OPERATION COUNTS

Suppose, we are trying to use the i^{th} row to remove the coefficient of x_i in all subsequent rows $(i+1,i+2)$ up to n), what does the "modified" matrix look like before we begin?

So, in the i^{th} row, we have $(n + 1) - (i - 1) = n - i + 2$ entries (assuming $a_{ii} \neq 0$); a sanity check for whether this formula is correct is by checking $i = 1$ – we must have $n - 1 + 2 = n + 1$ entries to begin with.

For each row E_j below, we need to find the multiplier,

$$
m_{ji} = \frac{a_{ji}}{a_{ii}}, \quad j = i + 1, i + 2, \dots, n,
$$

that is, a total of $(n - i)$ divisions. Carrying out the multiplications for each j, i.e.

$$
m_{ji}E_i,
$$

we performed $(n - i + 1)$ multiplications, where we do not count the first entry – it is always going to be a_{ji} . To perform this multiplication for each j, we have done

$$
(n-i)(n-i+1)
$$

multiplications. Therefore, to finish Gaussian elimination pivoted at a_{ii} , we perform a total of multiplication/divisions

$$
(n-i) + (n-i)(n-i+1) = (n-i)(n-i+2)
$$

times.

Then, $E_i - m_{ji}E_i$ does $(n-i+1)$ subtractions in each row, and does this $(n-i)$ times, that is,

$$
(n-i+1)(n-i)
$$

additions/subtractions.

Thus, to find the total number of multiplications and divisions, we add for $i = 1, \ldots, n - 1$, in the sum

$$
\sum_{i=1}^{n-1} (n-i)(n-i+2) = \sum_{i=1}^{n-1} (n-i)^2 + 2\sum_{i=1}^{n-1} (n-i)
$$

$$
= \sum_{i=1}^{n-1} i^2 + 2\sum_{i=1}^{n-1} i
$$

$$
= \frac{(n-1) n (2n - 1)}{6} + 2\frac{(n-1) n}{2}
$$

$$
= \frac{2n^3 + 3n^2 - 5n}{6}.
$$

Similarly, total number of additions/subtractions is

$$
\sum_{i=1}^{n-1} (n-i)(n-i+1) = \sum_{i=1}^{n-1} (n-i)^2 + \sum_{i=1}^{n-1} (n-i)
$$

$$
= \sum_{i=1}^{n-1} i^2 + \sum_{i=1}^{n-1} i
$$

$$
= \frac{(n-1) n (2n - 1)}{6} + \frac{(n-1) n}{2}
$$

$$
= \frac{n^3 - n}{3}.
$$

In backward substitution, the n^{th} requires one mere division, $x_{nn} = \frac{a_{n,n+1}}{a_{nn}}$ $\frac{n,n+1}{a_{nn}}$. For the i^{th} row, we perform

$$
x_i = \frac{a_{i,n+1} - \sum_{j=i+1}^{n} a_{ij} x_j}{a_{ii}}
$$

which incurs $(n-(i+1)+1) = n-i$ multiplications to carry out $a_{ij}x_j$, $(n-(i+1))$ additions in the sum, one subtraction and then one division. We perform i from $n-1$ down to 1.

More precisely, in the backward substitution step, the total number of multiplication is

$$
1 + \sum_{i=1}^{n-1} (n - i + 1) = 1 + \sum_{i=1}^{n-1} (n - i) + (n - 1)
$$

$$
= n + \sum_{i=1}^{n-1} i
$$

$$
= n + \frac{n(n - 1)}{2}
$$

$$
= \frac{n^2 + n}{2}.
$$

The total number of addition and subtractions is

$$
\sum_{i=1}^{n-1} [(n - (i + 1)) + 1] = \sum_{i=1}^{n-1} (n - i) = \sum_{i=1}^{n-1} i = \frac{n^2 - n}{2}.
$$

Altogether, with elimination AND substitution, we have

(Multiplications/divisions)
$$
\frac{2n^3 + 3n^2 - 5n}{6} + \frac{n^2 + n}{2} = \frac{n^3}{3} + n^2 - \frac{n}{3},
$$

(Additions/subtractions)
$$
\frac{n^3 - n}{3} + \frac{n^2 - n}{2} = \frac{n^3}{3} + \frac{n^2}{2} - \frac{5n}{6}.
$$

We can see that for *n* large, total number of flops is $O(n^3)$.

Looking forward: The What-if's Fail

Numerical instability occurs when we divide by a small number. The large quotient, if used, produces large round-off errors. Consider the multiplier step in Gaussian elimination,

$$
m_{ji} = \frac{a_{ji}}{a_{ii}}.
$$

What if $a_{ii} \ll 1$, such that m_{ji} is very large. Then, m_{ji} is multiplied to each term of E_i which may result in large round-off error (remember, eps (single (2^{40}))'s neighbor is some 10^5 units away). What's more, in back substitution, we have

$$
x_i = \frac{a_{i,n+1} - \sum_{j=i+1}^{n} a_{ij}}{a_{ii}}
$$

where a very small a_{ii} can lead to a large round-off error.

However, dividing by a big number is completely O.K. because the resulting small number is very fine machine representation, i.e., small round-off error. This desire to achieve numerical stability prompts the $\operatorname{following}$ modified version of Gaussian elimination.