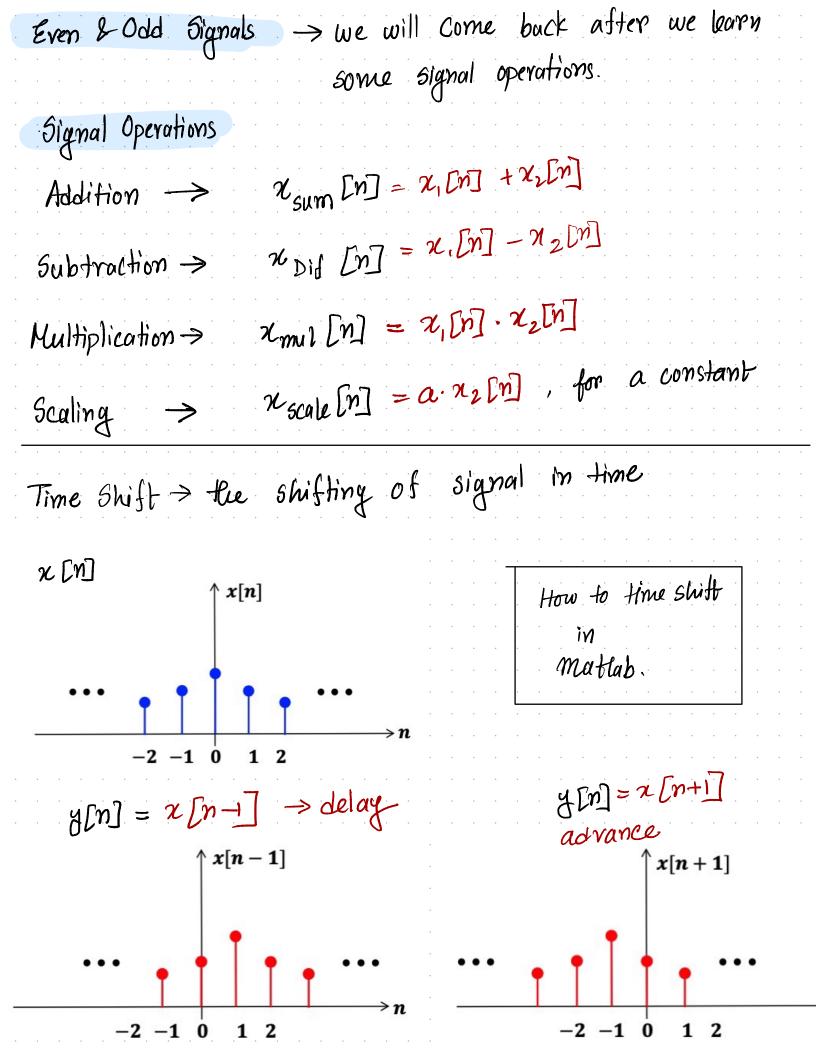

Classes of Sign	als.
Continuous Signals are represented as	x(t) General Sequence
Digital Signal $Digital$ Signals are represented as 12^{-n} , $n \ge 0$	xttor xEn]
$x(n) = \begin{cases} a^{-n}, n \ge 0 \\ 0, n < 0 \end{cases}$ - $\infty \le n \le \infty$ special DT signals	-4-3-2-10/12347 nE-2] xE37 H value not defined independant variable
unit impulse $S(n) = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$	
knonecker delta, unit pulse (impulse) V a function of two variables (usually non-negative integers)	value is 1 for n=0 else value is0
The function is 1 if the vooriables core equal. Otherwise Jevo. Unit step $ \begin{array}{l} 1, n \ge 0\\ \mu(n) = \begin{cases} 0, n < 0 \end{array} $	$n \ge 0$ 0 1 1 1 1 1 1 1 1

	unit impulse au	ue closen	J rieks		
he unit impu Le unit step	ilse sequence a	as the t	first	backwoord	difference of
e unit step	sequence				
· · · · • • · • · •		je [m]			
	- 34	· · · ·			
			• • •		
· · · · · · · · · · · · · · · · · · ·		 Г.	 		
			n-11 -		
· · · · · · · ·					
			· · ·		T S [n]
· · · · · · · ·			r [n]	- Jul m-	$\mathbf{D} = \mathbf{S}[\mathbf{n}]$
		-			
· · · · · · ·	· · · · · · ·	· · · · ·	· · ·	aumo of -	the unit imp
unit step .	sequence as	or quint	ning	sum of -	lee unit imp
unit step 2 n<0	sequence as	or quin	ning	sum of -	lue unit imp
unit step 2 n 20 E-, 9		a quin 3[m]	ning	sum of -	le unit imp
unit step n<0 E		· · · ·			A C Fan 7
unit step $n < 0$ E = 1 0 = 1 = 2 = 3 = 4		· · · ·		µ[n] =	$\sum_{m=1}^{n} S[m]$
unit Step n<0 0 1 2 3 4 		5 [m]		µ[n] =	A C Fan 7
unit step 2 n<0 E_{-} 0 1 2 3 $4 n>$		· · · ·		µ[n] =	$\sum_{m=1}^{n} S[m]$
unit step n<0 0 1 2 3 4 0 1 2 3 4		5 [m]		µ[n] =	$\sum_{m=1}^{n} S[m]$
n < 0 0 1 2 3 4 0 1 2 3 4		5 [m]		µ[n] =	$\sum_{m=1}^{n} S[m]$
n 20 E 0 1 2 3 4 		5 [m]		µ[n] =	$\sum_{m=1}^{n} S[m]$
n 20 E 0 1 2 3 4 		5 [m]		µ[n] =	$\sum_{m=1}^{n} S[m]$
n 20 E 0 1 2 3 4 		5 [m]		µ[n] =	$\sum_{m=1}^{n} S[m]$


