GENERALIZATIONS TO $n \times n$ SYSTEM

Recall from linear algebra that a system of equations with upper/lower triangular matrix representation is very easy to solve, just like the above. In general, consider the following triagnular system,

We can read off the $x_n = \frac{b_n}{a_{nn}}$ immediately. Then,

$$
x_{n-1} = \frac{b_{n-1} - a_{(n-1)n}x_n}{a_{(n-1)(n-1)}}
$$

can be found since we know x_n already. Pushing this sequence backwards, we can find all x_i 's sequentially, that is,

$$
x_i = \frac{b_i - \sum_{j=i+1}^n a_{ij} x_j}{a_{ii}}
$$

as we know about $x_{i+1}, \ldots x_n$ from previous steps. This procedure is called **back substitution**.

Therefore, it is very beneficial to reduce any augmented matrix $\tilde{A} = [A | b]$ into a upper triangular form considered above. In other words, we reduce the augmented system to row echelon form, that is, for the k^{th} row, the first nonzero entry is to the right of the k^{th} column. More precisely, we achieve this by the following elementary row operations.

Consider the system

which can be further represented by the **augmented** matrix,

where

$$
a_{i,n+1} = b_i, \quad i = 1, 2, \ldots, n.
$$

(1) Given that $a_{11} \neq 0$, construct the multipliers

$$
m_{j1} = \frac{a_{j1}}{a_{11}}, \quad j = 2, 3, \dots, n
$$

for rows other than row 1. We call a_{11} the **pivot** of the first row. (2) Eliminate the coefficient of x_1 in each row via:

(0.1)
$$
\left(E_j - \frac{a_{j1}}{a_{11}} E_1\right) \to (E_j), \quad j = 2, 3, ..., n,
$$

This will make the system look like

where the entries are NOT necessarily the same as before. This is simply showing the resulting structure after applying Eq[.0.1.](#page-0-0)

(3) For each remaining coefficients, we perform, by keeping E_i intact but using it to modify other rows, i.e.

$$
\left(E_j - \frac{a_{ji}}{a_{ii}} E_i\right) \to (E_j), \quad j = i+1, i+2, \ldots, n,
$$

provided that $a_{ii} \neq 0$. This eliminates the coefficient of x_i in each row below the i^{th} for $i =$ $1, 2, \ldots, n-1.$

ALGORITHM

- (1) For $i = 1, \ldots, n 1$
	- (a) Let p be the smallest integer with $i \leq p \leq n$ and $a_{pi} \neq 0$ If no integer p can be found then OUTPUT ('no unique solution exists'); STOP. (This step is checking if we find an entire row of zeros).
	- (b) If $p \neq i$, then perform $(E_p) \leftrightarrow (E_i)$. (Say, for $i = 1$, we found $p = 2$, meaning that $a_{11} = 0$ while $a_{12} \neq 0$. This row thus cannot be used to perform row operations since the multiplier requires that $a_{11} \neq 0$. However, since there is only one zero to the left of the leading entry a_{12} , it would be nice if it is moved to the second row, such that it is "nicely reduced" already.)
	- (c) For $j = i + 1, ..., n$ (i) Set $m_{ji} = \frac{a_{ji}}{a_{ii}}$ $\frac{a_{ji}}{a_{ii}}$ (form multiplier used on E_i to modify E_j via elementary row operations);

(ii) Perform $(E_j - m_{ji}E_i) \rightarrow (E_i)$ (elementary row operations).

- (2) If $a_{nn} = 0$, then OUTPUT ('no unique solution exists'); STOP.
- (3) Set $x_n = \frac{a_{n,n+1}}{a_{n,n}}$ $\frac{n, n+1}{a_{nn}}$. (Start back substitution)
- (4) For $i = n 1, ..., 1$, set

$$
x_i = \frac{a_{i,n+1} - \sum_{j=i+1}^{n} a_{ij} x_j}{a_{ii}}.
$$

(5) OUTPUT (x_1, \ldots, x_n) .