OCTOBER, 25TH, 2021

Problem 1. Find the linearisation of $f(x) = e^{-\frac{x^2}{2}}$ at x = 0. Solution. We follow the definition of linearisation of f(x) at x = 0, that is, $L_{x=a}(x) = f(a) + f'(a)(x-a)$

where a = 0. We find that f(0) = 1 and

$$f'(x) = e^{-\frac{x^2}{2}} \cdot (-x) \implies f'(0) = 0.$$

Therefore,

$$L_{x=0}(x) = 1.$$

A flat line.

Problem 2. Compute dy where $y = f(x) = x^3$ and use differentials to estimate $(2.01)^3$. Solution.

 $dy = 3x^2 dx.$

The differential estimate is given by

 $f(x + dx) \approx f(x) + dy.$ We first note that $(2.01)^3 = (2 + 0.01)^3$. Therefore, with x = 2 and dx = 0.01, we have $f(2 + 0.01) \approx f(2) + dy$

$$(2 + 0.01) \approx f(2) + dy$$

= $f(2) + f'(2) dx$
= $8 + 3 \cdot (2)^2 \cdot 0.01$
= $8.12.$

True answer is $(2.01)^3 \approx 8.120601$, so our estimate is accurate up to the 4th significant digit. Pretty good.

Problem. (Bonus) Use differentials or linearisation to estimate sin(1). Hint: which (convenient) angle has radian readings close to 1? Leave the expression of your estimate in terms of π .

Solution. The angle close to 1 is $\frac{\pi}{3} \approx 1.04$. Thus, let $f(x) = \sin(x)$, and we estimate via

$$f(x+dx) \approx f(x) + f'(x) dx$$

with $x = \frac{\pi}{3}$ and $dx = 1 - \frac{\pi}{3}$. Altogether,

$$\sin(1) = f(1)$$

$$= f\left(\frac{\pi}{3} + dx\right)$$

$$\approx f\left(\frac{\pi}{3}\right) + f'\left(\frac{\pi}{3}\right)(dx)$$

$$= \sin\left(\frac{\pi}{3}\right) + \cos\left(\frac{\pi}{3}\right)\left(1 - \frac{\pi}{3}\right)$$

$$= \frac{\sqrt{3}}{2} + \frac{1}{2}\left(1 - \frac{\pi}{3}\right)$$

$$\approx 0.84243$$

where the exact value is

$\sin(1) \approx 0.841470.$

Now we are only accurate up to the second significant digit. This level accuracy (or lack of) is expected because $\theta = \frac{\pi}{3} \approx 1.0472$ which is at a nontrivial distance from where we took the linearization (at $\theta = 1$).