OCTOBER, 18TH, 2021

Problem 1. Find the derivative of $f(x) = 2^{\ln(\sin(x))}$.

Solution. We note that the outer function is $h(x) = 2^x$ and inner function is $g(x) = \ln(\sin(x))$ so that $f(x) = h(g(x))$ and thus $f'(x) = h'(g(x))g'(x)$. We find that

$$
h'(x) = 2^x \ln(2) \implies h'(g(x)) = 2^{g(x)} \ln(2) = 2^{\ln(\sin(x))} \ln(2),
$$

and

$$
g'(x) = \frac{d}{dx}\ln(\sin(x)) = \frac{1}{\sin(x)}\cos(x)\boxed{=\cot(x)}
$$

where the boxed step is optional. Altogether,

$$
f'(x) = h'(g(x)) g'(x) = 2^{\ln(\sin(x))} \ln(2) \cot(x).
$$

Problem 2. Evaluate $f'(\frac{1}{\sqrt{2}})$ $\frac{1}{2}$ where $f(x) = e^{\sin^{-1}(x)}$.

Solution. We identify that the outer function is $h(x) = e^x$ and inner function $g(x) = \sin^{-1}(x)$, which means $f(x) = h(g(x))$ and $f'(x) = h'(g(x)) \cdot g'(x)$. We find

$$
h'(x) = e^x \implies h'(g(x)) = e^{\sin^{-1}(x)},
$$

and

$$
g'(x) = \frac{1}{\sqrt{1 - x^2}}.
$$

Altogether,

$$
f'(x) = \frac{e^{\sin^{-1}(x)}}{\sqrt{1 - x^2}}.
$$

It remains to find out about the function values as we want $f'(\frac{1}{\sqrt{2}})$ $\frac{1}{2}$.

$$
\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}
$$

since $\sin \left(\sin^{-1} \left(\frac{1}{\sqrt{2}} \right) \right)$ $\frac{1}{2}$ $\left(\frac{1}{\sqrt{2}}\right)$ $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ (also note that that the range of sin⁻¹ (x) is $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ so sin⁻¹ $\left(\frac{1}{\sqrt{2}}\right)$ $\frac{1}{2}$ = $\frac{3\pi}{4}$ is not correct.). Thus, λ

$$
f'\left(\frac{1}{\sqrt{2}}\right) = \frac{e^{\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)}}{\sqrt{1 - \left(\frac{1}{\sqrt{2}}\right)^2}} = e^{\frac{\pi}{4}} \frac{1}{\sqrt{1 - \frac{1}{2}}} = \sqrt{2}e^{\frac{\pi}{4}}
$$

Problem. (Bonus) Do problem 1 in another way, and specify the domain of $f(x)$ and $f'(x)$. Solution. You do implicit differentiation by first taking ln of both sides.

$$
\ln(f(x)) = \ln(2^{\ln(\sin(x))}) = \ln(\sin(x)) \ln(2).
$$

Then we take a derivative of both sides,

$$
\frac{1}{f(x)}f'(x) = \ln(2)\frac{d}{dx}\ln(\sin(x)) = \ln(2)\frac{\cos(x)}{\sin(x)} = \ln(2)\cot(x).
$$

Thus, multiplying $f(x)$ over to the right hand side, we have

$$
f'(x) = \ln(2) \cot(x) f(x) = \ln(2) \cot(x) 2^{\ln(\sin(x))}
$$
.

For the domain, we first look at $f(x) = 2^{\ln(\sin(x))}$. The only stipulation is that the argument of ln, namely, $\sin(x) > 0$ since the function $\ln(x)$ only allows positive input values. At the same time, $\sin(x) > 0 \implies$ $0 < x < \pi$ (or in general $2n\pi < x < (2n+1)\pi$ for $n = 0, 1, 2, \ldots$). Thus the domain of $f(x)$ is $0 < x < \pi$.

Now we look at $f'(x) = \ln(2) \cot(x) 2^{\ln(\sin(x))}$. We see the original function in $f'(x)$ so the domain is at most the same as $f(x)$. The extra cot (x) restricts that $\sin(x) \neq 0$ but $\sin(x) > 0$ anyways, so cot (x) is fine with the original domain for $f(x)$. Altogether, the domain of $f'(x)$ is $0 < x < \pi$.