l^2 and l^∞ -norms for vectors in \mathbb{R}^n

However, to show that the l^2 -norm is indeed a norm, we must use the following famous inequality.

Theorem. (Cauchy-Schwarz Inequality) For $x, y \in \mathbb{R}^n$, we have

$$\boldsymbol{x}^{\mathrm{T}}\boldsymbol{y} = \sum_{i=1}^{n} x_{i} y_{i} \leq \left\{\sum_{i=1}^{n} x_{i}\right\}^{1/2} \left\{\sum_{i=1}^{n} y_{i}\right\}^{1/2} = \|\boldsymbol{x}\|_{2} \|\boldsymbol{y}\|_{2}.$$

Proof. We have nothing to prove if x = 0 or y = 0. So, we suppose both vectors are nonzero.

Consider the scaled version of the two vectors, $\boldsymbol{u} = \frac{\boldsymbol{x}}{\|\boldsymbol{x}\|_2}$ and $\boldsymbol{v} = \frac{\boldsymbol{y}}{\|\boldsymbol{y}\|_2}$. The reason why we consider these is because the original statement is equivalent to show that

$$\frac{\boldsymbol{x}^{\mathrm{T}}\boldsymbol{y}}{\|\boldsymbol{x}\|_{2} \|\boldsymbol{y}\|_{2}} \leq 1.$$

So, it suffices to show that $\boldsymbol{u}^{\mathrm{T}}\boldsymbol{v} \leq 1$.

Then, knowing that the dot product of a vector to itself is always nonnegative (yields the 2-norm squared, in fact), we have

$$\begin{split} 0 &\leq \left(\boldsymbol{u} - \boldsymbol{v}\right)^{\mathrm{T}} \left(\boldsymbol{u} - \boldsymbol{v}\right) \\ &= \|\boldsymbol{u}\|_{2}^{2} - 2\boldsymbol{u}^{\mathrm{T}}\boldsymbol{v} + \|\boldsymbol{v}\|_{2}^{2} \\ &= 2\left(1 - \boldsymbol{u}^{\mathrm{T}}\boldsymbol{v}\right) \end{split}$$

This implies

$$-\boldsymbol{u}^T\boldsymbol{v}\geq 0 \implies \boldsymbol{u}^T\boldsymbol{v}\leq 1$$

Substituting \boldsymbol{x} and \boldsymbol{y} back, we have

1

$$\left(rac{oldsymbol{x}}{\|oldsymbol{x}\|_2}
ight)^{\mathrm{T}}rac{oldsymbol{y}}{\|oldsymbol{y}\|_2}\leq 1$$

and thus

$$oldsymbol{x}^{\mathrm{T}}oldsymbol{y} \leq egin{array}{c} oldsymbol{x}^{\mathrm{T}}oldsymbol{y} \leq egin{array}{c} oldsymbol{x} & egin{array}{c} egin{array}{c} egin{array}{c} & egin{array}{c} e$$

With Cauchy-Schwarz, we can now prove that $\|\cdot\|_2$ is indeed a norm. The only hard part is the triangle-inequality. For $x, y \in \mathbb{R}^n$, we have

$$\begin{aligned} \|\boldsymbol{x} + \boldsymbol{y}\|_{2}^{2} &= (\boldsymbol{x} + \boldsymbol{y})^{\mathrm{T}} \left(\boldsymbol{x} + \boldsymbol{y} \right) = \sum_{i=1}^{n} x_{i}^{2} + 2 \sum_{i=1}^{n} x_{i} y_{i} + \sum_{i=1}^{n} y_{i}^{2} \\ & \leq \\ & \leq \\ & \|\boldsymbol{x}\|_{2}^{2} + 2 \|\boldsymbol{x}\|_{2} \|\boldsymbol{y}\|_{2} + \|\boldsymbol{y}\|_{2}^{2} = \left(\|\boldsymbol{x}\|_{2} + \|\boldsymbol{y}\|_{2} \right)^{2}. \end{aligned}$$

Taking a square root of both sides, we obtain

$$\|m{x} + m{y}\|_2 \le \|m{x}\|_2 + \|m{y}\|_2$$
.

Now, knowing that $\|\cdot\|_2$ is a norm, we can go on measuring the difference between two vectors in \mathbb{R}^n .

$$\|\boldsymbol{x} - \boldsymbol{y}\|_2 = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{1/2}$$

and

$$\|\boldsymbol{x} - \boldsymbol{y}\|_{\infty} = \max_{1 \le i \le n} |x_i - y_i|.$$

Example. Suppose an approximate solution to a linear system, using 5-digit rounding, is

$$\tilde{\boldsymbol{x}} = (1.2001, 0.99991, 0.92538)^{\mathrm{T}}$$

and the true solution is

$$\boldsymbol{x} = (1, 1, 1)^{\mathrm{T}}$$
.

Let's find the difference between them under the two settings of norm.

$$\begin{aligned} \|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|_{\infty} &= \max\left\{ |1 - 1.2001|, |1 - 0.99991|, |1 - 0.92538| \right\} \\ &= \max\left\{ 0.2001, 0.00009, 0.07462 \right\} \\ &= 0.2001, \end{aligned}$$

and

$$\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|_2 = \left[(1 - 1.2001)^2 + (1 - 0.99991)^2 + (1 - 0.92538)^2 \right]^{1/2}$$

= 0.21356.

From this, we see that, even though $\widetilde{x_2}$ and $\widetilde{x_3}$ are good approximations, $\widetilde{x_1}$ really drags down the error.

The concept of distance in \mathbb{R}^n is also used to define a limit of sequence of vectors in this space.

Definition. A sequence $\{\boldsymbol{x}^{(k)}\}_{k=1}^{\infty}$ of vectors in \mathbb{R}^n is said to **converge** to \boldsymbol{x} with respect to the norm $\|\cdot\|$ if, given any $\epsilon > 0$, there exists an integer $N(\epsilon)$ such that

$$\left\| \boldsymbol{x}^{(k)} - \boldsymbol{x} \right\| < \epsilon, \text{ for all } k \ge N(\epsilon).$$

Remark. One should think this sequence getting very close to \boldsymbol{x} past certain index,

$$m{x}^{(1)}, m{x}^{(2)}, \dots, m{x}^{(N)}, m{x}^{(N+1)}, \dots$$

The statement is saying, given your tolerance level ϵ between the approximant $\boldsymbol{x}^{(k)}$ and the target \boldsymbol{x} , one can always find an exact index $N(\epsilon)$ such that this distance between the approximant and the target is within ϵ . A <u>convergent</u> sequence has this property.

On the other hand, a <u>divergent</u> sequence does not have this property. We state the negation of <u>convergence</u>. We say $\boldsymbol{x}^{(k)} \in \mathbb{R}^n$ diverges with respect to the norm $\|\cdot\|$ if for every $\boldsymbol{x} \in \mathbb{R}^n$, there exists $\epsilon > 0$ such that for every integer N, there exists an index $k \geq N$ such that

$$\left\| \boldsymbol{x}^{(k)} - \boldsymbol{x} \right\| \geq \epsilon.$$

You may consider the simple sequence $\boldsymbol{x}^{(k)} = (k,0) \in \mathbb{R}^2$. Eventually, k gets so big, say, to N, such that for every $\boldsymbol{x} \in \mathbb{R}^2$, one can look just a few more terms down the sequence to find $\|\boldsymbol{x}^{(N+j)} - \boldsymbol{x}\| \ge \epsilon$ where you are free to set ϵ . You can

always find something larger to be at whatever tolerance you set, meaning that this sequence is indeed growing out of control.