Real Exponential Sequence
$\chi[n] = \alpha^n$, $\alpha \in \mathbb{R} \neq 0$, $-\infty \leq n \leq \infty$
$\widehat{a} \times [n], n \ge 0' 0 < \alpha < 1$ $1 1 0 0 < \alpha < 1$ $1 0 0 0 0 0 0 0 0 0 $
$(b) x[n], n \ge 0 \qquad \alpha > 1 \qquad \qquad$
$ \begin{array}{c} 1\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
For a < 0 polonity alternates.
"a" can be complex \rightarrow tocent as real, imaginary parts or magnitude, phase

Periodic Signal
a discrete - time signal $x[n]$ is periodic iff $x[n] = x[n+N]$ for $\forall n \in smallest N$
$\rightarrow N > 0$, real integer
$\Rightarrow N \rightarrow period$.
a sinusoidal signal is perviodic
$A \cos[w_0 n + \phi] = A \cos[w_0 (n+N) + \phi]$
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
$ \cdot \cdot$
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
Since cos() invasciont to 211 · m phase shift (for minteger)
above cosine periodic iff
$w_0 N = 2\pi \cdot m$, for some m (or) $\left[\frac{w_0}{2\pi} = f_0\right] = \frac{m}{N}$
Thus. if $f_0 = \frac{int1}{int2} \rightarrow periodic otherwise not periodic$
$\frac{m}{n} \rightarrow \text{rational}$

Jet's check periodicity of the following signal. • $\varkappa [n] = -7 \cos\left(0.6 \, tr \, n + \frac{Tr}{3}\right)$ $f_0 = \frac{\omega}{2\pi} = \frac{0.6\pi}{2\pi} = \frac{0.6}{2} = \frac{6}{20} = \frac{3}{10}$ Periodic • $\chi [n] = 1.6 \cos(0.7 n)$ $f_0 = \frac{w}{RT} = \frac{0.7}{RT} = \frac{7}{20T}$ not periodic

• $x[n] = 3 \cos(7n)$ $f_0 = \frac{\omega_0}{2\pi} = \frac{7}{2\pi}$	not periodic	
• $x[n] = 42$ sin $(\pi n + f_0) = \frac{\pi}{2\pi} = \frac{1}{2}$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• $\varkappa[n] = \cos\left(\frac{3\pi}{5}n\right)$	$+\frac{\pi}{2}$	· · · · · · · · · · · · · · ·
$f_0 = \frac{3\pi r/6}{2\pi r} =$		
. .		
		. .

. Time Reversal	
Revensing a signal in time	· · · · · · · · · · · · · · · · · · ·
$\mathbf{P} \qquad \qquad \mathbf{x[n]}$	$x[n] = \{6 \ 3 \ 5 \ -1 \ 8\}$
-2 -1 0 1 2	$\alpha [n] = 18 - 1356$
$\int x[-n]$	Reflection about n=0
$ \xrightarrow{-2 -1 \ 0 \ 1 \ 2} \cdots $. .
 Time Scale → multiplying a scalar (x, in argument of func streching / shrinking 	тоn.
$y[n] = x[a \cdot n]$ "a" real	· · · · · · · · · · · · · · · · · · ·
if a is positive integer \rightarrow dow $a = -1 \rightarrow$ reflect sequence about	y anis
a = negative integer -> reflect a non integer -> Interpolation	

Even & Odd Signals	· · · · · · · · · · · · · · · · ·
A discrete-time signal z[n] is an even signal it	f it is identical to its
time-suversed counterpart, i.e., with its reflection	about the origin
x[n] = x[-n]	· · · · · · · · · · · · · · · · · · ·
A discrete-time signal x[n] is odd signa	nl if
$\chi[n] = -\chi[-n]$	
A general sequence z[n] can be seperated	into its odd Symmetric &
even-symmetric paonts such that	
$x_n = x_{even} [n] + x_{odd} [n]$	1
where	· · · · · · · · · · · · · · · · · · ·
$x_{odd}[n] = \frac{x[n] - x^{*}[n]}{2}$	odd symmetric
$\chi_{even}[n] = \frac{\chi[n] + \chi^{*}[-n]}{R}$	even symmetrie
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·