1. WELL-CONDITIONED PROBLEM

In calculus, we have learned the notion of continuity, that is, we say a function
f (z) is continuous at some point = = a if and only if the following statement is
true: for every € > 0, we can find a § > 0 such that

|f(x) = fla)] <e
if |z —al < 0.
However, this is awfully abstract. What it really means is that given an input
very close to z = a (closeness measured by §), then the output won’t be also so far
away from the true output (measured by).

This definition helps us establish something call well-conditioned problems.
Suppose we are asked to solve a system of equations in matrix form, i.e.,

Az =b.

We say this problem is well-conditioned if for every perturbation 6 A and b, the
solution Z to the perturbed problem

(A+6A)7 = (b+ b)

is not too far off from the true solution x. In other words, this problem doesn’t go
crazy when nudged. Otherwise, we call the problem ill-conditioned.

More generally, one may think of a problem as a mapping from the data space
to the solution space, more precisely,

f:D—=S.
In the example of a system of equations, the function is in fact, “2-dimensional”,
f(AD)=A""=2

where we certainly seek the inverse of the matrix. With input data b and the known
operations A, we seek a solution x = A~'b. If f is “continuous” in both arguments,
then we say this system of equation is a well-conditioned problem. This further
suggests that the well-conditionedness of f depends on the invertibility of A.

2. STABILITY OF ALGORITHMS

Meanwhile, to solve the problem, one may use an algorithm, which is an approx-
imation of the real problem. Though an approximation, an algorithm consumes
inputs and produces outputs. We call an algorithm stable or unstable, if we in-
sert perturbed inputs and see if we obtain minor or major fluctuations in outputs.
We sometimes refer to inputs as initial data. Of course, not all algorithms are
stable given any initial data. If one can find a condition on the initial data such
that the algorithm is stable, then we say the algorithm is conditionally stable.

A more general way of looking at algorithms is to consider the same two spaces
mentioned in the first section, but now, an approximation function

f:D—S.
One way of quantifying the stability of an algorithm is by looking at how errors

are changing at different stages of the operations.

Definition. Suppose that Ey > 0 denotes an error introduced at some stage in
the calculations, and F,, represents the magnitude of the error after n subsequent
operations.

2

(1) (linear) If E,, = CnEy where C is independent of n, then we say the growth
of error is linear.

(2) (exponential) If E,, ~ C"Ey for some C' > 1, then the growth of error is
exponential.

Example. (Unstable Sequence) Consider the sequence of numbers (possibly rep-
resenting an iterative algorithm)

1 n
Pn = C1 (3> + 23"

which solves the recurrence relation
10

pnzgpn—l_pn—Qa ’I’L:2,37....
with two degrees of freedom, ¢; and ¢ (think of them as the discrete version of
“integration constants” of a second-order ODE). They are determined if we specify
po and pq, that is, the “initial conditions”. The way to solve second order recurrence

relation like the above is to guess first a solution of the form
Dn = 17T + oy
Plugging these in, we have

10
n n n—1 n—1 n—2 n—2
errl + corlh = 3 (017”1 + cory) — (clrl + cord))

Collecting similar terms, we have
10 10
ey ? (r% + 3T 1) + cory ™2 (r% + 32T 1) = 0.
This implies that 1 and r, must be the solution to the quadratic equation
10
2
—r—1=0.
e+ 3 r
Suppose po = 1 and p; = % Then, a straightforward calculation yields

01:1, CQZO

which implies, with the specific initial conditions, p, = (%)n is the unique solution.

Now, suppose we have used five-digit rounding to compute the sequence given
by p. = (3)", that is, we begin with py = 1.0000 and p; = 0.33333 — this first
readily modifies the constants ¢; = 1.0000 and é = —0.12500 x 10~2. Let’s check
this.

1.0000 = py = & + &

1 ~
0.33333 =p1 = gcl + 3¢s

which yields a system of equations for ¢; and ¢;. Using a substitution derived from
the first equation, we have

. . 1
G =1.0000 — & = 033333 = (1.0000 — &) 5 + & (3)

and thus

1
©0.33333 —

1 1
3-2)&=033333—- = &= —3 =-0.12499... x 107°.
3 3 3-1

3

The five-digit rounding for ¢ is —0.12500 x 102, while & = 1.0000 — ¢ = 1.0000 —
(—=0.00000125) = 1.00000125 which rounds to 1.0000 (note the leading 1 ate up the
decimals).

Thus, the sequence p,, generated by these rounded numbers is

_ \" _ n
P = 1.0000 (3> —0.12500 x 1072 (3)",

which has round-off error
P — Pn = 0.12500 x 1075(3)".
—_——— A ,
Eo cn
According to our definition of a stable/unstable algorithm, we observe that this
procedure is unstable because the error grows exponentially with n.
This also informs us that solutions on paper to a problem may not be accurately
evaluated by a machine. Finding an analytical formula is nice. But to put it to

practice, one must be careful with the algorithm, sometimes, as simple as “plugging
numbers in”.

Remark. Algorithms that give linear errors are stable. Algorithms that give expo-
nential errors are unstable.

