
1. Nested Arithmetic

Evaluating a function is a common step in many numerical algorithms. The
most kind of function is polynomials as many more complicated functions in fact
use their Taylor expansions as their representations, which are after all polynomials.
Polynomials of order k are of the form

pk (x) = c0 + c1x+ c2x
2 + · · ·+ ckx

k.

Evaluating powers of a number thus has become particularly important. We don’t
want to lose significant digits there (or not lose too many).

Example. Suppose x = 4.71. Evaluate the polynomial p3 (x) = 1.5+3.2x−6.1x2+
x3 at this point.

We first form a table of straightforward computation (naive computation).

x x2 x3 6.1x2 3.2x
exact 4.71 22.1841 104.487111 135.32301 15.072

3-digit chopping 4.71 22.1 104 134 15.0
3-digit rounding 4.71 22.2 105 135 15.1

Firstly, we know x2 = 4.712 = 22.1841. This rounds to 22.2 if we use three-digit
rounding. Then,

fl
(
x3

)
= x⊗ x⊗ x

= (x⊗ x)⊗ x

= fl (fl (x)⊗ fl (x))⊗ x

= fl
(
4.712

)
⊗ x

= 22.2⊗ x

= fl (fl (22.2)× fl (x))

= fl (22.2 · 4.71)
= fl (135.42)

= 135

which then rounds to 105. Similarly, 6.1x2 = 135.42 and rounds to 135, and
3.2x = 15.072 and rounds to 15.1.

The exact result is
p3 (4.71) = −14.263899.

With three-digit chopping, we have

f (4.71) = ((104− 134) + 15.0)+1.5 = −13.5, =⇒ Errorrel =

∣∣∣∣−14.263899 + 13.5

−14.263899

∣∣∣∣ ≈ 0.05

and with three-digit rounding, we have

f (4.71) = ((105− 135) + 15.1)+1.5 = −13.4, =⇒ Errorrel =

∣∣∣∣−14.263899 + 13.4

−14.263899

∣∣∣∣ ≈ 0.06

(Check these!). Both rounding yield considerable relative error.
The root of the problem lies in the number of arithmetic computations performed

by naive/direct computation. Let us count the number of floating-point operations
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(flops, in short). In the polynomial p3 (x) = x3 − 6.1x2 + 3.2x+ 1.5, we have

+/− ×/÷
x3 1 2

6.1x2 1 1
3.2x 1 1

which totals 7 flops – note in 6.1x2, we already know x2 from computing x3, so
the only multiplication is 6.1 × x2. To reduce this number, we consider a nested
formulation of the polynomial.

p3 (x) = x3 − 6.1x2 + 3.2x+ 1.5

=
(
x2 − 6.1x+ 3.2

)
x+ 1.5

= ((x− 6.1)x+ 3.2)x+ 1.5

Now, we still have three +/−, but the number of multiplication reduces to just two
times. With this formulation, we only incur a total of 5 flops.

Indeed, still using three-digit chopping but now employing the nested polynomial,
we have

f (4.71) = ((4.71− 6.1) 4.71 + 3.2) 4.71 + 1.5 = −14.2.

We observe that we already hit three significant digits. The relative error of this
calculation is

Errorrel =

∣∣∣∣−14.263899 + 14.2

−14.263899

∣∣∣∣ ≈ 0.0045,

far better than direct computation.

Remark. Moral of the story: you always put polynomials in nested form before
doing any computations/evaluations.

2. Well-conditioned Problem

In calculus, we have learned the notion of continuity, that is, we say a function
f (x) is continuous at some point x = a if and only if the following statement is
true: for every ϵ > 0, we can find a δ > 0 such that

|f (x)− f (a)| < ϵ

if |x− a| < δ.
However, this is awfully abstract. What it really means is that given an input

very close to x = a (closeness measured by δ), then the output won’t be also so far
away from the true output (measured by ϵ).

This definition helps us establish something call well-conditioned problems.
Suppose we are asked to solve a system of equations in matrix form, i.e.,

Ax = b.

We say this problem is well-conditioned if for every perturbation δA and δb, the
solution x̃ to the perturbed problem

(A+ δA) x̃ = (b+ δb)

is not too far off from the true solution x. In other words, this problem doesn’t go
crazy when nudged. Otherwise, we call the problem ill-conditioned.


