
MA 3257 – SPRING 2023 C-TERM
HOMEWORK III (DUE FEB 3RD, 2023)

Problem. (25 points). In the following descriptions, Algorithm and Step are always referring to the
Algorithm in the notes for Lecture 9 on canvas.

Submit your .m files.

(1) (25 points) Implement the Algorithm. Your script may include the following checkpoints:
(a) For Step 1, after i = 1 is finished, print out what the matrix looks like. You expect the first

column to have only one nonzero entry at a11 and the rest are zeros, i.e.
a11 a12 . . a1n a1,n+1

0 a22 . . a2n a2,n+1

. . . . . .

. . . . . .
0 an−1a2 . . ann an,n+1


(b) After all row operations are done, that is, the entirety of Step 1 in the algorithm is carried

through all i = 1, . . . n− 1, print out what the row reduced matrix looks like. You expect it to
be upper triangular, i.e.,

a11 a12 . . a1n a1,n+1

0 a22 . . a2n a2,n+1

. 0 . . . .

. . 0 . . .
0 . . 0 ann an,n+1


(2) (Extra credit: 5 points) The test cases for your script should be square matrices A=rand(n,n)

and a random vector b=rand(n,1). For this part, let n = 8. Run A_u=triu(A) and A_l=tril(A)
to extract the upper and lower triangular part of A respectively.
(a) Run your solver on A_u and a random vector b. Step 1 of the Algorithm is moot at this point

(do you agree?). Print out the “before” and “after”. Print out the solution.
(b) Run your solver on A_l with the same b as above. You should expect that after Step 1 of the

algorithm, the resulting matrix is diagonal. Print out the “before” and “after”. Print out the
solution.

(3) (Extra credit: 5 points) For each n = 2, 22, 23, . . . , 210, generate N = 20 random matrices of dimen-
sion n.
(a) (2 points) Record the average runtime of your program, for each n and then plot this average

against n. We expect the runtime to increase.
(b) (2 points) Record the average runtime of the MATLAB built-in solver A\b (A backslash b).

Plot this average against n in the same figure as above.
(c) (1 points) Let x be the solution found by your solver, and xMATLAB be that found by the

built-in solver. For each n, compute erri (n) = ∥x− xMATLAB∥2 via norm(x-x_matlab,2), for
i = 1, 2, . . . , 20; average over these to obtain

err (n) =
1

N

N∑
i=1

erri (n)

Plot err (n) vs n.
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