Decomposition Convolution Sum linearity is commutative [→] order of cascading system can be rearranged without affecting the characteristics of overall combination . yfn] SAD xD • > \Rightarrow $\frac{f'(x)}{f'(x)}$ \Rightarrow $\frac{f'(x)}{f'(x)}$ \Rightarrow $\frac{f'(x)}{f'(x)}$ Superposition ↓ when two signals are added together & fed to ^a System the output is the same as if one had put each signal through the system separately & then added the output Multiplication in Linear System mu Hiplication in linear system \leq linear
non-linear } signal it is multiplied by

ł, Ŷ, ł, Ŷ, $\frac{1}{2}$ $\overline{}$ ł, $\frac{1}{2}$ J. $\frac{1}{\sqrt{2}}$ J. J. $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ J. J. J, ł, J. J. Ŷ, $\overline{\mathcal{L}}$ j. i. $\frac{1}{\sqrt{2}}$ J. Ŷ, Ŷ, ł, J. $\hat{\mathcal{L}}$ Ŷ, Ŷ, $\frac{1}{\sqrt{2}}$ J. Ĵ, Ĵ, J. J. ł, Ŷ,

 $\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}$

 $\hat{\mathcal{A}}$ $\hat{\boldsymbol{\beta}}$

 $\bar{\beta}$ $\hat{\mathcal{A}}$

 $\tilde{}$

is $5v_{\text{A}}$ in value each impulsed ω_{cr} for none can we show $x[n] = \sum_{k=-\infty}^{\infty} x[k]$ $\sum_{k=-\infty}^{\infty} \frac{n!}{k!}$ k] –∞≤n≤∞ $s\left[n-k\right]$ $-\infty$ \leq $n \leq \infty$
 \geq sum of scaled, delayed unit impulses $x[n]$ $v=$ a_{ij} , a_3 $\begin{cases} a_2, & n = 2 \\ a_3, & n = 3 \end{cases}$ $a₁$ $a₂$ a_3 , n = 3 ⁰ . otherwise $\rightarrow n$ $\dot{\mathbf{0}}$ $\overline{2}$ $\overline{\mathbf{3}}$ -2 -1 $\mathbf{1}$ 4 $x[n] = a. 8[n-1] + a. 8[n-2] + a. 8[n-3]$... Each ⁸⁴] is infinite duration sequence

Derivation of LTI convolution sum · General discrete system: g(n] ⁼ F(x(n)) · Rewrite x [N] as a sum of s' : $y[n] = F\left(\sum_{n=-\infty}^{\infty} x[n] \& [n-k]\right)$ · Assume linearity linear, so seem comes out of $F(\cdot)$ $y[n] = zx[k] \cdot F(\delta[n \frac{\text{3} \text{...}}{\text{...}}$ $x[k] \cdot F(\& [n-k])$
 $\approx \sum_{n=1}^{\infty}$ impulse response. $k=-\infty$ just
Scaling values scaling values so comes out of F y [n] is not a function of R of imp $x_iw_i = \sqrt{a_i}$ $v_{\rm A}$ · Superposition summation $s_{apep, position~summation} \frac{\dot{x}_1^{\prime} + \dot{y}_2^{\prime} + \dot{y}_3^{\prime}}{\dot{x}_1^{\prime} + \dot{y}_2^{\prime} + \dot{y}_3^{\prime}}$ $y[n] = \sum_{k=1}^{\infty} x[k] \cdot h[n,k]$ a functionen a Z
R=–∞ time invariance a dis • Assuming Time Invariance $\sqrt{a^5}$ is $\frac{16}{15}$ $\frac{16}{15}$ $\frac{16}{10}$ $\frac{16}{10}$ $\frac{33}{5}$ Assuming Time - Invariance $y[n] = \sum_{n=1}^{\infty} x[k] \cdot h[n-k] = x[n] * h[n]$ $R=-\infty$
 j ust

scaling values
 46 cometent of F
 $y[n]$ is not a function
 $y[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[n]$
 y Time Inversionce
 y Time Inversionce
 $y[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k]$
 $k=-\infty$

Convolution sum of LTI syste $= \alpha[n] * h[n]$ convolution sum of LTI system Thus, LTI system fully characterized by impulse resonse: h[n-k]

FIGURE 6-6

Output signal components for the convolution in Fig. 6-5. In these signals, each point that results from a scaled and shifted impulse response is represented by a square marker. The remaining data points, represented by diamonds, are zeros that have been added as place holders.

FIGURE 6-7

A second example of convolution. The waveforms for the input signal and impulse response are exchanged from the example of Fig. 6-5. Since convolution is commutative, the output signals for the two examples are identical.

Example convolution problem. A nine point input signal, convolved with a four point impulse response, results in a twelve point output signal. Each point in the input signal contributes a scaled and shifted impulse respon

Next → Graphical Convolution .

Convolution is commutative \Rightarrow a[n] $*$ b[n] = b[n] $*$ a[n]