
A Geometric Interpretation of Gauss-Seidel and its Extensions

Take A =

[
2 1
1 2

]
and b =

[
3
3

]
. Perform Gauss-Seidel on Ax = b, knowing that the true solution

x = (1, 1)
T
. We have the iterates

x(0) = (0, 0)
T

x(1) =

(
3

2
,
3

4

)T

x(2) =

(
9

8
,
15

16

)T

Plotting these points in the x1-x2 plane, we �nd that when we travel from x(1) to x(2), we wish we go a
little harder so that we actually hit the true solution in this direction. In fact, this direction is characterized
by the vector x(2) −x(1). We now want to control how �hard� we move in this direction at every step of the
Gauss-Seidel iteration, namely, put a control on x(k+1) − x(k) so that we move further than Gauss-Seidel
intends to.

Successive over-Relaxation

Under Gauss-Seidel iteration,

(Gauss-Seidel) x(k+1) = − (D + L)
−1

Ux(k) + (D + L)
−1

b,

or

(D + L)x(k+1) = b− Ux(k) =⇒ Dx(k+1) = b− Lx(k+1) − Ux(k).

Multiplying D−1 on the left of both sides, we have

x(k+1) = D−1
(
b− Lx(k+1) − Ux(k)

)
.

In practice, we want to control the jump size in the direction of x(k+1) − x(k). We now subtract x(k) from
both sides to obtain

x(k+1) − x(k) = D−1
(
b− Lx(k+1) −Dx(k) − Ux(k)

)
.

One can think of the RHS as the Gauss-Seidel Correction, in the sense that x(k) goes to x(k+1) in this
direction. We label this

(
x(k+1) − x(k)

)
GS

.

Now, from the example we just saw, going from x(k) to x(k+1) using the exact vector
(
x(k+1) − x(k)

)
may

not necessarily yield the �quickest� approach to the true solution. We may need to propel from x(k) a little
harder in the direction of x(k+1) − x(k), namely,

x(k+1) = x(k) + ω
(
x(k+1) − x(k)

)
GS

, ω > 1.

that is, the true landing spot should be in the same direction of the GS Correction but we step on the gas
harder.

Using the de�nition of GS Correction, we then have the update

x(k+1) = x(k) + ωD−1
(
b− Lx(k+1) −Dx(k) − Ux(k)

)
, ω > 1.

Now, rearranging things a little by dividing both sides by ω and then multiplying on the left by D, we have

1

ω
Dx(k+1) =

1

ω
Dx(k) + b− Lx(k+1) −Dx(k) − Ux(k)

=⇒
(
1

ω
D + L

)
x(k+1) =

((
1

ω
− 1

)
D − U

)
x(k) + b

multiply by ω
=⇒ (D + ωL)x(k+1) = ((1− ω)D − ωU)x(k) + ωb

invert (D+ωL)
=⇒ x(k+1) = (D + ωL)

−1
((1− ω)D − ωU)x(k) + (D + ωL)

−1
ωb.

1

2

This method is called Successive over-Relaxation (SOR), where 1 < ω < 2, and we note that if ω = 1,
we retrieve Gauss-Seidel (check it!).

In the form of an iteration scheme, x(k+1) = Tx(k) + c, we identify that the iterative operator/matrix of
the SOR method is

TSOR = (D + ωL)
−1

((1− ω)D − ωU)

and

c = (D + ωL)
−1

ωb.

Your Textbook (Optional Reading)

Perspective from the Residual Vector r(k) = b−Ax(k)

Again, we consider Gauss-Seidel iteration. In component form, we have

(Gauss-Seidel) x
(k+1)
i =

1

aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 .

Now, when we are updating the ith component of x(k+1), we already have the update

x
(k+1)
i =

(
x
(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
i−1 , x

(k)
i , . . . , x(k)

n

)
since we are using the immediate information from the (k + 1)

th
iteration. Here the subscript i in x

(k+1)
i is

to indicate that we are within the (k + 1)
th

iteration at the ith component.
Using this vector, we compute the residual vector, now also depends on i � for every component update

(in addition to iteration changes), the residual vector changes.

r
(k+1)
i = b−Ax

(k+1)
i

or in component form,

(0.1) r
(k+1)
mi = bm −

i−1∑
j=1

amjx
(k+1)
j −

n∑
j=i

amjx
(k)
j =

bm −
i−1∑
j=1

amjx
(k+1)
j −

n∑
j=i+1

amjx
(k)
j

− amix
(k)
i .

Note the term in the square bracket looks a lot like the Gauss-Seidel iteration. In fact, if we choose m = i,

r
(k+1)
ii =

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

− aiix
(k)
i

= aiix
(k+1)
i − aiix

(k)
i

or

x
(k+1)
i = x

(k)
i +

r
(k+1)
ii

aii
,

which is a very nice relationship between the individual component update law and the residual vector.

