 belongs to ker(p1), and hence
commutes with h2, a contradiction of Lemma 1. �

Recall that L denotes the graph • • • •.

Proposition 2. Let A be an assembly. Then no subgroup of FA is isomorphic to
FL.

Proof. This is clear if A = K1. Otherwise, suppose FL
∼= H ≤ FA. If A =

A′tA′′, then H must be a subgroup of one of FA′ or FA′′ , since it is non-cyclic and
indecomposable. If A = A′ on A′′, then Lemma 2 implies that one of FA′ or FA′′

has a subgroup isomorphic to H. In either case, the result follows by induction. �

Theorem 2. Let A be an assembly, and let Γ be a finite graph. If there is a
monomorphism f : FΓ → FA, then Γ is an assembly.

Proof. This follows immediately from Proposition 2. �

As an application of this theorem we note that the 4–string pure braid group P4

contains FL as a subgroup, see [5]. In [6] it was proved that the quotients of the lower
central series of P4 are isomorphic to those of the direct product G = F1×F2×F3

(Fi free of rank i). The authors prove, however, that P4 is not isomorphic to G.
We may in fact conclude the following stronger statement:

Corollary 1. If n > 3, then neither Bn (the full n–string braid group) nor Pn

embeds in any direct product of free groups.

Let A be a fixed assembly. We will now characterize the assemblies A′ such
that FA has a subgroup isomorphic to FA′ . We begin with a relation �, defined
inductively on the collection of finite assemblies, by the rules:

(1) Γ � Σ if Γ is an induced subgraph of Σ.
(2) Γ1 on · · · on Γm � Σ1 on · · · on Σn if 0 ≤ m ≤ n and the Σi’s can be ordered

so that Γi � Σi.
(3) Γ1 t · · · t Γm � Σ1 t · · · t Σn if 2 ≤ m,n and for each Γi there is some Σj

so that Γi � Σj .
For example, if Σ is the star Σ = K1 on (K1 tK1 tK1) and Γ � Σ, then either

Γ is discrete or Γ = K1 on (K1 t · · · tK1). So, in general, if Γ � Σ, it may indeed
happen that that the graph Γ has more vertices than Σ, but nevertheless, the degree
of nestedness of the expression for Γ in terms of on, t and K1 is less than that of
Σ, and it follows that to decide if Γ � Σ is a finite decision procedure.

Proposition 3. If A′ � A, then FA has a subgroup isomorphic to FA′ .

Proof. If A is either K1 or A1 on · · · on An, the result is clear. Suppose A =
A1 t · · · tAn and that A′ � A, say,

A′ =
(
A11 t · · · tA1,k(1)

)
t · · · t

(
An1 t · · · tAn,k(n)

)
where for each i and j, Aij � Ai. By induction, for each i and j ≤ k(i), FAi

has a
subgroup Hij isomorphic to FAij . For each i, let gi1, · · · , gi,k(i) be distinct elements
of some FAk

with k 6= i. Then the subgroups g−1
ij Hijgij (1 ≤ i ≤ n, 1 ≤ j ≤ n(i))

generate their free product. Clearly this subgroup is isomorphic to FA′ . �

We now prove the converse of this statement.
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Theorem 3. Let A and A′ be finite assemblies and let f : FA′ → FA be a monomor-
phism. Then A′ � A.

Proof. This is clear if A = K1.
If A = A1 t · · · t An, then, by the Kurosh subgroup theorem, any subgroup of

FA can be written as a free product of groups, each of which is either infinite cyclic
or isomorphic to a subgroup of one of the free factors FAi

. Each infinite cyclic
factor is isomorphic to FK1 , and K1 � Ai for each i. Each of the other factors has
the form FΣ for some assembly Σ by the remarks following Proposition 1, and is
isomorphic to a subgroup of FAi for some i. By induction, Σ � Ai.

