
l2 and l∞-norms for vectors in Rn

However, to show that the l2-norm is indeed a norm, we must use the following
famous inequality.

Theorem. (Cauchy-Schwarz Inequality) For x,y ∈ Rn, we have

xTy =

n∑
i=1

xiyi ≤

{
n∑

i=1

xi

}1/2{ n∑
i=1

yi

}1/2

= ∥x∥2 ∥y∥2 .

Proof. We have nothing to prove if x = 0 or y = 0. So, we suppose both vectors
are nonzero.

Consider the scaled version of the two vectors, u = x
∥x∥2

and v = y
∥y∥2

. The
reason why we consider these is because the original statement is equivalent to show
that

xTy

∥x∥2 ∥y∥2
≤ 1.

So, it suffices to show that uTv ≤ 1.
Then, knowing that the dot product of a vector to itself is always nonnegative

(yields the 2-norm squared, in fact), we have

0 ≤ (u− v)
T
(u− v)

= ∥u∥22 − 2uTv + ∥v∥22
= 2

(
1− uTv

)
This implies

1− uTv ≥ 0 =⇒ uTv ≤ 1

Substituting x and y back, we have(
x

∥x∥2

)T
y

∥y∥2
≤ 1

and thus
xTy ≤ ∥x∥2 ∥y∥2 .

□

With Cauchy-Schwarz, we can now prove that ∥·∥2 is indeed a norm. The only
hard part is the triangle-inequality. For x,y ∈ Rn, we have

∥x+ y∥22 = (x+ y)
T
(x+ y) =

n∑
i=1

x2
i + 2

n∑
i=1

xiyi +

n∑
i=1

y2i

Cauchy-Schwarz
≤ ∥x∥22 + 2 ∥x∥2 ∥y∥2 + ∥y∥22 = (∥x∥2 + ∥y∥2)

2
.

Taking a square root of both sides, we obtain

∥x+ y∥2 ≤ ∥x∥2 + ∥y∥2 .

Now, knowing that ∥·∥2 is a norm, we can go on measuring the difference between
two vectors in Rn.
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Definition. If x = (x1, x2, . . . , xn)
T amd y = (y1, y2, . . . , yn)

T are vectors in Rn,
and the l2 and l∞ distances between x and y are defined by

∥x− y∥2 =

(
n∑

i=1

(xi − yi)
2

)1/2

and
∥x− y∥∞ = max

1≤i≤n
|xi − yi| .

Example. Suppose an approximate solution to a linear system, using 5-digit round-
ing, is

x̃ = (1.2001, 0.99991, 0.92538)
T

and the true solution is
x = (1, 1, 1)

T
.

Let’s find the difference between them under the two settings of norm.

∥x− x̃∥∞ = max {|1− 1.2001| , |1− 0.99991| , |1− 0.92538|}
= max {0.2001, 0.00009, 0.07462}
= 0.2001,

and

∥x− x̃∥2 =
[
(1− 1.2001)

2
+ (1− 0.99991)

2
+ (1− 0.92538)

2
]1/2

= 0.21356.

From this, we see that, even though x̃2 and x̃3 are good approximations, x̃1 really
drags down the error.

The concept of distance in Rn is also used to define a limit of sequence of vectors
in this space.

Definition. A sequence
{
x(k)

}∞
k=1

of vectors in Rn is said to converge to x with
respect to the norm ∥·∥ if, given any ϵ > 0, there exists an integer N (ϵ) such that∥∥∥x(k) − x

∥∥∥ < ϵ, for all k ≥ N (ϵ) .

Remark. One should think this sequence getting very close to x past certain index,

x(1),x(2), . . . ,x(N),x(N+1), . . .

The statement is saying, given your tolerance level ϵ between the approximant x(k)

and the target x, one can always find an exact index N (ϵ) such that this distance
between the approximant and the target is within ϵ. A convergent sequence has
this property.

On the other hand, a divergent sequence does not have this property. We state
the negation of convergence. We say x(k) ∈ Rn diverges with respect to the norm
∥·∥ if for every x ∈ Rn, there exists ϵ > 0 such that for every integer N , there exists
an index k ≥ N such that ∥∥∥x(k) − x

∥∥∥ ≥ ϵ.

You may consider the simple sequence x(k) = (k, 0) ∈ R2. Eventually, k gets
so big, say, to N , such that for every x ∈ R2, one can look just a few more terms
down the sequence to find

∥∥x(N+j) − x
∥∥ ≥ ϵ where you are free to set ϵ. You can



3

always find something larger to beat whatever tolerance you set, meaning that this
sequence is indeed growing out of control.