Now, more astoundingly, let's push up all i indices on the RHS of the component form of r
(k+1)
mi (Eq. 0.1),

r
(k+1)
m,i+1 = bm −

i∑
j=1

amjx
(k+1)
j −

n∑
j=i

amjx
(k)
j

3

and setting m = i yields

r
(k+1)
i,i+1 = bi −

 i∑
j=1

aijx
(k+1)
j

−
n∑

j=i+1

aijx
(k)
j

= bi −

i−1∑
j=1

aijx
(k+1)
j + aiix

(k+1)
i

−
n∑

j=i+1

aijx
(k)
j

=

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

− aiix
(k+1)
i

= aiix
(k+1)
i − aiix

(k+1)
i

= 0.

This implies that Gauss-Seidel can be characterized by choosing each component update x
(k)
i+1 in such a way

that the ith component of r
(k+1)
i+1 is 0.

However, to choose x
(k)
i+1 so that we kill the residual vector in the ith component doesn't necessarily reduce

the norm of r
(k)
i+1. So, we need to choose how far we �walk� carefully, by implementing a parameter ω such

that

x
(k+1)
i = x

(k)
i + ω

r
(k)
ii

aii
.

If we choose 0 < ω < 1, we are under-relaxing, and the technique is called under-relaxation methods.
If ω > 1, we are over-relaxing, which accelerates convergences. In component form,

x
(k+1)
i = (1− ω)x

(k−1)
i +

ω

aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 .

In matrix form,

(D + ωL)x(k+1) = [(1− ω)D − ωU]x(k) + ωb

which coincides with the geometric approach.

Spectral Radius and its Relationship to Convergence of Iterative Algorithms

We learned that Gauss-Seidel and Jacobi method will converge if the matrix is strictly diagonally domi-
nant. However, in computing, we also care about the rate of convergence. We always seek modi�cations to
existing algorithms so that they help converge faster.

The rate of convergence in fact relatives to something called the spectral radius of the algorithm
operator, such as TJ = −D−1 (L+ U), TGS = − (D + L)

−1
U or

TSOR = (D + ωL)
−1

((1− ω)D − ωU) .

The spectral radius of a matrix A is de�ned as

ρ (A) = max |λ|

where λ is an eigenvalue of A (if λ = a+ bi then |λ| =
√
a2 + b2).

Theorem. If A is an n× n matrix, then

(1) ∥A∥2 =
[
ρ
(
ATA

)]1/2
,

(2) ρ (A) ≤ ∥A∥, for any induced norm ∥·∥.

The result we will use is item 1 because �nally we have connected the elusive matrix 2-norm to the spectral
radius. More examples are shown in the homework because the computation is a straightforward process of
�nding eigenvalues of the matrix ATA.

Another useful result for spectral radius is that repeated operations on a vector x yields the 0 vector.

Theorem. ρ (A) < 1 i� limn→∞ Anx = 0 for every x.

4

Now, we use these results to help us understand the general convergence framework of iterative methods.
For any iterative algorithms, we identify its the iteration operator/matrix T as

x(k+1) = Tx(k) + c

where x(0) is an arbitrary initial guess.
Let's apply this formula iteratively. Noting that x(k) = Tx(k−1) + c, we substitute this into the iteration

and obtain

x(k+1) = T
(
Tx(k−1) + c

)
+ c

= T 2x(k−1) + (T + I) c

.

.

.

= T kx(0) +
(
T k−1 + T k−2 + · · ·+ T + I

)
c

Note by the previous theorem, if ρ (T) < 1, we must have T kx(0) → 0 as k → ∞. Meanwhile, the sum

k−1∑
i=0

T i →
∞∑
i=1

T i = (I − T)
−1

by the geometric series formula (for matrices). Therefore,

lim
k→∞

x(k+1) = lim
k→∞

T kx(0) +

(∞∑
i=1

T i

)
c = 0+ (I − T)

−1
c,

proving that x(k+1) has an explicit limit,

x = (I − T)
−1

c =⇒ (I − T)x = c =⇒ x = Tx+ c.

This procedure proves that for an iterative scheme to converge, a su�cient condition is ρ (T) < 1. In fact,
one can show that this condition is also necessary. The proof for necessity is shown on pg. 458 of the 9th
edition of the textbook.

Theorem. If ∥T∥ < 1 for any induced norm ∥·∥ and c is a given vector, then x(k+1) = Tx(k)+c converges,

for any x(0) ∈ Rn, to x ∈ Rn such that x = Tx+c (also known as a �xed point of the map T). Furthermore,
we have the following error bounds

(1)
∥∥x− x(k)

∥∥ ≤ ∥T∥k
∥∥x(0) − x

∥∥;
(2)

∥∥x− x(k)
∥∥ ≤ ∥T∥k

1−∥T∥
∥∥x(1) − x(0)

∥∥.
Since we know there is deep connection between the matrix norm ∥T∥ and the spectral radius ρ (T), we

arrive at the following error estimate∥∥∥x− x(k)
∥∥∥ ≈ [ρ (T)]

k
∥∥∥x(0) − x

∥∥∥ .

