
MA 3257 � SPRING 2023 C-TERM

HOMEWORK I (DUE JAN 19TH, 2023)

Problem 1. (Computing in �nite precision � MATLAB; 5 points)

(1) (1 point) As we have spoken in class, there are gaps between consecutive numbers in �oating point
number representation. The size of these gaps depends on the size of the number and on the precision.
MATLAB provides the function eps(), which returns, for a number, the distance to the next �oating
point number in the same precision (typing eps itself yields the machine epsilon). Using the form
of double and single �oating point number representation, explain the values you �nd for

eps(1)

eps(single(1))

eps(2^40)

eps(single(2^40))

(2) (1 point) Try the following experiment and explain the behaviour1:

a=0.5;

b=0.7-0.2;

a==b;

sprintf('%20.18f',a)

sprintf('%20.18f',b)

(Hint: you are welcome to try decimal-�oating-point-conversion, and use it to explain the above. An
extra 3 points will be given to those who write a correct algorithm that converts any decimal input
to its 64-bit �oating point representation, following what the webpage says.)

(3) (3 points) We can compare the speed of mathematical operations when using single vs double preci-
sion. Consider the following program that performs 109 additions of (random) �oating point numbers,
and measures the time it takes for doing that.

N=1e5;

M=1e4;

a=rand(N,1);

b=rand(N,1);

tic

for i=1:M

a.*b;

end

toc

Report the run time of this program. Now modify N and M such that their product remains the
same, and again report the run times (do for several pairs of N and M , enough to make a point). If
you wish to loop over N and M over an index j for these new experiments, you may consider using

tmul(j)=toc;

to record the run time of each program. Be careful that each toc measures the run time to the
previous tic.

Lastly, repeat the exercise but use single precision random numbers (the default is double preci-
sion) by replacing the de�nitions of the vectors a and b as follows

a=single(rand(N,1));

b=single(rand(N,1));

The di�erences you will observe are due to the need to read numbers from memory, which takes
time, before they can be added by the processing unit (the CPU).

1a==b is checking whether the number a has exactly the same �oating-point representation as the number b.

1

https://binary-system.base-conversion.ro/convert-real-numbers-from-decimal-system-to-64bit-double-precision-IEEE754-binary-floating-point.php
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Problem 2. (5 points) Use 4-digit rounding with the quadratic formula to �nd the roots of the following
equation

x2 + 62.1x+ 1 = 0.

The exact solutions are x1 = −0.01610723 and x2 = −62.083892.

(1) (2 points) Find the relative error of the approximations x̂1 and x̂2.
(2) (3 points) How do we alleviate the large rounding error of one of the roots? Hint: manipulate the

quadratic formula or use the relationship between the two roots of a quadratic equation.

Problem 3. (Reversing the order is better?!; 5 points)

(1) (2 points) Use three-digit chopping arithmetic to compute the sum
∑10

i=1

(
1/i2

)
�rst by 1/1+ 1/4+

· · ·+ 1/100 and then by 1/100 + 1/81 + · · ·+ 1/1. Which method is more accurate, and why?

(2) (3 points) Write a program (pseudocode is �ne) that compute the sum
∑N

i=1 xi in the reverse order.

Problem 4. (Approximating e; 5 points + Extra credit 5 points)
In class, we spoke very brie�y about several ways to approximate e. One such way is using the Maclaurin

series

ex =

∞∑
n=0

xn

n!
, n! = n (n− 1) (n− 2) · · · (2) (1) , n ̸= 0,

and 0! = 1. Use four-digit chopping arithmetic to compute the following approximations to e, and determine
the absolute and relative errors. (Presentation 1 point)

(1) (1 point)
∑5

n=0
1
n! ;

(2) (1 point)
∑10

n=0
1
n! ;

(3) (1 point)
∑5

n=0
1

(5−n)! ;

(4) (1 point)
∑10

n=0
1

(10−n)! .

(5) (Extra credit 5 points) Consider the sums

N∑
n=0

1

n!
,

N∑
n=0

1

(N − n)!
.

Plot their absolute errors to approximate e as a function of N in the same �gure. Do the same for
relative error.

Problem 5. (Relative error for rounding arithmetic; 5 points) In lecture, we found that k-digit chopping
for a machine representation of a real number

y = 0.d1d2 . . . dkdk+1dk+2 . . .× 10n

is given by

errorrelative =

∣∣∣∣y − fl (y)

y

∣∣∣∣ ≤ 1

0.1
× 10−k = 10−k+1.

Recall that rounding involves �rst adding 5× 10n−(k+1) and then perform k-digit chopping. Determine the
relative error for rounding errorround and provide a suitable upper bound.


