
Fixed-Point Methods for Root-finding Problems with Functions of Several Variables

Functions of Several Independent and Dependent Variables. In the last few classes, we have in-
troduced four critical methods for root-�nding of a function with one variable: the Bisection Method,
Fixed-point iteration, the Newton-Raphson Method and the Secant Method. In practice, problems tend
to be in dimensions more than one, and dimension-reduction techniques can be also highly nontrivial (yet
rewarding). We must face the fact that sometimes, we are dealt with a system of nonlinear equations,

f1 (x1, . . . , xn) = 0,

f2 (x1, . . . , xn) = 0,

..

..

..

fn (x1, . . . , xn) = 0,

where each function fi can be thought of as a mapping

fi : Rn → R.

Now, one can put together the fi also into a vector,

F (x1, x2, . . . , xn) = (f1 (x1, . . . , xn) , f2 (x1, . . . , xn) , . . . , fn (x1, . . . , xn))

as each fi gives an independent output. Thus, the vector-valued function F is a mapping

F : Rn → Rn.

The root-�nding problem for F becomes

F (x) = 0.

We say f1, f2, . . . , fn are the coordinate functions of F.

Example. An ugly set of equations such as

3e−x1 + sin (x2x3) +
1

2
= 0

x2
1 + 4x2 + x

1/3
3 = 0

cosh (x1x2) + 6x3 = 0

can be condensed in the format

F (x) = F (x1, x2, x3)

= (f1 (x1, x2, x3) , f2 (x1, x2, x3) , f3 (x1, x2, x3))
T

=

(
3e−x1 + sin (x2x3) +

1

2
, x2

1 + 4x2 + x
1/3
3 , cosh (x1x2) + 6x3

)T

.

Properties of F, such as limits, continuity, di�erentiability, etc., require a proper metric. In 1D, this metric
is |x− y|, namely, the distance between two points. In higher dimensions, the metric is no other than the
vector norm (such as l2-norm) ∥x− y∥. In fact, these properties are well-de�ned independent of the choice
of the norm.

Fixed Points of F (x). We say a function G : D ⊂ Rn → Rn has a �xed point at p ∈ D if G (p) = p.
Recall that in one dimension, in order for g (x) to have a unique �xed point, we require that g maps an

interval to itself, and that |g′ (x)| ≤ k < 1 for some nonzero k. A similar theorem can be proved for G.

Theorem. Let D =
{
(x1, x2, . . . , xn)

T
: ai ≤ xi ≤ bi, i = 1, 2, . . . , n

}
for some collection of constants

a1, a2, . . . , an and b1, b2, . . . , bn. Suppose G is a continuous function from D ⊂ Rn into Rn with the property
that

(1) (existence) G (x) ∈ D whenever x ∈ D, and
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(2) (uniqueness) There exists a constant K < 1 such that every coordinate function gi satis�es,∣∣∣∣∂gi (x)∂xj

∣∣∣∣ ≤ K

n
, x ∈ D,

for each j = 1, 2, . . . , n.

Then G has a �xed point in D, which can be found by the iterative scheme

x(k) = G
(
x(k−1)

)
, k ≥ 1.

This sequence converges to p ∈ D and the approximation satis�es error estimates∥∥∥x(k) − p
∥∥∥
∞

≤ Kk

1−K

∥∥∥x(1) − x(0)
∥∥∥
∞

.

Example. Consider the nonlinear system

x2
1 − 10x1 + x2

2 + 8 = 0,

x1x
2
2 + x1 − 10x2 + 8 = 0.

We turn this into a �xed point iteration using the vector-valued functionG (x1, x2) = (g1 (x1, x2) , g2 (x1, x2))
by identifying its coordinate functions

g1 (x1, x2) =
x2
1 + x2

2 + 8

10
,

g2 (x1, x2) =
x1x

2
2 + x1 + 8

10
.

We see that

x2
1 − 10x1 + x2

2 + 8 = 0 ⇐⇒ x1 = g1 (x1, x2) ,

x1x
2
2 + x1 − 10x2 + 8 = 0 ⇐⇒ xx = g2 (x1, x2) ,

which turns the root-�nding problem into a �xed-point �nding x = G (x).

By some preliminary analysis, we �nd that G :
[
0, 3

2

]2 →
[
0, 3

2

]2
. Indeed, we check the extremes � if

x1 = x2 = 0, we have 0 < g1 (0, 0) = 4/5 < 3/2, and 0 < g2 (0, 0) = 4/5 < 3/2, while if x1 = x2 = 3/2,
0 < g1 (3/2, 3/2) = 1.35 < 3/2 and 0 < g2 (3/2, 3/2) = 1.2875 < 1.5. Thus, existence of a �xed point is
guaranteed.

