
The Power Method for Spectral Radius

Given an n× n square matrix A, assume that it has eigenvalues

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| ≥ 0

with associated eigenvectors v1, . . .vn that are linearly independent and normalized (∥vi∥∞ = 1 � to
normalize a vector in the l∞ sense, we divide each component by the maximal entry in absolute value,
namely, v

∥v∥∞
). As the vi's are linearly independent, they span Rn (linear algebra knowledge), i.e., for any

x(0) ∈ Rn, we can �nd coe�cients βi's such that

x(0) =

n∑
i=1

βivi.

Now, let's multiply both sides by A on the left.

Ax(0) = A

n∑
i=1

βivi =

n∑
i=1

βiAvi =

n∑
i=1

βiλivi.

Let's apply A again on both sides and obtain

A2x(0) =

n∑
i=1

βiλiAvi =

n∑
i=1

βiλ
2
ivi.

After multiplying A k times on the left, we have

Akx(0) =

n∑
i=1

βiλ
k
i vi.

Knowing that λ1 has the largest magnitude, let's factor it out as in

Akx(0) = λk
1

n∑
i=1

βi

(
λi

λ1

)k

vi = λk
1β1v1 + λk

1

(
β2

(
λ2

λ1

)k

v2 + · · ·+ βn

(
λn

λ1

)k

vn

)
.

As k grows, the contribution from
(

λi

λ1

)k
diminishes for i = 2, 3, . . . , n, and the RHS becomes dominated by

the leading term (i = 1), that is, by de�ning x(k) = Akx(0), we have

lim
k→∞

x(k) = lim
k→∞

Akx(0) = lim
k→∞

λk
1β1v1.

This is saying that when k is large enough, Akx(0) is almost parallel to v1.
We observe that the limit on the RHS only converges if |λ1| < 1 and β1 ̸= 0. Meanwhile, the limit on

the LHS may incur over�ow or under�ow since the entries of A can easily blow up from repeated matrix
multiplications. To avoid this, we rescale the product Akx(0) by its in�nity norm

∥∥Ak−1x(0)
∥∥
∞, so that we

always iterating the multiplication to a unit vector in l∞.

With the rescaling, de�ne z(k) = Akx(0)

∥Ak−1x(0)∥∞

, we see that

lim
k→∞

z(k) = lim
k→∞

Akx(0)∥∥Ak−1x(0)
∥∥
∞

= lim
k→∞

λk
1β1v1∥∥λk−1

1 β1v1

∥∥
∞

= λ1v1,

namely, the rescaled iteration leads to the principal eigenvector corresponding to the spectral radius of A.

Furthermore, de�ne y(k) = Akx(0)

∥Akx(0)∥∞

, we �nd that

lim
k→∞

y(k) = lim
k→∞

Akx(0)∥∥Akx(0)
∥∥
∞

= lim
k→∞

λk
1β1v1∥∥λk

1β1v1

∥∥
∞

= v1

which shows that the sequence of z(k) (as a result of repeated multiplication of A) converges to the principle
eigenvector of A, corresponding to the eigenvalue with maximal magnitude. Know the limits of both x(k)

and z(k) determines λ1 since for k large enough, we must have

λ1z
(k) ≈ x(k) =⇒ |λ1| ≈

∥∥x(k)
∥∥∥∥z(k)
∥∥ =

∥∥Akx(0)
∥∥
∞∥∥Ak−1x(0)
∥∥
∞

=

∥∥x(k)
∥∥
∞∥∥x(k−1)
∥∥
∞
,

1



2

that is, the leading eigenvalue is equal to ratio of the in�nity norm of the successive iterates. The method
of determining λ1 is called the Power Method.

Example. Let A =

[
−2 −3
6 7

]
. We know its eigenvalues λ1 = 4 and λ2, with corresponding eigenvectors

v1 = (1,−2)
T
and v2 = (1,−1)

T
. Suppose we start with x(0) = (1, 1)

T
.

x1 = Ax0 =

[
−5
13

]
,

x2 = Ax1 =

[
−29
61

]
,

x3 = Ax2 =

[
−125
253

]
,

x4 = Ax3 =

[
−509
1021

]
,

x5 = Ax4 =

[
−2045
4093

]
,

x6 = Ax5 =

[
−8189
16381

]
.

