
MA 3257 LECTURE 2

How are Numbers Stored in a Computer?

Machines are finite, while each real number has infinite length, i.e. 1
3 ,

√
2 and π. Therefore, inaccuracies

are guaranteed to arise. How then does a computer store a number so that the inaccuracies are somewhat
mitigated?

Binary Machine Numbers. A 64-bit (binary digit) representation, used for a real number x, is called a
floating-point representation of x. We will explore the “floating” feature of this representation in the following
example. The floating-point representation of x is commonly written as,

fl (x) = (−1)
s
2c−1023 (1 + f) ,

where s is the sign of the number; c, the decimal representation of an 11-bit exponent, each bit 0 or 1, is
called the characteristic; f , the decimal representation of a 52-bit array (each bit 0 or 1), is called the
mantissa.

Since c is represented by 11 bits, that is,

c1c2 . . . c11, ci = 0 or 1,

it represents decimal numbers 0 to
∑10

i=0 2
i =

∑11
i=1 2

i−1 =
1(1−211)

1−2 = 211 − 1 = 2047 (smallest being ci = 0

for all i = 1, 2, . . . , 11 and largest being ci = 1 for all i = 1, 2, . . . , 11). However, if we ignore the mantissa
and simply use fl (x) = (−1)

s
2c−1023, we can only represent powers of 2 (power ranging from −1023 to

1024). This is still too coarse of a representation, meaning that the gaps between numbers are too large.
The mantissa therefore is necessary to represent numbers with even smaller magnitude so as to close the
gap between numbers. Consider the 52-bit array,

f1f2 · · · f51f52, fi = 0 or 1.

The decimal representation of this array then is

f =

52∑
j=1

fj

(
1

2

)j

where fj is the jth entry of the 52-bit (0 or 1).

Example. Consider the machine number

x = 0︸︷︷︸
s, sign

10000000011︸ ︷︷ ︸
c, characteristic

101110010001

40 zeros︷ ︸︸ ︷
0 · · · 0︸ ︷︷ ︸

f,mantissa

Here, s = 0 (positive real number),
c = 210 + 21 + 20 = 1027.

Thus, the exponential part is
2c−1023 = 24.

Now,

f =

(
1

2
+

(
1

2

)3

+

(
1

2

)4

+

(
1

2

)5

+

(
1

2

)8

+

(
1

2

)12
)
.

Altogether,
(−1)

s
2c−1023 (1 + f) = 27.56640625

exactly.

Date: Jan 12th, 2023.
1



MA 3257 LECTURE 2 2

The number immediately smaller than x is

x− = 0︸︷︷︸
s, sign

10000000011︸ ︷︷ ︸
c, characteristic

101110010000

40 ones︷ ︸︸ ︷
1 · · · 1︸ ︷︷ ︸

f,mantissa

,

by going down from the 1

40 zeros︷ ︸︸ ︷
0 · · · 0 to 0

40 ones︷ ︸︸ ︷
1 · · · 1. The number immediately bigger than x is

x+ = 0︸︷︷︸
s, sign

10000000011︸ ︷︷ ︸
c, characteristic

101110010001

39 zeros︷ ︸︸ ︷
0 · · · 0 1︸ ︷︷ ︸

f,mantissa

.

This means, x represents half the numbers between x− and x plus half the numbers between x and x+,
namely,

x+ x−

2
≤ x ≤ x+ x+

2
where

x+ x−

2
= 27.5664062499999982236431605997495353221893310546875,

x+ x+

2
= 27.5664062500000017763568394002504646778106689453125.

This means, the machine number x alone covers all real numbers bounded between the above two rationals.
In fact, this gap is called the machine epsilon for 64-bit binary representation, and is approximately
2−52 ≈ 2.22 × 10−16 – the reason that it is 2−52 is by advancing the mantissa one unit to get the next
largest/smallest number.

Decimal Machine Numbers. While storing the numbers in binary is efficient, it is hard to analyze them
in their binary representations. We revert back to the more familiar decimal machine number represetation,
in the following floating-point form

±0.d1d2 . . . dk × 10n, 1 ≤ d1 ≤ 9 and 0 ≤ di ≤ 9, i = 2, 3, . . . , k.

We call numbers of this form k-digit decimal machine numbers.
Any positive real number within the numerical range of the machine can be normalized to the form

y = 0.d1d2 . . . dkdk+1dk+2 . . .× 10n

though a termination on the index is certainly needed. There are two commons ways.

Chopping. Simply chop off the digits dk+1dk+2 and produce the floating-point form

fl (y) = 0.d1d2 . . . dk × 10n.

Rounding. We do it in our daily life all the time. The procedure is to add 5× 10n−(k+1) and then chops the
result to obtain a number of the form

fl (y) = 0.δ1δ2 . . . δk × 10n.

For rounding, when dk+1 ≥ 5, we add 1 to the previous digit dk to obtain fl (y); that is, we round up. On
the other hand, if dk+1 < 5, we chop off all but the first k digits; that is, we round down. When we round
down, δi = di for each i = 1, 2 . . . , k.

Example. Determine the five-digit (a) chopping and (b) rounding values of the irrational number π.

Solution. The infinite decimal expansion of the form π = 3.1415926535 . . .. In normalized form, we have

π = 0.31415926535 . . .× 101.

(1) Five-digit chopping is
fl (π) = 0.31415× 101 = 3.1415.



MA 3257 LECTURE 2 3

(2) Five-digit rounding involves the sixth digit here. Note the sixth digit is 5, so we round up. Using
the exact procedure laid out in the above subsection, we add 5 × 10n−(k+1) with n = 1 and k = 5
(since we want five digits).

π + 5× 101−(5+1) = 0.314159...× 101 + 5× 10−6 × 101

= (0.314159...+ 0.000005)× 101

= 0.314164...× 101

and thus with five-digit chopping now, we have

fl (π) = 0.31416× 101 = 3.1416.

The error that results from replacing a number with its floating-point form is called round-off error
regardless of wehther the rounding or the chopping method is used.