To establish uniqueness, we check the partial derivatives. There are four of them. For (x1, x2) ∈
[
0, 3

2

]2
,

we �nd
∂g1
∂x1

=
x1

5
≤ 3

10
=

12

40
∂g1
∂x2

=
x2

5
≤ 3

10
=

12

40

∂g2
∂x1

=
x2
2 + 1

10
≤ 13

40
∂g2
∂x2

=
x1x2

10
≤ 9

40

So, we may choose K = 15
20 < 1 (this can be chosen even more tightly) so that∣∣∣∣∂gi (x)∂xj

∣∣∣∣ ≤ K

n
=

15/20

2
=

15

40
.

This guarantees that the �xed point is unique.

Then, we perform a functional iteration. To initiate, let's choose x(0) =
(
x
(0)
1 , x

(0)
2

)
= (1, 1) (better

choose something inside D). We �nd

x(1) = G
(
x(0)

)
= (g1 (1, 1) , g2 (1, 1)) = (1, 1) .

Oops, we found the �xed point in one step. Very lucky. Here is a program that shows convergence if we
start elsewhere in D.
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Acceleration using Gauss-Seidel. The functional iteration is of the form

x(k) = G
(
x(k−1)

)
where we evaluate the coordinate functions one by one, i.e.,

x
(k)
1 = g1

(
x
(k−1)
1 , x

(k−1)
2

)
,

x
(k)
2 = g2

(
x
(k−1)
1 , x

(k−1)
2

)
.

Borrowing from the improvement of Gauss-Seidel on Jacobi, why don't we do

x
(k)
1 = g1

(
x
(k−1)
1 , x

(k−1)
2

)
,

x
(k)
2 = g2

(
x
(k)
1 , x

(k−1)
2

)
where we use the immediate update within the same iteration? Indeed, see the improvement in convergence.

Newton's Method in Higher Dimensions

Newton's method in one dimension has a nice geometric interpretation. We approximate the function
locally by its tangent line, and thus also approximate the zero of the function by the zero of the tangent line.
In essence, we rely on the linearization formula (�rst-order Taylor expansion of f)

L (x) = f (x0) + f ′ (x0) (x− x0)

and we pose that L (x1) = 0 which yields

0 = f (x0) + f ′ (x0) (x1 − x0) .

This, in turn, yields the formula for Newton-Raphson iteration,

x1 = x0 −
f (x0)

f ′ (x0)

which we push forward the index one by one.
What if F = F (x1, x2 . . . , xn) = (f1 (x1, . . . , xn) , . . . , fn (x1, . . . , xn)), a vector-valued function? Can we

motivate a Newton's method in higher dimensions using a similar linearization formula? Maybe we are
going too fast. Let's �rst consider f (x) = f (x1, x2, . . . , xn), just a scalar-valued function but with multiple
variables. Its �rst-order Taylor expansion, i.e., linearization, looks like

L (x) = f
(
x(0)

)
+

[
∂f

(
x(0)

)
∂x1

, . . . ,
∂f

(
x(0)

)
∂xn

](
x− x(0)

)
= f

(
x(0)

)
+∇f

(
x(0)

)(
x− x(0)

)
.

Now, treat each coordinate function of F as f , we simply replace f by fi and list them in a column vector,
namely, 

L1 (x)
L2 (x)

.

.
Ln (x)

 =


f1

(
x(0)

)
f2

(
x(0)

)
.
.

fn
(
x(0)

)

+



∂f1(x(0))
∂x1

∂f1(x(0))
∂x2

. .
∂f1(x(0))

∂xn

∂f2(x(0))
∂x1

∂f2(x(0))
∂x2

. .
∂f2(x(0))

∂xn

. . . . .

. . . . .
∂fn(x(0))

∂x1

∂fn(x(0))
∂x2

. .
∂fn(x(0))

∂xn


(
x− x(0)

)

or more compactly,

L (x) = F
(
x(0)

)
+ JF (x)

(
x− x(0)

)
.

This matrix of partial derivatives is called the Jacobian of F, JF (x) in short. Now, supposing that some

x(1) gives L
(
x(1)

)
= 0, we then have

F
(
x(0)

)
+ JF

(
x(0)

)(
x(1) − x(0)

)
= 0
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which implies

JF

(
x(0)

)(
x(1) − x(0)

)
= −F

(
x(0)

)
x(1) − x(0) = −

[
JF

(
x(0)

)]−1

F
(
x(0)

)
and ultimately

x(1) = x(0) −
[
JF

(
x(0)

)]−1

F
(
x(0)

)
,

the ever so powerful, Newton-Raphson iteration in high dimension. It requires an initial guess of a vector
x(0).

Compare this to the one-dimensional analog,

x(1) = x(0) −
f
(
x(0)

)
f ′

(
x(0)

) ,
the only di�erence is that the division now is replaced by matrix inversion.

In practice, we actually stop at

JF

(
x(0)

)(
x(1) − x(0)

)
= −F

(
x(0)

)
because this is in the form of

Ay = b

where

A = JF

(
x(0)

)
, y = x(1) − x(0), b = −F

(
x(0)

)
while we know what x(0) is � so solving the linear system for y here informs us the value of x(1).


