
Permutation Matrices

Last class, we introduced LU factorization of a matrix A with the assumption that no row swap is
performed. This assumption unfortunately is not always satis�ed � there is almost always some row swapping,
either due to a zero diagonal entry, or a very small one that makes the elimination process unstable. We
are blessed that the multiplying and adding/subtracting rows can be represented by matrix multiplications,
namely, the M (k)'s � the Gaussian transformation matrix. We turn now our attention to row swaps.

Example. Consider the square matrix

A =


2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 .

We search through the �rst column and locate the row in which the largest (in magnitude) column entry
resides and perform partial pivoting. Here, we identify that the third row and the �rst should swap,

Â =


8 7 9 5
4 3 3 1
2 1 1 0
6 7 9 8


where now, dividing by 8 to �nd the multiplier becomes much more stable.

This procedure can be represented by the permutation operation on A, as in

P (1)A =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1




2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 =


8 7 9 5
4 3 3 1
2 1 1 0
6 7 9 8


Suppose now, we have done the row reduction for the �rst row and reached this following form,

M (1)P (1)A = A(2) =


8 7 9 5
0 − 1

2 − 3
2 − 3

2
0 − 3

4 − 5
4 − 5

4
0 7

4
9
4

17
4


(HW exercise to �nd M (1)). We are looking at the second row pivot with magnitude 1

2 . We prefer the last

row here since 7
4 is the largest magnitude from the 2nd row and on. The swap yields

P (2)A(2) =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




8 7 9 5
0 − 1

2 − 3
2 − 3

2
0 − 3

4 − 5
4 − 5

4
0 7

4
9
4

17
4

 =


8 7 9 5
0 7

4
9
4

17
4

0 − 3
4 − 5

4 − 5
4

0 − 1
2 − 3

2 − 3
2

 .

We carry on, with an elimination step to �nd

M (2)P (2)A(2) =


8 7 9 5
0 7

4
9
4

17
4

0 0 − 2
7

4
7

0 0 − 6
7 − 2

7

 = A(3).

Here, we prefer the fourth row, thus we perform

P (3)A(3) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




8 7 9 5
0 7

4
9
4

17
4

0 0 − 2
7

4
7

0 0 − 6
7 − 2

7

 =


8 7 9 5
0 7

4
9
4

17
4

0 0 − 6
7 − 2

7
0 0 − 2

7
4
7

 .

1

2

One more step of elimination yields

M (3)P (3)A(3) =


8 7 9 5
0 7

4
9
4

17
4

0 0 − 6
7 − 2

7
0 0 0 2

3

 .

So, what did we achieve? Did we �nd the LU that makes A? Not quite. We found

PA = LU

where P is a permutation matrix,
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0




2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 =


1 0 0 0
3
4 1 0 0
1
2 − 2

7 1 0
1
4 − 3

7
1
3 1




8 7 9 5
0 7

4
9
4

17
4

0 0 − 6
7 − 2

7
0 0 0 2

3

 .

Noting from the permutation matrices applied at each step of elimination,

P (1) =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 , P (2) =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , P (3) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


we observe that,

P = P (3)P (2)P (1)

= P (3)


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1



= P (3)


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



=


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

 .

Remark. Did we just get lucky that the product of permutation matrices gives us what we wanted? This
fact is not obvious, but the details may be too complicated for the course. A great explanation is provided
in Trefethen and Bau (see lecture note appendix).

In practice, these permutation matrices don't actually show up � their e�ects are carried out by explicitly
swapping the rows (or swapping the row indices). Algorithm 6.5 in your textbook outlines the procedures of
�nding L and U factors. Though you are not required to code up this algorithm, you are respon-

sible for knowing the reasons why step is set certain ways, or what each step accomplishes.

Iterative Methods: an Introduction

In the previous section, we have studied direct methods of solving linear systems, in the sense that the error
in our numerical solution arises purely from round-o� errors. In this section, we study iterative methods,
namely, approximating the true solution closer and closer, but only get close enough with a prescribed
tolerance level.

3

Example. Suppose an iterative algorithm produces x(k) =
(
x
(k)
1 , x

(k)
2 , . . . , x

(k)
n

)
as an approximate solution

to a linear system at the kth iteration.
If we know the true solution is x, we want to see how close we are. We need a measure of the �di�erence�(

x(k) − x
)
.

If we don't know the true solution (almost always), we want to see how much we have improved from
the previous step, that is, we want to look at

(
x(k) − x(k−1)

)
and see how this �di�erence� is changing as k

changes. Certainly, if this �di�erence� becomes smaller and smaller, and if we can also prove (in mathematical
analysis) that this �di�erence� goes to 0 as k → ∞, then we know the sequence is convergent.

De�nition. A vector norm on Rn is a function, ∥·∥, from Rn to R with the following properties:

(1) (nonnegativity)∥x∥ ≥ 0 for all x ∈ Rn,
(2) (positive de�niteness/point-separating) ∥x∥ = 0 if and only if x = 0,
(3) (absolute homogeneity) ∥αx∥ = |α| ∥x∥ for all α ∈ R and x ∈ Rn,
(4) (triangle inequality/subadditivity)∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x,y ∈ Rn.

