
Operation Counts

Suppose, we are trying to use the ith row to remove the coe�cient of xi in all subsequent rows (i+1, i+2
up to n), what does the �modi�ed� matrix look like before we begin?

Ã(i) =
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.

So, in the ith row, we have (n+ 1)− (i− 1) = n− i+2 entries (assuming aii ̸= 0); a sanity check for whether
this formula is correct is by checking i = 1 � we must have n− 1 + 2 = n+ 1 entries to begin with.

For each row Ej below, we need to �nd the multiplier,

mji =
aji
aii

, j = i+ 1, i+ 2, . . . , n,

that is, a total of (n− i) divisions. Carrying out the multiplications for each j, i.e.

mjiEi,

we performed (n− i+ 1) multiplications, where we do not count the �rst entry � it is always going to be
aji. To perform this multiplication for each j, we have done

(n− i) (n− i+ 1)

multiplications. Therefore, to �nish Gaussian elimination pivoted at aii, we perform a total of multiplica-
tion/divisions

(n− i) + (n− i) (n− i+ 1) = (n− i) (n− i+ 2)

times.
Then, Ej −mjiEi does (n− i+ 1) subtractions in each row, and does this (n− i) times, that is,

(n− i+ 1) (n− i)

additions/subtractions.
Thus, to �nd the total number of multiplications and divisions, we add for i = 1, . . . , n− 1, in the sum

n−1∑
i=1

(n− i) (n− i+ 2) =

n−1∑
i=1

(n− i)
2
+ 2

n−1∑
i=1

(n− i)

=

n−1∑
i=1

i2 + 2

n−1∑
i=1

i

=
(n− 1)n (2n− 1)

6
+ 2

(n− 1)n

2

=
2n3 + 3n2 − 5n

6
.
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Similarly, total number of additions/subtractions is

n−1∑
i=1

(n− i) (n− i+ 1) =

n−1∑
i=1

(n− i)
2
+

n−1∑
i=1

(n− i)

=

n−1∑
i=1

i2 +

n−1∑
i=1

i

=
(n− 1)n (2n− 1)

6
+

(n− 1)n

2

=
n3 − n

3
.

In backward substitution, the nth requires one mere division, xnn =
an,n+1

ann
. For the ith row, we perform

xi =
ai,n+1 −

∑n
j=i+1 aijxj

aii

which incurs (n− (i+ 1) + 1) = n− i multiplications to carry out aijxj , (n− (i+ 1)) additions in the sum,
one subtraction and then one division. We perform i from n− 1 down to 1.

More precisely, in the backward substitution step, the total number of multiplication is

1 +

n−1∑
i=1

(n− i+ 1) = 1 +

n−1∑
i=1

(n− i) + (n− 1)

= n+

n−1∑
i=1

i

= n+
n (n− 1)

2

=
n2 + n

2
.

The total number of addition and subtractions is
n−1∑
i=1

[(n− (i+ 1)) + 1] =

n−1∑
i=1

(n− i) =

n−1∑
i=1

i =
n2 − n

2
.

Altogether, with elimination AND substitution, we have

(Multiplications/divisions)
2n3 + 3n2 − 5n

6
+

n2 + n

2
=

n3

3
+ n2 − n

3
,

(Additions/subtractions)
n3 − n

3
+

n2 − n

2
=

n3

3
+

n2

2
− 5n

6
.

We can see that for n large, total number of �ops is O
(
n3

)
.

Looking forward: The What-if's Fail

Numerical instability occurs when we divide by a small number. The large quotient, if used, produces
large round-o� errors. Consider the multiplier step in Gaussian elimination,

mji =
aji
aii

.

What if aii ≪ 1, such that mji is very large. Then, mji is multiplied to each term of Ei which may result
in large round-o� error (remember, eps

(
single

(
240

))
's neighbor is some 105 units away). What's more, in

back substitution, we have

xi =
ai,n+1 −

∑n
j=i+1 aij

aii
where a very small aii can lead to a large round-o� error.
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However, dividing by a big number is completely O.K. because the resulting small number is very �ne
machine representation, i.e., small round-o� error. This desire to achieve numerical stability prompts the
following modi�ed version of Gaussian elimination.


