
Least Square Problem

Consider observation data b1, b2, . . . , bm ∈ R of some quantities, e.g., temperature, test scores, Dow Jones
index, accidents, you name it. Meanwhile, for each observation bi, we pair with some independent data
ai1, ai2, . . . , ain, such as, humidity, age, unemployment rate, eyesight, etc.. An example: we observe that at
32 Fahrenheit (bi, dependent variable), local humidity is 5%, local wind speed is 32 mph, and local pressure
is 1 atm. In fact, we may draw up data in a table.

Temperature in F b Humidity a1 Wind Speed a2 Pressure a3 Air Quality Indexa4

32 5 17 1 55

37 7 13 1.02 65

44 8 11 0.99 14

47 11 6 0.96 36

We seek the answer to the question: how does temperature depend on all these variables with the provided
data? It is completely natural to posit a linear relationship between b and the ai's. More precisely, for each
bi, we seek the coe�cients x1, . . . , xn that

bi = x0 + x1ai1 + x2ai2 + · · ·+ xnan, i = 1, 2, . . . ,m.

Is it utterly possible that we can �nd the exact xi1, . . . , xin that satisfy this relationship? We probably
need n equations at least to determine these unknowns. So,

b1 = x0 + x1a11 + · · ·+ xna1n = (1, a11, . . . , a1n) · (x0, x1, . . . , xn)

..

..

bm = x0 + x1am1 + · · ·+ xnamn = (1, am1, . . . , amn) · (x0, x1, . . . , xn)

or more compactly,

b =


1 a11 a12 . . a1n
1 a21 . . . .
1 . . . . .
1 . . . . .
1 . . . . .
1 am1 . . . amn


m×(n+1)


x0

x1

.

.

.
xn


(n+1)×1

= Ax.

So, we have (n+ 1) unknowns but only m equations. This is only possibly exactly solvable when m = n+1
which means we have exactly the same number of observation data points as the number of independent
variables. This is unrealistic. In practice, m ≫ n + 1, that is, we have massive amount of data, but only a
handful of features we seek the extent of dependence on. Therefore, the system Ax = b here is not solvable
in general.

Then what? Game over? We go for the next best thing. Now, if Ax = b is not solvable, we may �nd
some x that achieves Ax ≈ b, which is a reasonable request. In fact, we seek a solution that minimizes the
square of the l2-error

ϕ (x) = ∥b−Ax∥22
where ϕ : Rn+1 → R. Recall that b−Ax is known as the residual vector. All we are trying to do is to come
up with a solution that minimizes the l2-norm of this residual vector.

We expand the l2-norm by de�nition,

ϕ (x) = ϕ (x0, x1, . . . , xn) =

m∑
i=1

(bi − x0 − x1ai1 − x2ai2 − · · · − xnain)
2
.

How do we minimize a function of multiple variables? We compute its gradient and set it equal to 0 to �nd
the critical points.

0 =
∂ϕ

∂xj
= −2

m∑
i=1

(bi − x0 − x1ai1 − x2ai2 − · · · − xnain) aij , j = 0, 1, . . . , n.
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Moving the −2 out of the way, we see that the critical point(s) satisfy

m∑
i=1

(bi − x0 − x1ai1 − x2ai2 − · · · − xnain) aij = 0, j = 0, 1, . . . , n.

Guess what? Now, we have exactly n+ 1 equations for the n+ 1 unknowns. This set of equations is called
the normal equations.

Denote yi = bi − x0 − x1ai1 − x2ai2 − · · · − xnain and y = (y1, y2, . . . , ym)
T
. Then, the equation reads

m∑
i=1

aijyi = 0, j = 0, 1, . . . , n.

which now requires you to recall the de�nition of matrix vector multiplication �

(Ax)i = (ai1,ai2, . . . , ain) · (x1, x2 . . . , xn) =⇒ ith row of A dotted with x.

Let's visualize what
∑m

i=1 aijyi really is:

(a1j , a2j , a3j , . . . , amj) · (y1, . . . , ym)

where we realize that (a1j , a2j , a3j , . . . , amj) is the jth column of A, which means it is the jth row of AT.
Thus,

m∑
i=1

aijyi =
(
ATy

)
j
.

Enumerating over all j = 1, 2, . . . ,m, we �nd that the normal equations can be written in matrix form,

ATy = 0.

Now, looking at the de�nition of y, we have

y1 = b1 − x0 − x1a11 − x2a12 − · · · − xna1n

.

.

ym = bm − x0 − x1am1 − x2am2 − · · · − xnamn

which is

y = b−Ax.

Inserting this back into the normal equation ATy = 0, we have

AT (b−Ax) = 0 =⇒ ATAx = AT b,

the celebrated �nal form of the normal equations. All we need is the observation data: the dependent
variable b, and the independent variables A.

We put the problem in full form: the (minimizer) solution to the least square problem

x̃ = argmin
x

∥b−Ax∥22

is the solution to the set of normal equations

ATAx̃ = AT b.

Now, after �nding where the critical point is, we still need to con�rm that this critical point indeed gives
me the minimum, not the maximum.

Theorem. Let A ∈ Rm×n and b ∈ Rm. Every solution x̃ to ATAx̃ = AT b satis�es

∥b−Ax̃∥2 ≤ ∥b−Ax∥2 ∀x ∈ Rn,

that is, x̃, if exists, is the global minimizer of ∥b−Ax∥2.
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Proof. Given u,v ∈ Rm, we have

∥u+ v∥22 = (u+ v)
T
(u+ v) = ∥u∥22 + 2uTv + ∥v∥22 .

Then,

∥b−Ax∥22 = ∥b−Ax̃+Ax̃−Ax∥22
= ∥b−Ax̃∥22 + 2 (A (x̃− x))

T
(b−Ax̃) + ∥A (x̃− x)∥22

≥ ∥b−Ax̃∥22 + 2 (x̃− x)
T

�������:0
AT (b−Ax̃)

= ∥b−Ax̃∥22 .
□

Existence of a Solution

It remains to show that x̃ indeed exists, and under one more condition on A, is also unique. Existence is
not hard if we know a little bit of linear algebra. Note that ATb lies in the range of AT. But we also can
show that the range of AT and that of ATA are the same (a fundamental theorem in linear algebra), which

means there exists x such that ATAx = ATb since both sides of the equation maps to the same subspace.

Uniqueness of the Solution

If det
(
ATA

)
̸= 0, then we are all set because then ATA is invertible, and

x̃ =
(
ATA

)−1

ATb.

But is this always the case? This should depend on A � but here A is not necessarily square. So the usual
technique from linear algebra won't work.

The claim here is that A must have linearly independent columns i� ATA is invertible. For the forward
direction, assume that A has linearly independent columns, we suppose, on the contrary, that ATA is not

invertible. Then, det
(
ATA

)
= 0, which means there exists nonzero z = 0 such that

ATAz = 0.

Now, multiplying zT on the left, we have

zTATAz = 0 =⇒ (Az)
T
(Az) = 0 =⇒ ∥Az∥22 = 0 =⇒ Az = 0, where z ̸= 0.

But this is impossible because A has linearly independent columns, i.e., the only solution to Az = 0 is
z = 0. Contradiction!


