Convolution Sum Decomposition linearity is commutative > order of cascading system can be rearranged without affecting the characteristics of overall combination. z(n) $+ F(\cdot) - F_2(\cdot)$ $+ F_2($ Superposition when two signals are added together & fed to a system the output is the same as if one had put each signal through the system seperately & then added the output Multiplication in Linear System based on the signal it is > linear > non-linear multiplication in linear system multiplied by

x [n] x [n] x [n] x [n] x [n] x [n]	· · ·
linear linear Imagine a sinusoid multiplied with another sinusoid. I siesulting woveform not sinusoid.	· ·
Systaesis \rightarrow the process of combining signals through scaling & addition $a_1 x_1 [n] + a_2 x_2 [n] + a_3 x_3 [n] = a_4 x_4 [n]$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	

	rolution	
Mathematical way of con	n biving too	o signals to form a
thind signal		
Use the strategy of impu	ilse decon	nposition -> impulse vesponse
Way	to analyse	signals one somple at a time
When impulse decomposition is	uerd, the	procedure can be described
by the mathematical operat	ion convolu	ution
$8[n] \rightarrow unit impulse$	· · · · · · ·	SET EI $h fn$
Delta Function	Impulse Response	$\delta[n] \rightarrow F_i(\cdot) \rightarrow h_i[n]$
		$S[n] \rightarrow F_2(\cdot) \rightarrow h_2[n]$
$s[n] \rightarrow F(\cdot) \rightarrow b$	。 历	$f = F_1(\cdot) \equiv F_2(\cdot)$
		$if F_{i}(\cdot) = F_{i}(\cdot)$ $+tun h_{i}[n] = h_{2}[n]$
any impulse can be represent	fed as a 2	
impulse.	 	
and a full - composed of a	l zeros e	rcept sample number 8.
which has value -3 × [n	$] = -3 \delta[$	$[n-8] \rightarrow R$

	. .	each in The monte	mpulse in sum is no tor one value
Can we she	$x [n] = \leq k =$	x[k] & [n-k] $-\infty \rightarrow sur$	$1 - \infty \le n \le \infty$ n of scaled, delayed unit npulses
	•••	$\begin{bmatrix} n \end{bmatrix}$ a_{1} a_{2} $x[n]$	$= \begin{cases} a_1, & n=1 \\ a_2, & n=2 \\ a_3, & n=3 \\ 0, & otherwise \end{cases}$
x [n] = a, Each	-2 -1 0 8 [n - 1] $\pm a_2 $ 8 [n - 8 [·] is infinite du	$1 \ 2 \ 3 \ 4$ -2] + $a_3 \ 8[n - 3]$ uvation sequence	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · ·	· · · · · · · · · · ·	
	· · · · · · · · · · ·	· · · · · · · · · · ·	
· · · · · · · ·	· · · · · · · · · · ·		· · · · · · · · · · · · · · ·

Impulse Response of LTI System	· · · · · · · · · · · · · · · · · · ·
Impulse Response of LTI System System output (response) if input =	$\left\{ \begin{bmatrix} n-k \end{bmatrix} \right\}$
·General definition of impulse resp	$\varsigma \mathcal{C}$
h[n, R] = F(8[n-1])	
	- cohen impulse value > 1
If sample is slift-invariant h[n-k] = F(s[n-k])	. .
bunction of I variable which is the	
$8(n-k) \longrightarrow F(\cdot)$	\rightarrow Implulse Response.
For filters impulse response	convolution kirnel
Image Processing -> point speceod	function

How	a linear	system	Chomge	-lue	imput	Signal	to	an	output	signal	?
						· · · ·	• •				
· · ·		input	signal							· · · ·	•
· · ·		· · · · ·		· · ·	• • •	· · · ·	• •	• •			•
	· · · de	compos	e into {	set of			• •	• •			
		ìm	nuises				• •				•
		hifted an	nd scaled	unit in	npulse)						•
· · · [· · · ·	· · · · ·		• • •	· · · ·	• •	• •			•
		F($\overline{\mathcal{O}}$								•
• • •			<u> </u>		• • •						
	م الم. الم	A Scule	ting from colled & pulse	each	imput		• •	• •			•
	Ought	n roui	and all	shifted							•
	impul		caula r								•
o o o	in in	put im			• • •		0 0	• •			٠
	• • • •	• • • •	\checkmark	• • •	• • •						•
	add	Huse.	scalld &	Shuffed							
	ìn	npulse n	responsed				• •				
				• • •							
		e e e ou	tput sign	α) -							•
· · ·	In linear		Convolution		d to d	escecible +	he r	elatio	n betwee	Λ	•
			nput signa		• • •						
	· · · · · · · · · · · · · · · · · · ·	\rightarrow \rightarrow in	mpulse sign	nai	x[n]—	\rightarrow F(·) h[n]	0 0 0 0		IM		•
			utput sign	al · ·			• •	 ע _ ד	เพา		•
						2[n] :					•
	Convolutio	n is use	d as low-	pass filte	er, ligt	h poiss filt	er, Ì	nvont	ing		
	aHenna	tor, dis cou	ote derivor	he							•
• • •	• • • •		• • • •	• • •				• •	• • •		٠

Derivation of LTI Convolution sum ·General discrete system: y[n] = F(x[n]) • Rewrite $x \ln 3$ as a sum of δ'_{s} : $y \ln 7 = F\left(\sum_{R=-\infty}^{\infty} x \lfloor R \rfloor 8 \lfloor n - R \rfloor\right)$ ·Assume linearity linear, so seem comes out of $F(\cdot)$ $y[n] = \leq x[k] \cdot F(\delta[n-k])$ > impulse response k=-00 just $ummation \quad \text{time in LAN} \quad \text{of } k = -\infty$ $y[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[n,k]$ Scaling values $\int as it is no just just in a function of net <math>1 - k = \gamma \Gamma$ · Superposition summation · Assuming Time Involuance $y[n] = \leq x[k] \cdot h[n-k] = x[n] * h[n]$ Convolution sum of LTI system Thus, LTI system fully characterized by impulse resonse: h[n-k]

· · · · ·	y[n] =	$= \sum_{k=1}^{\infty} \chi[k] \cdot h[n-k]$
	$k = -\infty$ $-k \rightarrow any$ instance in time n we are taking the impulse response of the function k because there is a
• • •		-R we are flipping it around the y axis
· · · ·	· · · ·	$n-R \rightarrow$ shift that subersed impulse susponse
· · ·	· · · · ·	67 1/1
· · · · ·	· · · · ·	then multiply point by point x event
· · ·	 	& sum it over time
· · · ·		· · · · · · · · · · · · · · · · · · ·
· · · ·		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·
· · · ·		· · · · · · · · · · · · · · · · · · ·
· · · ·		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·

FIGURE 6-6

Output signal components for the convolution in Fig. 6-5. In these signals, each point that results from a scaled and shifted impulse response is represented by a square marker. The remaining data points, represented by diamonds, are zeros that have been added as place holders.

FIGURE 6-7

A second example of convolution. The waveforms for the input signal and impulse response are exchanged from the example of Fig. 6-5. Since convolution is commutative, the output signals for the two examples are identical.

FIGURE 6-5

Example convolution problem. A nine point input signal, convolved with a four point impulse response, results in a twelve point output signal. Each point in the input signal contributes a scaled and shifted impulse response to the output signal. These nine scaled and shifted impulse responses are shown in Fig. 6-6.

Next -> Graphical Convolution.

Convolution is commutative $\Rightarrow a[n] * b[n] = b[n] * a[n]$