
MATH 111-007 RECITATION 1027

The following problems don't necessarily have to do with Chapter 4. Any answer without an at-
tempted explanation (when requested) receives automatically -1 for the recitation.

Problem 1. (Odd and even functions and their derivatives)

(1) An odd function f (x) satis�es f (x) = −f (−x). Suppose further that f is di�erentiable. What can
you say about f ′ (x)?

Remark. You take a derivative of both sides of the equation satis�ed by any odd function.

f (x) = −f (−x)

=⇒ d

dx
f (x) =

d

dx
(−f (−x))

Chain rule
=⇒ f ′ (x) = −f ′ (−x) d

dx
(−x) = f ′ (−x) .

This means f ′ (x) is an even function, or more precisely, the derivative of an odd function is an even
function.

(2) An even function f (x) satis�es f (x) = f (−x). Suppose further that f is di�erentiable. What can
you say about f ′ (x)?

Remark. Similar to the above procedure, we do

f (x) = f (−x)

=⇒ d

dx
f (x) =

d

dx
(f (−x))

Chain rule
=⇒ f ′ (x) = f ′ (−x) d

dx
(−x) = −f ′ (−x) .

This means f ′ (x) is an odd function, or more precisely, the derivative of an even function is an odd
function.

Problem 2. Show that y1 = sin (x), y2 = cos (x) and y3 = a cos (x) + b sin (x) where a and b are constants,
all satisfy the equation

y′′ + y = 0.

How would you modify the functions above so that they satisfy y′′ + 4y = 0? How about y′′ + ky = 0 for
k 6= 0?

Solution. You plug the given functions into the equation and see if they work.
For y1 = sin (x), we �nd y′′1 = − sin (x) and thus y′′1 + y1 = 0, check.
For y2 = cos (x), we �nd y′′2 = − cos (x) and thus y′′2 + y2 = 0, check.
Lastly, for y3 = a cos (x) + b sin (x) = ay2 + by1, we �nd

y′′3 = ay′′2 + by′′1

and therefore,

y′′3 + y3 = ay′′2 + by′′1 + ay2 + by1

= a (y′′2 + y2) + b (y′′1 + y1)

= 0,

check!
Now, what would contribute to the 4 out there? Suppose y1 = sin (2x) now,

y′1 = 2 cos (2x) , y′′1 = −4 sin (2x)
1
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and therefore

y′′1 + 4y1 = 0,

which means that we can deal with the 4 by scaling the input (thanks to the Chain Rule). Therefore,

y2 = cos (2x) , y3 = a cos (2x) + b sin (2x)

will also work. In general, to satisfy y′′ + ky = 0, we just need the scale of input to be
√
k, that is,

y3 = a cos
(√

kx
)
+ b sin

(√
kx
)
.

Problem 3. Consider the function f (x) = x3. Construct an interval such that

(1) both absolute extrema exist. Give their values.
Any closed and bounded intervals will work because f is a continuous function (this is the con-

sequence of the Extreme Value Theorem). For example, [0, 1] works, and absolute max is at (1, 1)
while absolute min is at (0, 0).

(2) only absolute minimum exists, but not absolute maximum.
Any half open interval with the open end on the right will work (because the function is monotone

increasing), e.g. [0, 1). Absolute min is at (0, 0) but no absolute max exists.
(3) no absolute extrema.

(0, 1).

Problem 4. Again, consider the function f (x) = x3. Is there a local maximum at x = 0? Why or why not?
Support your claims by using the de�nition of local maximum directly, e.g. if you claim it is a local

maximum, then you need to tick all the check points of the de�nition; on the other hand, if you claim it is
not, then state exactly which check points have failed in the de�nition in this situation.

Solution. It is NOT a local maximum. Any open intervals (a, b) containing x = 0 has to go into both the
positive and negative, that is, a < 0 and b > 0. Clearly, f (x) ≥ f (0) for 0 ≤ x < b. So there is no open
interval (a, b) (neighbourhood) containing x = 0 such that f (0) ≥ f (x) for all x ∈ (a, b).

Theorem. (Extreme Value Theorem) If f is continuous on a closed and bounded interval [a, b], then f
achieves both its absolute maximum and minimum on [a, b]. More precisely, there are numbers x1, x2 ∈ [a, b]
such that f (x1) = m and f (x2) = M , and

m ≤ f (x) ≤M, for all x ∈ [a, b] .

One way to read a theorem is via the implication �If A then B�. The contrapositive statement �If not B
then not A� is an equivalent statement. To check consistency, we can check either statement.

Regarding the negation �not A� or �not B�, if A contains two statements, then �not A� means either
statement is untrue (or both). Therefore, the contrapositive of the extreme value theorem is the following:

Theorem. (Contrapositive of Extreme Value Theorem) Suppose D = [a, b] is closed an bounded. If f does
not have both absolute extrema on [a, b] (so having at most one extremum), then f is discontinuous on [a, b].

Problem 5. (Sketch and explain) For the following functions, identify the domain D. Determine whether
f (x) achieves absolute extrema on D. Explain how your answer is consistent with the Extreme Value
Theorem (given in lecture and above).

(1) f (x) =

{
x+ 1, −1 ≤ x < 0;

cos (x) , 0 < x ≤ π
2 .

.

Solution. First, in order to apply the Extreme Value Theorem, one must show that
(a) f (x) is continuous.
(b) The domain is closed and bounded.

The domain D =
[
−1, π2

]
is indeed closed and bounded.

Now, onto continuity, the point of controversy is x = 0, as both pieces are continuous in their
own domains. Note, however, that x = 0 is never included in the domain, which means, the function
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cannot be continuous on D. Therefore, the direct statement of the theorem does not even apply. We
go on to check the contrapositive.

We �nd the absolute minimum is at (−1, 0) and
(
π
2 , 0
)
and no absolute maximum. This satis�es

the hypothesis of the contrapositive statement. Therefore, f must be discontinuous on [a, b], which
is the case as we found above. Therefore, the results are consistent with the theorem.

(2) f (x) =

{
1
x , −1 ≤ x < 0;
√
x, 0 ≤ x ≤ 4.

Solution. The apparent asymptote implies that f (x) is not continuous, though the domain we work
with, [−1, 4], is closed and bounded. We check consistency using the contrapositive statement.

Indeed, we �nd only absolute maximum at x = 4 (the coordinate (4, 2)), and no absolute mini-
mum. This satis�es the hypothesis of the contrapositive statement, which then implies f must be
discontinuous. This is consistent with our �nding.

(3) f (x) =

{
1, x = 0;

0, −1 ≤ x < 0 and 0 < x ≤ 1.

Solution. The function has a jump at x = 0, and thus is discontinuous. The domain is closed and
bounded [−1, 1]. The forward statement is not applicable, and we can conclude nothing. We look at
the contrapositive statement.

We actually �nd both absolute maximum and minimum, at (0, 1) and (−1, 0) (actually all of
−1 ≤ x < 0 and 0 < x ≤ 1 achieves absolute minima). This means that the hypothesis of the
contrapositive statement is not satis�ed, and we can conclude nothing.

So what went wrong? Is the theorem wrong? No, if you �nd an inapplicable example (in any
way), it does NOT invalidate the theorem. It showcases the limitation of the theorem, usually given
by its hypothesis that the theorem does not apply to ALL but some functions. If you really want to
disprove a theorem, you must pick an example that satis�es the hypothesis, and then come up with
a di�erent conclusion than the promised one.


