
Jacobi Iteration

For a linear system

a11x1 + a12x2 + · · ·+ a1nxn = b1,

.

.

an1x1 + an2x2 + · · ·+ annxn = bn,

we can express each component of the solution x = (x1, x2, . . . , xn)
T in terms of other components. More

precisely, by isolating xi in the ith equation, we have

x1 =
b1 − (a12x2 + · · ·+ a1nxn)

a11
,

x2 =
b2 − (a21x1 + a23x3 + · · ·+ a2nxn)

a22
,

.

.

xn =
bn −

(
an1x1 + · · ·+ a(n−1)nxn−1

)
ann

.

This looks a lot like the “naive substitution” technique introduced before Gaussian elimination. Indeed, this
is a costly algorithm. However, some two hundred years ago, Carl Gustav Jacob Jacobi (also responsible for
the Jacobian matrix for multidimensional change of variable) found that you can start with some guesses

x(0) =
(
x
(0)
1 , x

(0)
2 , . . . , x(0)

n

)
and plug them into the RHS. We then obtain a new vector

x(1) =
(
x
(1)
1 , x

(1)
2 , . . . , x(1)

n

)
.

Now, chuck this into the RHS, and continue iterating, we somehow obtain the true solution x by approxi-
mating with

x(k) =
(
x
(k)
1 , x

(k)
2 , . . . , x(k)

n

)
.

This iteration ends when the error of the approximation is below some prescribed tolerance, i.e.,∥∥∥x(k) − x(k−1)
∥∥∥ < ϵ

under various notions of vector norms (and also various notions of error). Other forms of stopping criterion
may be ∥∥x(k) − x(k−1)

∥∥∥∥x(k)
∥∥ < ϵ

which is well-defined because
∥∥x(k)

∥∥ ̸= 0 for Ax = b where b ̸= 0. The criterion can depend on the problem
at hand.

In component form, this method can be written as

x
(k+1)
i =

1

aii

bi −
∑
j ̸=i

aijx
(k)
j

 , i = 1, 2, . . . , n.

Example

Example. A =

[
2 1
1 2

]
, b =

[
3
3

]
. Let’s solve Ax = b using Jacobi iteration, with an initial guess

x(0) = (0, 0)
T. Note that the true solution is x = (1, 1)

T.
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x
(k+1)
1 =

b1 − a12x
(k)
2

a11
=

3− 1x
(k)
2

2
,

x
(k+1)
2 =

b2 − a21x
(k)
1

a22
=

3− 1x
(k)
1

2
.

With this formula, we have

x(1) =
(
x
(1)
1 , x

(1)
2

)T

=

(
3

2
,
3

2

)
x(2) =

(
x
(2)
1 , x

(2)
2

)T

=

(
3− 3

2

2
,
3− 3

2

2

)
=

(
3

4
,
3

4

)
x(3) =

(
x
(3)
1 , x

(3)
2

)T

=

(
3− 3

4

2
,
3− 3

4

2

)
=

(
9

8
,
9

8

)
x(4) =

(
x
(4)
1 , x

(4)
2

)T

=

(
3− 9

8

2
,
3− 9

8

2

)
=

(
15

16
,
15

16

)
Matrix Form

Let us revisit the overall structure of the Jacobi method.

x1 =
b1 − (a12x2 + · · ·+ a1nxn)

a11
,

x2 =
b2 − (a21x1 + a23x3 + · · ·+ a2nxn)

a22
,

.

.

xn =
bn −

(
an1x1 + · · ·+ a(n−1)nxn−1

)
ann

.

Here, we see that each row involves other variables. Rearranging a little, we see that

a11x1 = b1 − (a12x2 + · · ·+ a1nxn)

More precisely, let x = (x1, x2, . . . , xn)
T, we observe

a11x1 = b1 − (0, a12, a13, . . . , a1n)x.

In general, we have
a11

a22
.

.
ann




x1

x2

.

.
xn

 =


b1
b2
.
.
bn

−


0 a12 . . a1n
a21 0 . . a2n
. 0 .
. 0 .

an1 0




x1

x2

.

.
xn

 .

Define the diagonal, upper triangular and lower triangular part of the matrix A = D + L+ U ,

D =


a11

a22
.

.
ann

 , L =


0 0 . . 0
a21 0 . . .
. . . . .
. . . . .

an1 . . an,n−1 0

 , U =


0 a12 . . a1n
0 0 . . a2n
. . 0 . .
. . . 0 an−1,n

0 . . . 0

 ,

we can rewrite the system as
Dx = b− (L+ U)x.

Multiplying both sides of the equation by D−1, which exists (just a diagonal matrix of the reciprocals of D),
we have

x(k+1) = −D−1 (L+ U)x(k) +D−1b.
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Note that in component form, this is exactly the same formula as we had in the last section,

x
(k+1)
i =

1

aii

bi −
∑
j ̸=i

aijx
(k)
j

 , i = 1, 2, . . . , n,

since D−1 =
{

1
aii

}n

i=1
.


