
LU Factorization

After seeing Gaussian elimination with partial pivoting in its full algorithmic form, we wonder if there is

even further simpli�cations of this process. More precisely, we ask if we can beat the O
(

n3

3

)
operation time

to determine the solution vector x from Ax = b.
Suppose now we know

A = LU

where L is lower triangular and U is upper triangular. We can then solve Ax = b in two steps:

(1) Let y = Ux. We solve Ly = b for y which costs only O
(
n2

)
operations since L is lower triangular

(via forward substitution).
(2) Since y is known, the upper triangular system Ux = y also requires just O

(
n2

)
operations to �nd

x.

Altogether, if we can write A = LU as a factorized form, we only need O
(
2n2

)
operations instead of

O
(
n3/3

)
, a major improvement exempli�ed as follows:

n n3/3 2n2 % reduction

10 3.3× 102 2× 102 40
100 3.3× 105 2× 104 94
1000 3.3× 108 2× 106 99.4

which clearly showcases the improvement when our system is large (and they can be even larger in practice).
However, there is no free lunch. Coming up with the speci�c L and U requires O

(
n3/3

)
operations.

Nonetheless, once the factorization is determined, solving Ax = b is extremely simple.
In fact, we have already come up with U . The very Gaussian elimination procedure gives us an upper

triangular system, which we then perform back substitution.

Ax = b =⇒ Ux = b̃.

So what really happened in the =⇒ ? Elimination did. In fact, row operations did. Can we represent row
operations as a matrix multiplication on A?

Example. Notice that the identity matrix acting on A doesn't change anything, that is,

IA = A.

Example. We don't try until we realise we can. Assume that we can perform Gaussian elimination

without row swapping. Consider the row operation using the �rst row.

(Ej −mj1E1) → (Ej) , mj1 =
aj1
a11

.

What this really is involves a matrix of multipliers as follows:

M (1) =



1 0 . . . . 0
−m21 1 0 . . . .
−m31 0 . . .

. . . . . .

. . . . . .

. . 0 . 0
−mn1 0 . . . . 1



=



0 0 . . . . 0
−m21 0 0 . . . .
−m31 0 . . .

. . . . . .

. . . . . .

. . 0 . 0
−mn1 0 . . . . 0


+



1 0 . . . . 0
0 1 0 . . . .
. . . . .
. . . . . .
. . . . . .
. . . . 0
0 0 . . . 0 1


= W (1) + In

where In is the identity matrix with dimension n.
1
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This operation is marked as

M (1)A =
(
W (1) + In

)
A

= W (1)A+A

Don't trust this? Carry it out.

W (1)A =



0 0 . . . . 0
−m21 0 0 . . . .
−m31 0 . . .

. . . . . .

. . . . . .

. . 0 . 0
−mn1 0 . . . . 0





a11 a12 . . . . a1n
a21 a22 . . . . a2n
a31 . . . .
. . . . . .
. . . . . . .
. . . . .

an1 an2 . . . . ann



=



0 0 . . . . 0
−m21a11 −m21a12 . . . . −m21a12
−m31a11 . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .
−mn1a11 . . . . . −mn1a1n



=



0 0 . . . . 0
−a21 −m21a12 . . . . −m21a12
−a31 . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .

−an1 . . . . . −mn1a1n


Now, W (1)A+A will clear up the �rst column

W (1)A+A =



0 0 . . . . 0
−a21 −m21a12 . . . . −m21a12
−a31 . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .

−an1 . . . . . −mn1a1n


+



a11 a12 . . . . a1n
a21 a22 . . . . a2n
a31 . . . .
. . . . . .
. . . . . . .
. . . . .

an1 an2 . . . . ann



=



a11 a12 . . . . a1n

0 a
(1)
22 . . . . a

(1)
2n

0 . . . .
. . . . . .
. . . . . . .
. . . . .

0 a
(1)
n2 . . . . a

(1)
nn


exactly as we wanted. We call M (1) the �rst Gaussian transformation matrix. Note that M (1) is lower
triangular.

Remember, M (1) operates on both side of the equation Ax = b, that is,

A(2)x = M (1)Ax = M (1)b = b(2) .

We go on with the boxed term

A(2)x = b(2)

and multiply M (2) on the left of both sides to obtain

A(3)x = b(3)
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where A(3) = M (2)A(2) and b(3) = M (2)b(2).
In general, with A(k)x = b(k) formed, we multiply it then by the kth Gaussian transformation matrix,

M (k) =



1 0 . . . . 0
0 1 0 . . . .
. 0 . . .
. . . . . .
. . −mk+1,k . . .
. . . 0 . 0
0 0 . −mn,k . 0 1


that is, an identity matrix with entries in the kth column strictly below the diagonal modi�ed by the
multipliers.

From this general procedure, we realize that

A(k+1)x = M (k)A(k)x = M (k) . . .M (1)Ax = M (k)b(k) = b(k+1) = M (k) . . .M (1)b

and we multiply a Gaussian transformation matrix on the left until we reach A(n), exactly the last step, that
is,

A(n) = M (n−1)M (n−2) . . .M (1)A.

Now, if we can invert all these M matrices, we get

A =
[
M (n−1)M (n−2) . . .M (1)

]−1

A(n)

where A(n) is upper triangular.
Curiously enough, the product of two lower triangular matrices is still lower triangular. More curiously

enough, the inverse of a lower triangular matrix is still lower triangular! In fact, let's consider the inverse of
the kth Gaussian transformation matrix,

L(k) =
[
M (k)

]−1

=



1 0 . . . . 0
0 1 0 . . . .
. 0 . . .
. . . . . .
. . mk+1,k . . .
. . . 0 . 0
0 0 . mn,k . 0 1


because (the inverse is) to undo M (k), we simply hit the �reverse� button by adding the equations back
instead of subtracting. With this, we see that

L := L(1)L(2) · · ·L(n−1) =



1 0 . . . . 0
m21 1 0 . . . .
m31 m32 . . .
. . . . . .
. . . . . .
. . 0 . 0

mn1 mn2 . . . mn,n−1 1


with L(k) =

[
M (k)

]−1
. Altogether, let

L = L(1)L(2) · · ·L(n−1)

and
U = M (n−1)M (n−2) . . .M (1)A,

we have

LU = L(1)L(2) · · ·L(n−1)M (n−1)M (n−2) . . .M (1)A

=
[
M (1)

]−1

· · ·
���������[
M (n−1)

]−1

M (n−1)M (n−2) . . .M (1)A

= A,



4

that is, we have identi�ed the LU -factorization of A.
Here, L is made up entirely of the multiplier values (and an identity matrix, accountable for 1's on the

diagonal), so forming it is straightforward. Once L is found, we solve for y that satis�es

Ly = b

where y := Ux as a de�nition. Since L is lower triangular, the system is solved by forward substitution (a
process just with reversed index as in back substitution), which is O

(
n2

)
.

To form U , we make use simultaneously of the entries in L because they are just multipliers that help us
form each of the M (k)'s. A detailed algorithm is given as Algorithm 6.4 in Section 6.5 of your textbook.


