RECITATION IV

NAME:

Problem 1. Find the volume of the shape generated by revolving the curve $y = \sqrt{3-2x}$, $-6 \le x \le 0$ about the x-axis.

Solution. Volume:

Method: Disk.

Reason: axis of revolution is contained in the region.

$$V = \int_{-6}^{0} \pi \left(\sqrt{3-2x}\right)^2 dx = \pi \int_{-6}^{0} (3-2x) dx = \pi \left[3x - x^2\right]_{x=-6}^{x=0}$$
$$= \pi \left[0 - 3(-6) + (-6)^2\right] = 54\pi$$

Area of surface of revolution: Radius: $f(x) = \sqrt{3-2x}$

Arc length element: $ds = \sqrt{1 + (f'(x))^2} dx = \sqrt{1 + (\frac{-1}{\sqrt{3-2x}})^2} dx = \sqrt{\frac{4-2x}{3-2x}} dx$ $A = 2\pi \int_{-6}^{0} f(x) \sqrt{1 + (f'(x))^2} dx$ $= 2\pi \int_{-6}^{0} \sqrt{3-2x} \sqrt{\frac{4-2x}{3-2x}} dx$ $= 2\pi \int_{-6}^{0} (4-2x)^{\frac{1}{2}} dx$ $= -\frac{2}{3}\pi (4-2x)^{\frac{3}{2}} |_{-6}^{0}$ $= -\frac{2}{3}\pi \left[2^{\frac{3}{2}} - 16^{\frac{3}{2}} \right]$ $= \frac{2}{3}\pi \left[64 - 2\sqrt{2} \right]$

Problem 2. Evaluate $\int_{\ln 2}^{\ln 3} \sinh(2x) dx$

Solution. Straightforward. Must remember definition of $\cosh(x)$ and replace x by 2x.

$$I = \frac{\cosh(2x)}{2} |_{\ln 2}^{\ln 3}$$

= $\frac{e^{2x} + e^{-2x}}{4} |_{\ln 2}^{\ln 3}$
= $\frac{1}{4} \left(e^{2\ln 3} + e^{-2\ln 3} - e^{2\ln 2} - e^{-2\ln 2} \right)$
= $\frac{1}{4} \left(9 + \frac{1}{9} - 4 - \frac{1}{4} \right)$
= $\frac{1}{4} \left(5 - \frac{5}{36} \right)$
= $\frac{175}{144}$

Problem 3. A solid lies between planes perpendicular to the x-axis at x = -1 and x = 1. The cross sections perpendicular to the x-axis between these planes are squares whose bases run from the parabola $y = 2 - x^2$ to $y = x^2 + 5$. Find the volume of the solid.

Solution. Draw the shape. Square cross-sections $A = s^2$ where s is the length of each size, which runs from the lower parabola $y = 2 - x^2$ to the upper parabola $y = x^2 + 5$. Hence, $s = x^2 + 5 - (2 - x^2) = 2x^2 + 3$ and thus $A(x) = (2x^2 + 3)^2$. Altogether,

$$V = \int_{-1}^{1} A(x) \, dx = \int_{-1}^{1} \left(2x^2 + 3\right)^2 \, dx = \int_{-1}^{1} \left(4x^4 + 12x^2 + 9\right) \, dx = 2\int_{0}^{1} \left(4x^4 + 12x^2 + 9\right) \, dx = 2\left[\frac{4}{5} + 4 + 9\right] = \frac{138}{5}$$

Problem 4. The graph of $y = x^{2/3}$, $0 \le x \le 8$ is revolved about the *y*-axis to form a tank. If the tank is filled with a very light liquid weighing $30 \ lb/ft^3$, find the work required to pump the liquid to a level 2 ft above the top of the tank.

Solution. Draw the graph. Form the flat slab, with cross-section perpendicular to y-axis. Integrate in y. Note, the tank tops at $y(8) = 8^{2/3} = 4$. So the target location is the line y = 4 + 2 = 6 ft. The range of the liquid in y is $0 \le y \le 4$.

$$\Delta V = \pi r^2 (y) \Delta y = \pi \left(y^{\frac{3}{2}}\right)^2 \Delta y$$

$$F_{slab} = \rho \Delta V = \rho \pi y^3 \Delta y$$

$$\Delta W = F_{slab} \times \text{distance required to lift this slab}$$

$$= \rho \pi y^3 \Delta y \times (6 - y)$$

$$W = \int dW = \int_0^4 \rho \pi y^3 (6 - y) \, dy = \rho \pi \left[\frac{3}{2}y^4 - \frac{y^5}{5}\right]_{y=0}^{y=4}$$
$$= \rho \pi \left(384 - \frac{1024}{5}\right) = \rho \pi \frac{896}{5} = 5376\pi$$

Problem 5. Find the volume of the solid generated by revolving the region in the first quadrant bounded by $y = \sqrt{x}$, y = 2 and x = 0 about the line x = -1 by the shell method.

Solution. Sketch the region. It is the region bounded by y = 2, x = 0 and above the square root curve. Domain is $0 \le x \le 4$ since the curve on the right must high y = 2 (by setting x = 4).

$$V = 2\pi \int_{0}^{4} \operatorname{radius} \times \operatorname{height} dx$$

= $2\pi \int_{0}^{4} (x+1) \left(2 - \sqrt{x}\right) dx$
= $2\pi \int_{0}^{4} \left(2x + 2 - x^{\frac{3}{2}} - x^{\frac{1}{2}}\right) dx$
= $2\pi \left[x^{2} + 2x - \frac{2}{5}x^{\frac{5}{2}} - \frac{2}{3}x^{\frac{3}{2}}\right]_{x=0}^{x=4}$
= $2\pi \left[16 + 8 - \frac{2}{5}(4)^{\frac{5}{2}} - \frac{2}{3}(4)^{\frac{3}{2}}\right]$
= $2\pi \left[24 - \frac{2}{5} \times 32 - \frac{2}{3} \times 8\right]$
= $2\pi \left[24 - \frac{64}{5} - \frac{16}{3}\right]$
= $2\pi \left[\frac{360 - 192 - 80}{15}\right]$
= $\frac{176}{15}\pi$