
The Bisection Method

Motivations. In scientific inquiries, we often encounter the need to find the zeros of a function, i.e.,
{x ∈ Rn | f (x) = 0} where f : Rn → R. This type of problem is called Root-Finding. A typical ex-
ample is from optimization. Consider a differentiable function y = f (x) in 1D. Its local optima occur at
critical points, which satisfy f ′ (x) = 0. In higher dimensions, we solve simultaneous equations as we set
∇f = 0, the zero vector. The problem becomes increasingly hard not only as dimension increases, but also
as the nonlinearity of f gets more complicated.

In this section, we focus on studying the elementary techniques to numerically find the root of a function
f (x), without relying on differentiability (something that can help us in writing, but not numerics).

Bisection: A Binary Search.
The idea of the Bisection Method originates from the conclusions of the Intermediate Value Theo-

rem.

Theorem. (Intermediate Value Theorem, IVT) Suppose f is continuous on [a, b] with f (a) and f (b) taking
different signs. Then, there exists p ∈ (a, b) such that f (p) = 0.

Remark. This procedure does NOT determine where p is. Nor does the theorem grant uniqueness, i.e., there
may be multiple p’s that give us f (p) = 0. Nonetheless, existence theorem gives us hope of eventually finding
the p.

The Algorithm.
Begin with two candidates x = a1 and x = b1, such that f (a1) and f (b1) have different signs. Compute

p1 = a1 +
b1 − a1

2
=

a1 + b1
2

.

• If f (p1) = 0, then we are done.
• If f (p1) ̸= 0, then f (p1) has the same sign as either f (a1) or f (b1).

– If f (p1) and f (a1) share the same sign, then we know p ∈ (p1, b1). Set a2 = p1 and b2 = b1.
– If f (p1) and f (a1) have different signs, then we know p ∈ (a1, p1). Set a2 = a1 and b2 = p1.

• Repeat this procedure for [a2, b2] until the function value is sufficiently close to zero.

Example. Show that f (x) = x3 + 4x2 − 10 has a root in [1, 2] and use the Bisection method to determine
an approximation to the root.

Solution. We know f (1) = −5 and f (2) = 14, so IVT guarantees a root in this interval.
The first step is evaluate the half point of [1, 2], namely, p1 = f (1.5) = 2.375 > 0. This implies that we

should search [1, 1.5]. Then, we go on with the midpoint of this new interval, and find

p2 = f (1.25) = −1.796875 < 0,

which prompts the next search interval to be [1.25, 1.5]. We find

p3 = f (1.375) = 0.16211 > 0.

Continuing this procedure, we eventually find that an and bn become very close to each other. We find

p13 = 1.365112305

which is quite close to the actual root p = 1.365230013 (within 10−4 error).

Visually speaking, the Bisection Method simply halves the search interval until the interval collapses.
To numerically carry out the Bisection Method is also not difficult (Algorithm 2.1). However, for any
iterative algorithm, we want to study the conditions under which the algorithm converges, and if it does, at
what rate?

From examples on problems with known solutions, we often observe that certain iterates already produce
a good answer (since we know the true solution) but gets discarded because it is still too far from nearby
iterates. Therefore, in practice, the Bisection Method may become excruciatingly slow since it is throwing
out a lot of iterates that may be good enough. However, this method can be used a starter method to help
us narrow down the search space, while a secondary method will be utilized for a finer search.

Nonetheless, no matter how slow Bisection goes, it always converges.
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Theorem. Suppose that f ∈ C [a, b] and f (a) · f (b) < 0. The Bisection method generates a sequence
{pn}∞n=1 approximating a zero p of f with

|pn − p| ≤ b− a

2n
, n ≥ 1.

Proof. For each n ≥ 1, we have (halving the interval)

bn − an =
1

2n−1
(b− a) , p ∈ (an, bn) ,

Since pn = 1
2 (an + bn) for all n ≥ 1, it follows that pn and p should not differ by half the interval length,

i.e.,

|pn − p| ≤ 1

2
(bn − an) =

1

2n
(b− a) .

Sending n → ∞, we achieve pn → p. □

Remark 1. The last line of the proof also informs us of the rate of convergence.

|pn − p| ≤ (b− a)
1

2n

implies that the rate of convergence is O (2−n), that is,

pn = p+O
(
2−n

)
.

Remark 2. The theorem only provides an upper bound for the error, which can be too conservative. In
fact, the real error may be far smaller than the upper bound.

Example. Sketch the graphs of y = x and y = x2 − 5. Use the Bisection method to find the points of
intersection.


