OPERATION COUNTS

Suppose, we are trying to use the i*" row to remove the coefficient of x; in all subsequent rows (i + 1,4 4 2
up to n), what does the “modified” matrix look like before we begin?
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So, in the i*" row, we have (n + 1) — (i — 1) = n—1i+2 entries (assuming a;; # 0); a sanity check for whether
this formula is correct is by checking ¢ = 1 — we must have n — 1 + 2 = n + 1 entries to begin with.
For each row F; below, we need to find the multiplier,

my =L, j=i4+1,i+2,...,n,
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that is, a total of (n — i) divisions. Carrying out the multiplications for each j, i.e.
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we performed (n — i+ 1) multiplications, where we do not count the first entry — it is always going to be
a;;. To perform this multiplication for each j, we have done
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multiplications. Therefore, to finish Gaussian elimination pivoted at a;;, we perform a total of multiplica-
tion/divisions
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times.
Then, E; — m;;E; does (n — i + 1) subtractions in each row, and does this (n — 4) times, that is,
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additions/subtractions.

Thus, to find the total number of multiplications and divisions, we add for i = 1,...,n — 1, in the sum
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Similarly, total number of additions/subtractions is
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In backward substitution, the nt* requires one mere division, x,,, = 2=t For the it" row, we perform
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which incurs (n — (¢ + 1) + 1) = n — ¢ multiplications to carry out a;;z;, (n — (i + 1)) additions in the sum,
one subtraction and then one division. We perform i from n — 1 down to 1.
More precisely, in the backward substitution step, the total number of multiplication is
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The total number of addition and subtractions is
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Altogether, with elimination AND substitution, we have
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We can see that for n large, total number of flops is O (n?).

LOOKING FORWARD: THE WHAT-IF’S FAIL

Numerical instability occurs when we divide by a small number. The large quotient, if used, produces
large round-off errors. Consider the multiplier step in Gaussian elimination,
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What if a;; < 1, such that m;; is very large. Then, mj; is multiplied to each term of E; which may result
in large round-off error (remember, eps (single (2%°))’s neighbor is some 10° units away). What’s more, in
back substitution, we have
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where a very small a;; can lead to a large round-off error.
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However, dividing by a big number is completely O.K. because the resulting small number is very fine
machine representation, i.e., small round-off error. This desire to achieve numerical stability prompts the
following modified version of Gaussian elimination.



