MATH 111-007 RECITATION 4

A well-known result for the exponential function is

$$\frac{d}{dx}\left(e^{x}\right) = e^{x},$$

namely, the function and its derivative (and thus any order of derivatives) are equal.

Problem 1. Compute $\frac{d}{dx}(e^{2x})$ without using the Chain Rule (which we haven't learned).

Problem 2. Find the derivative of $y = \frac{(x-1)(x^2-2x)}{x^4}$. Use the **best** method in your opinion (which means you should try several).

Problem 3. Consider the free fall

$$s\left(t\right) = \frac{1}{2}gt^{2}$$

where s(t) is the vertical displacement in meters, of a free falling object. g is the gravitational acceleration with unit m/s^2 , though kept general here (so, not specifically the Earth's). Find t_0 , the time it takes for the downward velocity of the object to reach some level v_0 . How does t_0 depend on g?

Problem 4. Consider a projectile on an airless planet (so no air friction considered) with unknown gravitational acceleration constant g_s . The height of the projectile as a function of time t follows

$$s(t) = 15t - \frac{1}{2}g_s t^2.$$

The projectile reached its maximum height 20 seconds after being launched. What was the value of g_s ?

Problem 5. Determine all vertical asymptotes, and find the derivative of the following functions:

(1) $\tan(x)$.

(2) $\cot(x)$.

(3) $\csc(x)$.

(4) $\sec(x)$.

In each part, does it make sense that the vertical asymptotes are where they should be?

Problem 6. Find the derivative of $y = \frac{\cos^2(x)}{1+\sin(x)}$. Determine the **best** method.

Problem 7. Consider the piece-wise function

$$f(x) = \begin{cases} x+b, & x < 0, \\ \cos(x), & x \ge 0. \end{cases}$$

Is there a value of b that will make f(x) continuous at x = 0? Differentiable at x = 0 (Think about this. Think!)? Justify.