MATH 111-007 RECITATION 1117

Problem 1. Evaluate the following limits.
Hint: Indeterminate forms also include “1%°, 0° and c0®”. You can use L’Hopital when you get indeter-
minate forms like these when directly plugging in. Remember the logarithmic trick.

0%

(1) limg,_,o+ z®.

Solution. Let f (z) = z®. Then we use the logarithmic trick, we just need

L= lim In(f(z)) = lim = —00
z—0t (f( )) z—=0t T
because In (z) — —oco and 1 — oo as 2 — 0% (so —o0 - 00 = —00). Hence,
lim f(z)=el=0.
z—0t f ( )
Remark. Technically, L = —oo is not a legitimate statement because we can’t really equate anything
to co. The more proper way of writing the above is
lim f(z)= lim (@) = ¢lima o+ e
z—0t z—0t
since we found lim,_,o+ lng(f) = —o0.
. h_(14h
(2) Timp 0 S
Solution.
i eh—(1—|—h) i eh—l—h u%n7 H. i eh—l “%”) H. i eh
m ——- =11 —,— = 1m = m — = —.
h—0 h? h—0 h? h—0 2h h—0 2 2

Problem 2. Show that there is exactly one root of the equation e® + x3 = 0.

Proof. We proceed with a two-part argument. Define f (x) = e + 23.

(1) At least one root.

First, we find that f (0) = 1 while f (—1) = e~! — 1 < 0. By the intermediate value theorem, this
means f crosses the z-axis somewhere on [—1,0], that is, there exists at least one ¢ € [—1,0] such
that f (¢) =0.

(2) At most one root.

Suppose there is another root z = d in addition to z = ¢, say d > ¢. Then, by Rolle’s theorem,

there exists a point y € (¢, d) such that

f'(y)=0.
However, f’ (x) = e*+3z2 > 0 for all z. Thus f’ (y) = 0 is unattainable, which deems our assumption
of having the extra root at = = d false.

Combining 1 and 2, we obtain the original claim. O
Problem 3. Sketch the function f (z) = = (z — 2)°.

Solution. Domain is the whole real line (—o00,00). z-intercepts are x = 0 and z = 2. y-intercept is (0, 0).
No asymptotes of any kind.
First derivative

Fra)=@x—-2242z(x—-2)=(x—-2)(z—2+2z) = (z —2) 3z — 2)
which implies the critical points are at

2
:2 = —.
T , T 3
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We find that
[ (=023 (3.2) (2,)
Fa =+
f(x) inc dec. inc

Next, concavity,

So, we only have one possible 1nﬂect10n point at x = %
4 4
(=00, 3) (3.%0)
[ (@) - +
f(z) | concave down concave up

Problem 4. State the hypothesis and conclusion of the Mean Value Theorem (MVT). Verify that the
function f (z) = L5 satisfies the hypothesis of MVT on the interval [2,5], and find all values of ¢ in this
interval that satisfy the conclusion of the theorem.

Solution. We find that f (z) is continuous function on [2,5] (vertical asymptote at = 1 but it’s outside
the domain). It is also differentiable since it is a quotient of differentiable functions. The conclusion of
MVT states that the average rate of change is achieved at least somewhere on the interval. We first find the
average rate of change,

FB)-f@2) sz 1-1 1

2 = e p——
5-2 5-2 3 4
MVT states that there exists ¢ € [2,5] such that
1
! = — —
f (C) - 4
and we find
) 1 1 1
ffg)=——F5 = ——5=—7 = c—-1=42 = c=3,-1L
(x—1) (c—1) 4
We reject ¢ = —1 since it is not in [2,5]. Therefore, at @ = 3, we achieve f’(3) = —1, that is, the average

rate of change (—7%) is achieved at z = 3.

Problem 5. Find the open intervals on which the function f(z) = x — 64/ — 1 is increasing and on which
it is decreasing.

Solution. Note that the domain of the function is > 1 because the square root prohibits negative inputs.
Compute the first derivative and find that the critical points satisfy

6 3
0=f(z)=1-——=1—- ——
/@) 2vx —1 ve—1
We solve this equation rearranging
3
1= = Vr—1=3 = 2-1=9 = =10
vr—1

and also z = 1 since it makes the derivative undefined. Thus, our intervals of interest are (1,10) and (10, c0).

n (1,10), v —1 < 3 and thus 7= > 1, and hence 1 — \/fj < 0. Therefore, f (z) is decreasing on

(1, 10)
On (10,00), v —1 > 3 and thus 7= <1, and hence 1 — \/g% > 0. Therefore, f(x) is increasing on
(10, 00).

Problem 6. Apply Newton’s method to the function in Problem 2. Supply your own guess (based on where
the root may be). Compute the second iteration x5 (leave your answer in the most simplified form, however
ugly it may seem).

Solution. We find

We have
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Thus, since we located the root lies on [—1, 0], we can start by guessing with z¢ = 0.

emo—i—xg eV +03 1
€T = Tn — = —_ = —
PO ero 4342 04302
and then
e + a3 el -1
T2=T1— o s T | T T T i
er1 + 3] e t+3

One should be able to show that x5 € [—1,0] which means you are searching in the right space.

Problem 7. (Challenge problem, do only if you have time — this level of difficulty is unlikely but not
unexpected)

A certain apartment complex has three hundred (essentially identical) apartments. The landlord knows
that at a rent of one thousand dollars per month every unit will be let, but for each ten dollar rise in the
rent, one more unit will go vacant. How much should the landlord charge to maximize his income?

Solution. We know the income [ is rent R times number of unit let N, i.e.
I =RN.
Let = be the amount excess of $1000. Rent is allowed to increase in the linear fashion
R (z) = 1000 + =
while for the same x, number of unit let decreases

x

N (z) =300 — —.
(Technically, {5 should be written as H”—OJ, the floor function, that is, it rounds down to an integer. For
example, if you increase by 9 dollars, you won’t lose a unit) Altogether, we have

I (z) = (1000 + ) (300 - 1%) ,

which we now maximize on the domain x € [0,3000] (why? You would hate to see negative income, right?).

The critical points satisfy
o _ T . 1y T T
0=1I'(z) = (300 — —10) + (1000 + x) (——10) = 300 — 0~ 100 — 0

which implies
x = 1000.
Thus, we evaluate at the endpoints and the critical point and compare
I(0) = 300000
1(3000) =0
1(1000) = 400000

which makes I (1000) a local maximum (and thus a global one since there is only one critical point). There-
fore, the landlord should charge $2000 per unit.



