
1. Well-conditioned Problem

In calculus, we have learned the notion of continuity, that is, we say a function
f (x) is continuous at some point x = a if and only if the following statement is
true: for every ε > 0, we can �nd a δ > 0 such that

|f (x)− f (a)| < ε

if |x− a| < δ.
However, this is awfully abstract. What it really means is that given an input

very close to x = a (closeness measured by δ), then the output won't be also so far
away from the true output (measured by ε).

This de�nition helps us establish something call well-conditioned problems.
Suppose we are asked to solve a system of equations in matrix form, i.e.,

Ax = b.

We say this problem is well-conditioned if for every perturbation δA and δb, the
solution x̃ to the perturbed problem

(A+ δA) x̃ = (b+ δb)

is not too far o� from the true solution x. In other words, this problem doesn't go
crazy when nudged. Otherwise, we call the problem ill-conditioned.

More generally, one may think of a problem as a mapping from the data space
to the solution space, more precisely,

f : D → S.
In the example of a system of equations, the function is in fact, �2-dimensional�,

f (A, b) = A−1b = x

where we certainly seek the inverse of the matrix. With input data b and the known
operations A, we seek a solution x = A−1b. If f is �continuous� in both arguments,
then we say this system of equation is a well-conditioned problem. This further
suggests that the well-conditionedness of f depends on the invertibility of A.

2. Stability of Algorithms

Meanwhile, to solve the problem, one may use an algorithm, which is an approx-
imation of the real problem. Though an approximation, an algorithm consumes
inputs and produces outputs. We call an algorithm stable or unstable, if we in-
sert perturbed inputs and see if we obtain minor or major �uctuations in outputs.
We sometimes refer to inputs as initial data. Of course, not all algorithms are
stable given any initial data. If one can �nd a condition on the initial data such
that the algorithm is stable, then we say the algorithm is conditionally stable.

A more general way of looking at algorithms is to consider the same two spaces
mentioned in the �rst section, but now, an approximation function

f̂ : D → S.
One way of quantifying the stability of an algorithm is by looking at how errors

are changing at di�erent stages of the operations.

De�nition. Suppose that E0 > 0 denotes an error introduced at some stage in
the calculations, and En represents the magnitude of the error after n subsequent
operations.

1

2

(1) (linear) If En ≈ CnE0 where C is independent of n, then we say the growth
of error is linear.

(2) (exponential) If En ≈ CnE0 for some C > 1, then the growth of error is
exponential.

Example. (Unstable Sequence) Consider the sequence of numbers (possibly rep-
resenting an iterative algorithm)

pn = c1

(
1

3

)n

+ c23
n

which solves the recurrence relation

pn =
10

3
pn−1 − pn−2, n = 2, 3,

with two degrees of freedom, c1 and c2 (think of them as the discrete version of
�integration constants� of a second-order ODE). They are determined if we specify
p0 and p1, that is, the �initial conditions�. The way to solve second order recurrence
relation like the above is to guess �rst a solution of the form

pn = c1r
n
1 + c2r

n
2 .

Plugging these in, we have

c1r
n
1 + c2r

n
2 =

10

3

(
c1r

n−1
1 + c2r

n−1
2

)
−
(
c1r

n−2
1 + c2r

n−2
2

)
.

Collecting similar terms, we have

c1r
n−2
1

(
r21 +

10

3
r1 − 1

)
+ c2r

n−2
2

(
r22 +

10

3
r2 − 1

)
= 0.

This implies that r1 and r2 must be the solution to the quadratic equation

r2 +
10

3
r − 1 = 0.

Suppose p0 = 1 and p1 = 1
3 . Then, a straightforward calculation yields

c1 = 1, c2 = 0

which implies, with the speci�c initial conditions, pn =
(
1
3

)n
is the unique solution.

Now, suppose we have used �ve-digit rounding to compute the sequence given
by pn =

(
1
3

)n
, that is, we begin with p̂0 = 1.0000 and p̂1 = 0.33333 � this �rst

readily modi�es the constants ĉ1 = 1.0000 and ĉ2 = −0.12500× 10−5. Let's check
this.

1.0000 = p̂0 = ĉ1 + ĉ2

0.33333 = p̂1 =
1

3
ĉ1 + 3ĉ2

which yields a system of equations for ĉ1 and ĉ2. Using a substitution derived from
the �rst equation, we have

ĉ1 = 1.0000− ĉ2 =⇒ 0.33333 = (1.0000− ĉ2)
1

3
+ ĉ2 (3)

and thus(
3− 1

3

)
ĉ2 = 0.33333− 1

3
=⇒ ĉ2 =

0.33333− 1
3

3− 1
3

= −0.12499 . . .× 10−5.

3

The �ve-digit rounding for ĉ2 is −0.12500×10−5, while ĉ1 = 1.0000− ĉ2 = 1.0000−
(−0.00000125) = 1.00000125 which rounds to 1.0000 (note the leading 1 ate up the
decimals).

Thus, the sequence p̂n generated by these rounded numbers is

p̂n = 1.0000

(
1

3

)n

− 0.12500× 10−5 (3)
n
,

which has round-o� error

pn − p̂n = 0.12500× 10−5︸ ︷︷ ︸
E0

(3)
n︸︷︷︸

Cn

.

According to our de�nition of a stable/unstable algorithm, we observe that this
procedure is unstable because the error grows exponentially with n.

This also informs us that solutions on paper to a problem may not be accurately
evaluated by a machine. Finding an analytical formula is nice. But to put it to
practice, one must be careful with the algorithm, sometimes, as simple as �plugging
numbers in�.

Remark. Algorithms that give linear errors are stable. Algorithms that give expo-
nential errors are unstable.

