LEAST SQUARE PROBLEM

Consider observation data by, bo, . .., b, € R of some quantities, e.g., temperature, test scores, Dow Jones
index, accidents, you name it. Meanwhile, for each observation b;, we pair with some independent data
@;1, @52, - - ., Qin, such as, humidity, age, unemployment rate, eyesight, etc.. An example: we observe that at
32 Fahrenheit (b;, dependent variable), local humidity is 5%, local wind speed is 32 mph, and local pressure
is 1 atm. In fact, we may draw up data in a table.

| Temperature in F b | Humidity a; | Wind Speed as | Pressure as | Air Quality Indexay |

32 5 17 1 35
37 7 13 1.02 65
44 8 11 0.99 14
47 11 6 0.96 36

We seek the answer to the question: how does temperature depend on all these variables with the provided
data? It is completely natural to posit a linear relationship between b and the a;’s. More precisely, for each
b;, we seek the coefficients 1, ..., z, that

bi:1'0+1’1ai1+$2ai2+"'+1’nan, i:1,2,...,m.

Is it utterly possible that we can find the exact 1, ..., x;, that satisfy this relationship? We probably
need n equations at least to determine these unknowns. So,

b1 = xo + 1011 + -+ Tpar, = (1,011, ..., a10) - (To, T1,. .., 2n)
by =20 + T10m1 + -+ Tpamn = (1, Amly--- 7amn) : (93071'1a s ,In)
or more compactly,
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So, we have (n + 1) unknowns but only m equations. This is only possibly exactly solvable when m =n+1
which means we have exactly the same number of observation data points as the number of independent
variables. This is unrealistic. In practice, m > n + 1, that is, we have massive amount of data, but only a
handful of features we seek the extent of dependence on. Therefore, the system Ax = b here is not solvable
in general.

Then what? Game over? We go for the next best thing. Now, if Ax = b is not solvable, we may find
some x that achieves Ax ~ b, which is a reasonable request. In fact, we seek a solution that minimizes the
square of the [?-error

¢ (x) = b~ Ax|;
where ¢ : R"*! — R. Recall that b — Az is known as the residual vector. All we are trying to do is to come
up with a solution that minimizes the {?>-norm of this residual vector.

We expand the [?>-norm by definition,

2
¢ (x) = ¢ (z0,21,...,20) = Z(bl — Ty — T1Qi1 — T2z~ — Tnin) -
i=1
How do we minimize a function of multiple variables? We compute its gradient and set it equal to 0 to find
the critical points.
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Moving the —2 out of the way, we see that the critical point(s) satisfy
m
Z(bi — X — T1Gi1 — Talip — -+ — Tplin) 6 =0, j=0,1,...,n.
i=1

Guess what? Now, we have exactly n + 1 equations for the n 4+ 1 unknowns. This set of equations is called
the normal equations.
Denote y; = b; — xg — x1a;1 — Tais — ++ — Tpai, and y = (Y1, Y2, - . -, ym)T. Then, the equation reads

m
Zaz‘jyi:(), j=0,1,...,n.
i=1

which now requires you to recall the definition of matrix vector multiplication —
(Az); = (ai1,ai2,- - -, Qi) - (1,22 ..., 3,) = i'" row of A dotted with z.

Let’s visualize what Z:’;l a;;y; really is:

(a1j7a2j7 a3j7 e Ja’mj) : (y17 cee 7ym)
where we realize that (a1;,as;,asj, . . .,am;) is the j** column of A, which means it is the j** row of A™.
Thus,
m
> aijy = (ATZ/) g
i=1 J
Enumerating over all j = 1,2,...,m, we find that the normal equations can be written in matrix form,
ATy =o0.
Now, looking at the definition of y, we have
Y1 =b1 —To — T1a11 — Taa12 —+ — Tplin
Ym = bm — o — 101 — T2Gm2 — *** — Tnlmn
which is
y=b-— Ax.

Inserting this back into the normal equation ATy =0, we have
AT (b—Az) =0 — ATAx = A"b,

the celebrated final form of the normal equations. All we need is the observation data: the dependent
variable b, and the independent variables A.
We put the problem in full form: the (minimizer) solution to the least square problem

& = argmin ||b — Az
xr
is the solution to the set of normal equations
ATAz = A"b.

Now, after finding where the critical point is, we still need to confirm that this critical point indeed gives
me the minimum, not the maximum.

Theorem. Let A € R™*" and b € R™. Every solution & to AT Az = ATb satisfies
[b— Az, < [|b— Az|, VxeR"

that is, T, if exists, is the global minimizer of ||b — Ax||,.



Proof. Given u,v € R™, we have
lu+oll; = (u+0)" (u+v) = [[u]} +2u"v +[|v]3.
Then,
|b— Az| = ||b— AZ + AZ — Az|>
= |Ib— AZ[; +2(A@ =) (b- AZ)+ A @ - =2)|;

0
>|b— AZ|2+2(@—2)" AT (b="2A7)

= b Az|f;.

EXISTENCE OF A SOLUTION

It remains to show that x indeed exists, and under one more condition on A, is also unique. Existence is
not hard if we know a little bit of linear algebra. Note that ATb lies in the range of AT. But we also can
show that the range of AT and that of AT A are the same (a fundamental theorem in linear algebra), which
means there exists = such that AT Az = ATb since both sides of the equation maps to the same subspace.

UNIQUENESS OF THE SOLUTION

If det (ATA> # 0, then we are all set because then A" A is invertible, and

i—(ATA) " ATh.
(a74)

But is this always the case? This should depend on A — but here A is not necessarily square. So the usual
technique from linear algebra won’t work.

The claim here is that A must have linearly independent columns iff AT A is invertible. For the forward
direction, assume that A has linearly independent columns, we suppose, on the contrary, that AT A is not

invertible. Then, det (ATA> = 0, which means there exists nonzero z = 0 such that
ATAz =0.
Now, multiplying 2T on the left, we have
2TATAz =0 = (A2)" (A2)=0 — ||Az|5=0 — Az =0, wherez#0.

But this is impossible because A has linearly independent columns, i.e., the only solution to Az = 0 is
z = 0. Contradiction!



