
Gaussian Elimination with Partial Pivoting: Examples

Partial? Is there a complete version? Yes, but we don't go there (but give a reader's digest version at the
end).

Example. We �rst look at an example in which round-o� errors occur when the leading entry of a system
is too small.

0.003000x1 + 59.14x2 = 59.17;

5.291x1 − 6.130x2 = 46.78.

Though the numbers look quite contrived, we can spot the exact solution as

x1 = 10.00;

x2 = 1.000.

Now, let's proceed with 4-digit rounding arithmetic. The multiplier for the second row is

m21 =
a21
a11

=
5.291

0.003000
= 1763.66 = 1764

after rounding. Performing (E2 −m21E1) → (E2) and the appropriate rounding yields

0.003000x1 + 59.14x2 ≈ 59.17;

−104300x2 ≈ −104400,

instead of the exact system

0.003000x1 + 59.14x2 = 59.17;

−104309.376x2 = 104309.376.

The round-o� error has already infectedm21a13 and a23. It is now propagating through the back substitution
step

x2 ≈ 1.001

which is an OK approximation to the true solution x2 = 1. The real trouble arises when back substituting
for x1, i.e.,

x1 ≈ 59.17− (59.14) (1.001)

0.003000
= −10.00.

Woah, this is opposite of what we knew for x1.

So, what's a good remedy? Swapping the rows, we get

5.291x1 − 6.130x2 = 46.78;

0.003000x1 + 59.14x2 = 59.17.

Now,

m21 =
a21
a11

=
0.003000

5.291
= 0.0005670

after rounding to 4-digit. Then, (E2 −m21E1) → (E2) gives

5.291x1 − 6.130x2 = 46.78;

59.14x2 = 59.14.

We retrieve x2 = 1.000 and x1 = 10.00 exactly, avoiding the catastrophe seen earlier.
So, that was a 2× 2 system. How about larger ones? What is the general procedure to avoid dividing by

small numbers and producing multipliers that lead to large round-o� errors?
1

2

Gaussian Elimination with Partial Pivoting: Algorithm

Suppose we are now using the kth row to perform Gaussian elimination for the rows below. If akk is small
relative to the entries aij for k ≤ i ≤ n and k ≤ j ≤ n, pivoting is performed by selecting an element apq
with a larger magnitude as the pivot and interchanging the kth and pth rows (and swapping the kth and qth

columns is also viable, if necessary).
More precisely, this strategy, called partial pivoting, is to select an element in the same column (the

kth column) that is below the diagonal and has the largest absolute value; we determine the smallest p ≥ k
such that

|apk| = max
k≤i≤n

|aik|

(remember, k is �xed here since we are using the kth row to row reduce; the maximum we are searching is
over the row index, which means, throw all entries in the kth column below the diagonal).

(1) For i = 1, . . . , n, set NROW (i) = i. (Initialize row pointer � keeping the book for swapped rows).
(2) For i = 1, . . . , n− 1 (elimination)

(a) Let p be the smallest integer with i ≤ p ≤ n and

|a (NROW (p) , i)| = max
i≤j≤n

|a (NROW (j) , i)|

where

a (NROW (j) , i) = aNROW (j),i.

This step is checking through the ith column and looking for which entry we should use as the
pivot. This step automatically completes the �zero checking� step in the algorithm for Naive
Gaussian Elimination.

(b) If a (NROW (p) , i) = 0, then OUTPUT('no unique solution exists'); STOP.
This step simply �nd all zeros underneath the diagonal, indicating more than one variable is
free and we expect no unique solutions, e.g., for i = 2, 1 3 1 1

0 0 5 2
0 0 9 3


where we now are focusing on the second row and �nding a (NROW (p) , 2) = 0.

(c) If NROW (i) ̸= NROW (p) (if the current leading entry is not the largest), then

NCOPY = NROW (i);

NROW (i) = NROW (p) ;

NROW (p) = NCOPY.

This step updates the list of swapped rows. You may think about why NCOPY is introduced
here.

(d) For j = i+ 1, . . . , n,
(i) Set

m (NROW (j) , i) =
a (NROW (j) , i)

a (NROW (i) , i)
.

(ii) Perform(
ENROW (j) −m (NROW (j) , i) · ENROW (i)

)
→

(
Em(NROW (j))

)
(3) If a (NROW (n) , n) = 0, then OUTPUT('no unique solution exists'); STOP.
(4) Set

xn =
a (NROW (n) , n+ 1)

a (NROW (n) , n)

(back substitution).
(5) For i = n− 1, . . . , 1, set

xi =
a (NROW (i) , n+ 1)−

∑n
j=i+1 a (NROW (i) , j)xj

a (NROW (i) , i)
.

3

(6) OUTPUT (x1, . . . , xn) .STOP.

Remark 1. You may check the row reduced matrix after completing step 3. If you print out the matrix,
you may notice that it is not exactly upper triangular. However, if you do print out the matrix with row
numbers following the swapped indices, it must be upper triangular.

Remark 2. It is costly to actually swap rows. Instead, it is much less expensive to keep a list of swapped
indices, and call upon them when needed. As long as this list is updated, we can proceed without a�ecting
the solutions.

Remark. (Recap)
The main point of partial pivoting is to reduce round-o� errors, caused by multiplying possibly large

multipliers (obtained from dividing small pivots). We avoid these errors by choosing the pivot carefully for
each row.

Complete pivoting involves checking for the maximal element in magnitude in both the kth row and kth

column. Therefore, the procedures will be a mix of column and row swaps. Row swap may not a�ect the
order of solution (x1, . . . , xn) but column does, namely, for a swapped pth and qth column, we must swap
the indices in the solution

(x1, . . . , xp, . . . , xq, . . . xn) → (x1, . . . , xq, . . . , xp, . . . xn) .

Performing complete pivoting thus involves keep another list of swapped columns that will eventually be
used to reorder the output at the end of back substitution.

Noting all the additional procedures needed for complete pivoting, we recommend this method only for
systems that demand so high of an accuracy that this increase in execution time can be justi�ed.