Now suppose that FA = FA1 × · · · × FAn
, where each FAi

∈ A is either infinite
cyclic or a non-trivial free product of A-groups. If A′ is not connected, the result
follows from Lemma 2, so assume that FA′ = FA′

1
× · · · × FA′

m
, with each factor

either cyclic or a non-trivial free product.
If all direct factors of FA′ are cyclic (so that A′ is an m-clique), then the coho-

mological dimension of FA′ is m, [3]. Thus, the cohomological dimension of FA is
at least m, which implies that A has a clique of size m, so A′ � A.

Otherwise, we may assume that FA′
1

is a non-trivial free product. Let p1 and
p2 denote the projections of FA onto FA1 and FA2 × · · · × FAn

respectively. By
Lemma 2 we may suppose that p1f : FA′

1
−→ FA1 is an injection. Thus, FA1 can’t

be cyclic, and so it must also be a non–trivial free product, say FA1 = FP ∗ FQ

for assemblies P and Q. If p2f : FA′
2
× · · · × FA′

m
−→ FA2 × · · · × FAn

is injective
as well, we are done, so assume there is an element α ∈ FA′

2
× · · · × FA′

m
with

f(α) = β ∈ FA1 . Since α commutes with each element of FA′
1
, β must commute

with all elements of p1f(FA′
1
). Thus, since FA1 is a non–trivial free product, β and

p1f(FA′
1
) lie in the same conjugate either of FP or of FQ [8, Corollary 4.1.6]; we

may assume without loss of generality that they lie in FP . But the subgroups FA′
1

and FA′
2
× · · · × FA′

m
commute, so p1f

(
FA′

2
× · · · × FA′

m

)
lies in FP also. That is,

f(FA′) ≤ FP × FA2 × · · · × FAn
. The latter is an assembly group whose graph is a

proper full subgraph of A, so by induction, A′ � A. �

A finitely generated free abelian group has finitely many isomorphism classes
of subgroups, and a finitely generated free group countably many. Baumslag and
Roseblade, [1], proved that (Z ∗Z)× (Z ∗Z), the graph group corresponding to the

square graph S =
• •
• • , has uncountably many nonisomorphic subgroups. It fol-

lows from Theorem 3 that only countably many of these non–isomorphic subgroups
belong to A, since any graph which precedes the square under � is either discrete
or the join of two discrete graphs.

Proposition 4. Let P = • • • •. Then FP has uncountably many non-
isomorphic subgroups.

Proof. Note that FP
∼= Z ∗ (Z × (Z ∗ Z)). For each integer i ≥ 0, the group

Z × (Z ∗Z) has a subgroup isomorphic to Z ×Fi, where Fi is free of rank i. Thus,
for every increasing sequence i1, i2, · · · of non-negative integers (of which there are
uncountably many), FP has a subgroup isomorphic to the free product

∞

*j=1

(Z×Fij),

and these groups are clearly mutually nonisomorphic. �
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Thus, if an assembly Γ contains either P or S as a full subgraph, then FΓ has
uncountably many nonisomorphic subgroups. The converse of this statement is also
true:

Theorem 4. If Γ is an assembly which contains neither S nor P as a full subgraph,
then FΓ has only countably many nonisomorphic subgroups.

Proof. Suppose Γ satisfies the hypothesis. Since S is not a subgraph of Γ, Γ has
the form C on Σ, where C is a (possibly empty) complete graph, and Σ is either
disconnected or empty [4]. If Σ is empty, the result is clearly true. If Σ is nonempty,
then each component of Σ must be complete, since P is not a subgraph of Σ. Thus,
FΣ is the free product of a finite number of free abelian groups, and so has only
countably many non-isomorphic subgroups. FΓ is the direct product of FΣ with a
f.g. free abelian group, so any subgroup of FΓ is isomorphic to G×H, where G is
f.g. free abelian, and H is a subgroup of FΣ, [4]. Thus FΓ also has only countably
many nonisomorphic subgroups. �

Finally, we remark that if Γ is not an assembly, then FΓ contains a copy of FT

for every countable forest T [5], and so FΓ has uncountably many nonisomorphic
subgroups.
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