Generalizations to $n \times n$ System

Recall from linear algebra that a system of equations with upper/lower triangular matrix representation is very easy to solve, just like the above. In general, consider the following triagnular system,

$\begin{bmatrix} a_{11} \end{bmatrix}$	a_{12}			a_{1n}	x_1		$\begin{bmatrix} b_1 \end{bmatrix}$	
0	a_{22}			a_{2n}	x_2		b_2	
	0	*	*	*		=		
	•	0	*	*				
0	•		0	a_{nn}	x_n		b_n	

We can read off the $x_n = \frac{b_n}{a_{nn}}$ immediately. Then,

$$x_{n-1} = \frac{b_{n-1} - a_{(n-1)n} x_n}{a_{(n-1)(n-1)}}$$

can be found since we know x_n already. Pushing this sequence backwards, we can find all x_i 's sequentially, that is,

$$x_i = \frac{b_i - \sum_{j=i+1}^n a_{ij} x_j}{a_{ii}}$$

as we know about $x_{i+1}, \ldots x_n$ from previous steps. This procedure is called **back substitution**.

Therefore, it is very beneficial to reduce any augmented matrix $\tilde{A} = [A \mid b]$ into a upper triangular form considered above. In other words, we reduce the augmented system to **row echelon form**, that is, for the k^{th} row, the first nonzero entry is to the right of the k^{th} column. More precisely, we achieve this by the following **elementary row operations**.

Consider the system

	a_{11}	a_{12}	•	•	a_{1n}	x_1		b_1
	a_{21}	a_{22}	•		a_{2n}	x_2		b_2
	•	•	•	•			=	•
	•	•	•					•
L	a_{n1}	•	•	•	a_{nn}	x_n		b_n

which can be further represented by the **augmented** matrix,

	a_{11}	a_{12}	•	•	a_{1n}	$a_{1,n+1}$
~	a_{21}	a_{22}	•	•	a_{2n}	$a_{2,n+1}$
$A = [A \mid b] =$	•	•	•		•	•
		•			•	
	a_{n1}	•	•	•	a_{nn}	$a_{n,n+1}$

where

$$a_{i,n+1} = b_i, \quad i = 1, 2, \dots, n.$$

(1) Given that $a_{11} \neq 0$, construct the multipliers

$$m_{j1} = \frac{a_{j1}}{a_{11}}, \quad j = 2, 3, \dots, n$$

for rows other than row 1. We call a_{11} the **pivot** of the first row.

(2) Eliminate the coefficient of x_1 in each row via:

(0.1)
$$\left(E_j - \frac{a_{j1}}{a_{11}}E_1\right) \to (E_j), \quad j = 2, 3, \dots, n$$

This will make the system look like

	11	a_{12}	•	•	a_{1n}	$a_{1,n+1}$
	0	a_{22}	•		a_{2n}	$a_{2,n+1}$
	•	•	•		•	
	•	•	·	•		
L	0	$a_{n-1}a_2$	•	•	a_{nn}	$a_{n,n+1}$

where the entries are NOT necessarily the same as before. This is simply showing the resulting structure after applying Eq.0.1.

(3) For each remaining coefficients, we perform, by keeping E_i intact but using it to modify other rows, i.e.

$$\left(E_j - \frac{a_{ji}}{a_{ii}}E_i\right) \to \left(E_j\right), \quad j = i+1, i+2, \dots, n,$$

provided that $a_{ii} \neq 0$. This eliminates the coefficient of x_i in each row below the i^{th} for i = $1, 2, \ldots, n-1$.

Algorithm

- (1) For $i = 1, \ldots, n 1$
 - (a) Let p be the smallest integer with $i \leq p \leq n$ and $a_{pi} \neq 0$ If no integer p can be found then OUTPUT ('no unique solution exists'); STOP. (This step is checking if we find an entire row of zeros).
 - (b) If $p \neq i$, then perform $(E_p) \leftrightarrow (E_i)$. (Say, for i = 1, we found p = 2, meaning that $a_{11} = 0$ while $a_{12} \neq 0$. This row thus cannot be used to perform row operations since the multiplier requires that $a_{11} \neq 0$. However, since there is only one zero to the left of the leading entry a_{12} , it would be nice if it is moved to the second row, such that it is "nicely reduced" already.)
 - (c) For j = i + 1, ..., n(i) Set $m_{ji} = \frac{a_{ji}}{a_{ii}}$ (form multiplier used on E_i to modify E_j via elementary row operations);

(ii) Perform $(E_j - m_{ji}E_i) \to (E_i)$ (elementary row operations).

- (2) If $a_{nn} = 0$, then OUTPUT ('no unique solution exists'); STOP.
- (3) Set $x_n = \frac{a_{n,n+1}}{a_{nn}}$. (Start back substitution) (4) For i = n 1, ..., 1, set

$$x_{i} = \frac{a_{i,n+1} - \sum_{j=i+1}^{n} a_{ij} x_{j}}{a_{ii}}.$$

(5) OUTPUT $(x_1, ..., x_n)$.