
Condition Number

Remark. Back to the condition of a problem. We may compute a condition number κ of a problem to
quantify how relative error in inputs may amplify that in outputs. It roughly satisfies the following

Eoutput ≈ κEinput.

Example. Consider function evaluation, finding f (x0) at x = x0 (just like in nested polynomials). We
perturb the input by δ. Then, we consider the relative error in output,
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where ξ ∈ (x0, x0 + δ) (motivated by Mean Value Theorem). The second term in the parenthesis, δ
x0

, is the
relative error in input (x0+δ−x0
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the condition number of evaluating f (x) at x = x0. As you can tell, this number can grow pretty large if
we have a steep slope (consider evaluating x = 1 for f (x) = x

1−x ).

Remark. The “interface” between well-conditioned/ill-conditioned is not that sharp. However, we do find
κ < 1 to represent a well-conditioned problem, and otherwise ill-conditioned.

Example. (Well-conditioned problem vs Unstable Algorithm)
Let’s revisit function evaluation. Consider f (x) =

√
1 + x−1 and we wish to evaluate numbers x = x0 ≈ 0.
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so κf (0) = 1, which means it is at least not ill-conditioned (error propagation stays neutral).
However, to compute f (x0), we have a simple three-step algorithm:
(1) s1 = 1 + x0 (stable with κs1 (0) =
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(3) s3 = s2 − 1 (unstable with κs3 = s2√
s2−1

near s2 ≈ 1 – consider catastrophic cancellation).
We would say this algorithm is unstable because one of the steps is unstable. The remedy is against to use
rationalization to bypass the catastrophic cancellation. The analysis of the algorithm using rationalization
is left as a HW exercise (HW2 Problem 1).

From the last example, we see that the most obvious algorithm to solve a well-conditioned problem may
not be stable. Here are a few more takeaways:

(1) Well-/ill-conditioned refers to the problem.
(2) Stable/Unstable refers to an algorithm or a numerical process.
(3) If the problem is well-conditioned, then there is a stable way to solve it (but not vice versa).
(4) If the problem is ill-conditioned, then there is no reliable way to solve it in a stable way.

One must remember that there are always two facets of scientific computing: the problem and the algorithm.
You must study both the condition of the problem AND the stability of your algorithm, and then decide
whether the problem should be relaxed to improve its condition, or the algorithm should be revamped to
improve stability. It is crucial to know both.

Rates of Convergence

Consider two functions f (x) = 1
x and g (x) = e−x. Send x to ∞. We know both limits are zero. But,

which one does it faster? We actually compare their rates via L’Hôpital,
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So, the quotient blows up, meaning that f (x) is running away faster than g (x) – or in other words, g (x) → 0
faster than f (x) does.

Can we quantify this “rate” when we no longer have differentiability to help us, i.e. bye-bye L’Hôpital?
How about first just a sequence of numbers? For example, compare the rate at which
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converge to 0? We anticipate that γn goes to zero faster, in the sense that we can compute
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which means αn is much larger than γn when n is large – γn is much closer to zero than 1/n and thus
converges faster! Now, the task is to quantify the rate of convergence of the sequences.

Definition. (“big O notation”) Suppose {βn}∞n=1 is a sequence known to converge to zero, and {αn}∞n=1

converges to a number α. If a positive constant K exists with

|αn − α| ≤ Kβn, for large n,

then we say that {αn}∞n=1 converges to α with rate, or order, of convergence O (βn) (“big O of βn”). We
also write this as

αn = α+O (βn) , n → ∞.

Though {βn} is an arbitrary sequence that goes to zero, we almost always use the form

βn =
1

np
, p > 0.

We are interested in the largest value of p such that αn = α+O (1/np). For example, if p = 1, we say it is
1st-order/linear convergence; p = 2, 2nd order/quadratic convergence, and so on.