By the derivation above, we estimate the eigenvalue with maximal magnitude

λ
(1)
1 =

∥x2∥∞
∥x1∥∞

=
61

13
= 4.6923

λ
(2)
1 =

∥x3∥∞
∥x2∥∞

=
253

61
= 4.1475

λ
(3)
1 =

∥x4∥∞
∥x3∥∞

=
1021

253
= 4.03557

λ
(4)
1 =

∥x5∥∞
∥x4∥∞

=
4093

1021
= 4.00881

λ
(5)
1 =

∥x6∥∞
∥x5∥∞

=
16381

4093
= 4.00200.

and x6 =

[
−8189
16381

]
which normalizes to

[
−0.49908

1

]
≈ v1.

This examples shows that rescaling is absolutely necessary when we expect the method to converge slowly
because the values in the iterates can easily blow up. The derivation made above is useful to give us a
sense of how things may converge, but is not useful in practice. Below, we conclude the power method in an
algorithm with careful considerations of rescaling.

Algorithm

In practice, we compute x(k) iteratively. Given an initial guess x,

(1) Find the �rst index p such that |xp| = ∥x∥∞.
(a) Rescale x = x/xp.
(b) Begins iteration y = Ax.
(c) Set µ = yp. Find the �rst index p such that |yp| = ∥y∥∞.

(i) If yp = 0, then output eigenvector x and an eigenvalue of 0. We should choose a di�erent
initial guess.

(ii) Otherwise, set

error = ∥x− y/yp∥∞
and x = y/yp and return to step 3 until error < tol.

(d) Output (µ,x) as the eigenvalue-eigenvector pair.
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Convergence

Using the �nal result of the derivation, recall that y(k) = Akx(0)

∥Akx(0)∥∞

and we know it converges to the

principal eigenvector v1. Indeed,∥∥∥y(k) − v1

∥∥∥ =

∥∥∥∥∥ Akx(0)∥∥Akx(0)
∥∥
∞

− v1

∥∥∥∥∥
=

∥∥∥∥∑n
i=1 βiλ

k
i vi∑n

i=1 βiλk
i

− v1

∥∥∥∥
=

∥∥∥∥∥∥∥
λk
1

∑n
i=1 βi

(
λi

λ1

)k
vi

λk
1

∑n
i=1 βi

(
λi

λ1

)k − v1

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
∑n

i=1 βi

(
λi

λ1

)k
vi∑n

i=1 βi

(
λi

λ1

)k − v1

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
β1v1 +

∑n
i=2 βi

(
λi

λ1

)k
vi

β1 +
∑n

i=2 βi

(
λi

λ1

)k − v1

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
∑n

i=2 βi

(
λi

λ1

)k
vi −

∑n
i=2 βi

(
λi

λ1

)k
v1

β1 +
∑n

i=2 βi

(
λi

λ1

)k
∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥
∑n

i=2 βi

∣∣∣ λi

λ1

∣∣∣k (vi − v1)

β1

∥∥∥∥∥∥∥
≤

∥∥∥∥∥
∣∣∣∣λ2

λ1

∣∣∣∣k ∑n
i=2 βi (vi − v1)

β1

∥∥∥∥∥ , since λi ≤ λ2, i = 2, . . . , n.

≤
∣∣∣∣λ2

λ1

∣∣∣∣k ∥∥∥∥∑n
i=2 βi

β1

∥∥∥∥ (∥vi∥+ ∥v1∥)

= C

∣∣∣∣λ2

λ1

∣∣∣∣k
where we call C = 2

∣∣∣∑n
i=2 βi

β1

∣∣∣. Thus, the rate of convergence depends on the ratio of λ2

λ1
(in fact the rate is

O

(∣∣∣λ2

λ1

∣∣∣k)). If λ2 is smaller but very close to λ1 in magnitude, then the convergence is expected to be slow.


