
Iterative Methods: an Introduction

In the previous section, we have studied direct methods of solving linear systems, in the sense that the error
in our numerical solution arises purely from round-off errors. In this section, we study iterative methods,
namely, approximating the true solution closer and closer, but only get close enough with a prescribed
tolerance level.

Example. Suppose an iterative algorithm produces x(k) =
(
x
(k)
1 , x

(k)
2 , . . . , x

(k)
n

)
as an approximate solution

to a linear system at the kth iteration.
If we know the true solution is x, we want to see how close we are. We need a measure of the “difference”(

x(k) − x
)
.

If we don’t know the true solution (almost always), we want to see how much we have improved from
the previous step, that is, we want to look at

(
x(k) − x(k−1)

)
and see how this “difference” is changing as k

changes. Certainly, if this “difference” becomes smaller and smaller, and if we can also prove (in mathematical
analysis) that this “difference” goes to 0 as k → ∞, then we know the sequence is convergent.

Definition. A vector norm on Rn is a function, ∥·∥, from Rn to R with the following properties:
(1) (nonnegativity)∥x∥ ≥ 0 for all x ∈ Rn,
(2) (positive definiteness/point-separating) ∥x∥ = 0 if and only if x = 0,
(3) (absolute homogeneity) ∥αx∥ = |α| ∥x∥ for all α ∈ R and x ∈ Rn,
(4) (triangle inequality/subadditivity)∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x,y ∈ Rn.

We have a convention that a vector in Rn is a column vector. Then a row vector may be represented
by the transpose of a vector, that is,

x =


x1

.

.

.
x5

 = (x1, . . . , x5)
T

where transpose simply means switching the dimension of the array.

Definition. The l2 and l∞ norms for the vector x = (x1, . . . , xn)
T are defined by

∥x∥2 =

(
n∑

i=1

x2
i

)1/2

, ∥x∥∞ = max
1≤i≤n

|xi| .

The l2-norm is also called Euclidean norm because it represents the usual notion of distance from the
origin. You may deduce that the vectors that satisfies ∥x∥2 ≤ 1 cover a circle of radius 1 (x2

1 + x2
2 ≤ 1), in

2D; or a sphere of radius 1 (x2
1 + x2

2 + x2
3 ≤ 1), in 3D. One should also note that the dot product of a vector

to itself is

xTx =

n∑
i=1

x2
i = ∥x∥22 .

The l∞-norm also has a geometric feature. It represents squares in 2D and cubes in 3D.

Example. Compute the l2 and l∞-norm of the vector x = (−1, 1,−2)
T.

∥x∥2 =

√
(−1)

2
+ 12 + (−2)

2
=

√
6,

and
∥x∥∞ = max {|−1| , |1| , |−2|} = 2.

In the definition of l2 and l∞-norm, we haven’t really proved that they are indeed norms, that is, they
satisfy the four properties given in the first definition. In fact, showing that l∞ is a norm is not hard.

Proposition. l∞ is a norm.

Proof. We check the four criteria.
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(1) (nonnegativitiy) For x ∈ Rn,
∥x∥∞ = max

1≤i≤n
{|xi|} ≥ 0

since the absolute value is always nonnegative.
(2) (positive definiteness) For x = 0, then clearly, ∥x∥∞ = ∥0∥∞ = max1≤i≤n {|0|} = 0. Suppose now

∥x∥∞ = 0, then max1≤i≤n {|xi|} = 0, which implies xi = 0 for all i = 1, . . . , n.
(3) (absolute homogeneity) For x ∈ Rn,

∥αx∥∞ = max
1≤i≤n

{|αxi|} = |α| max
1≤i≤n

{|xi|} = |α| ∥x∥∞ .

(4) (triangle inequality)

∥x+ y∥∞ = max
1≤i≤n

{|xi + yi|}

≤ max
1≤i≤n

(|xi|+ |yi|)

≤ max
1≤i≤n

|xi|+ max
1≤i≤n

|yi|

= ∥x∥∞ + ∥y∥∞
□


