• A discrete time signal x[n] is periodic with period N if
$\varkappa[n] = \varkappa[n+N]$
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} \cdot \cdot$
The I have a located is the smallest positive integer N
• The fundamental period is the smallest positive integer N
for which the above equation holds and
$w_0 = \frac{2\pi}{n} \rightarrow \text{fundamental frequency}$
· · · · · · · · · · · · · · · · · · ·
Call of Il line of 12 months and that are prove the with
· Set of all discrete-time complex exponential signals that are periodic with period NT:
· Discrete-time complex exponentials which differ in frequency by a multiple of 211 are
identical
$\phi[n] = \phi_{\kappa+pN}[n]$

· Representation of more general periodic sequences in terms of linear combination of the sequence ϕ_k [n] $x[n] = \sum_{k} a_{k} \phi_{k}[n] = \sum_{k} a_{k} e^{j\omega_{0}n}$ $= \underset{k}{\overset{\leq}{\underset{k}{\overset{\leq}{\overset{}}}}} a_{k} e^{jk} \left(\frac{3\pi}{N} \right) n$ varries over a range of N successive integers $\sum_{k=0}^{N-1} a_k e^{jk} \left(\frac{2\pi}{N}\right) n$ Discuste-Time Fourpier $\mathcal{N}[n] = \underset{k=0}{\overset{N-1}{\underset{k=0}{\times}}} a_{k} e^{jk} \left(\frac{R_{1}}{N} \right) n \xrightarrow{\text{Fourpier Services Representation of a Periodic}} Signal$ e vive e e Periodic Signal Fourier Coefficient $\rightarrow a_{k} = \frac{1}{N} \stackrel{N-1}{\leq} \frac{1}{K} [m] e^{-jKw_{0}n}$ · Discrete-Time Fourier services pairs! $= \sum_{k=1}^{N-1} a_{k} e^{jk} \left(\frac{2\pi}{N}\right) n$ synthesis equation. $x[n] = \leq a_k e^{jkw_0 n}$ $\begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e^{-jk} w_{0}n \\ = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \begin{array}{c} P_{k=0} \\ P_{k=0} \\ \end{array} \\ \end{array}$ $\begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \end{array} \\ \end{array}$ \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1}{\leq} x [n] e \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} Q_{k} = \frac{1}{N} \stackrel{N-1

$a_{k+N} = a_k$	$=\frac{1}{N} \leq \alpha[n] e$	•
· · · · · · · · ·	$N-1 - jk \frac{2\pi}{N}n - j\frac{2\pi}{N}n pt$ $\frac{1}{N} \leq x[n] e \cdot e$	•
	$n=0$ $N-1 -jk\frac{2\pi}{N}n -jk\pi n$ $\frac{1}{N} \leq x[n] e e$	•
But e jann	$n = \underbrace{\cos\left(-\frac{2\pi n}{1}\right)}_{1} + \underbrace{j\sin\left(-2\pi n\right)}_{0}; n = 0, 1, \dots, [n-1]$	•
So, a _{K+N}	$= \frac{1}{N} \sum_{n=0}^{N-1} x [n] C$	•
· · · · · · · ·	$= \alpha_k$	•
a _k is periodic i	· · · · · · · · · · · · · · · · · · ·	•

Example Consider the signal $z[n] = sin w_o n$ what are the fourier
Coefficients.
• x[n] is periode only if
$\omega_0 = \frac{2\pi}{N}$ $\chi[n] = \sin \frac{2\pi n}{N}$
· expanding the signal as sum of two complex exponentials.
$\mathcal{X}[n] = \frac{e^{j\mathcal{X}-e^{-j\mathcal{X}}}}{2j}$ $Sin\mathcal{X} = \frac{e^{j\mathcal{X}-e^{-j\mathcal{X}}}}{2j}$
$= \frac{1}{2j} e^{j} \left(\frac{2\pi}{N}\right)n - \frac{1}{2j} e^{-j} \left(\frac{2\pi}{N}\right)n$
The fourier co-efficients are
$a_{1} = \frac{1}{3j}$ $a_{1} = \frac{1}{3j}$
<pre></pre>

Example $z[n] = 1 + \sin\left(\frac{2\pi}{N}n + 3\cos\left(\frac{2\pi}{N}n + \cos\left(\frac{4\pi}{N}n + \frac{\pi}{2}\right)\right)\right)$ find a_k values. · expand as sum of two exponentials. $x[n] = 1 + \frac{1}{2j} \left[e^{j \left(\frac{2\pi}{N}\right)n} - e^{-j \left(\frac{2\pi}{N}\right)n} \right] + \frac{3}{2} \left[e^{j \left(\frac{2\pi}{N}\right)n} + e^{-j \left(\frac{2\pi}{N}\right)n} \right]$ $+\frac{1}{2}\left[e^{j}\left(\frac{4\pi n}{N}+\frac{\pi}{2}\right)+e^{j}\left(\frac{4\pi n}{N}+\frac{\pi}{2}\right)\right]$ $= 1 + \left(\frac{3}{2} + \frac{1}{2j}\right)e^{j}\left(\frac{2\pi}{N}\right)n + \left(\frac{3}{2} + \frac{-1}{2j}\right)e^{-j}\left(\frac{2\pi}{N}\right)n + \frac{-j}{2}\frac{2\pi}{2}e^{-j}\left(\frac{2\pi}{N}\right)n - \frac{-j}{2}\frac{\pi}{2}e^{-j}\left(\frac{2\pi}{N}\right)n - \frac{-j}{2}\frac{\pi}{2}e^{-j}\left(\frac{2\pi}{N}\right)n - \frac{-j}{2}\frac{\pi}{2}e^{-j$ $Sin \mathcal{R} = \frac{e^{j\mathcal{R}} - e^{j\mathcal{R}}}{\frac{R_j}{2}}$ $Cos \mathcal{R} = \frac{1}{2} \left(e^{j\mathcal{R}} + e^{-j\mathcal{R}} \right)$ $O_{10} = 1$ $a_1 = \frac{3}{a} + \frac{1}{2j} = \frac{3}{a} + \frac{1}{2j^2} = \frac{3}{a} - \frac{1}{2j}$ $Q_{-1} = \frac{3}{3} - \frac{1}{2j} = \frac{3}{2} - \frac{j}{2j^2} = \frac{3}{3} + \frac{1}{2}j$ $a_2 = \frac{1}{2}j \quad a_{-2} = -\frac{1}{2}j$