MATH 111-007 QUIZ 4

OCT 4TH, 2021

Problem 1. Differentiate $f(x) = \tan^2(3x^2)$.

Solution. First, inner function is $g(x) = \tan(3x^2)$ and outer function is $h(x) = x^2$. Thus,

$$f'(x) = h'(g(x))g'(x) = 2\tan(3x^2)\frac{d}{dx}\tan(3x^2).$$

To deal with the second term, we find its inner function to be $3x^2$ and outer tan (x). Hence,

$$\frac{d}{dx}\tan\left(3x^2\right) = \sec^2\left(3x^2\right) \cdot 6x.$$

Altogether,

$$f'(x) = 12x \tan(3x^2) \sec^2(3x^2)$$
.

Now, if you choose differently, such as inner function is $g(x) = 3x^2$ and outer is $h(x) = \tan^2(x)$, you will still be fine.

$$f'(x) = h'(g(x))g'(x)$$

where you realise

 $h'(x) = 2 \tan(x) \sec^2(x) \implies h'(g(x)) = 2 \tan(3x^2) \sec^2(3x^2)$ (find your inner and outer for $h(x) = \tan^2(x)$) and

Patching them all together,

$$f'(x) = 12x \tan(3x^2) \sec^2(3x^2)$$

g'(x) = 6x.

Remark. Note that even though $\frac{d}{dx} \tan(x) = \sec^2(x)$, it does NOT mean $\frac{d}{dx} \tan^2(x) = \sec^4(x)$ – otherwise you are claiming $\left(\frac{d}{dx} \tan(x)\right)^2 = \frac{d}{dx} \tan^2(x)$, which is absurd. To find $\frac{d}{dx} \tan^2(x)$, you do power chain rule. **Problem 2.** Find $\frac{dy}{dt}$ when x = 1 if $y = x^2 + 7x - 5$ and $\frac{dx}{dt} = \frac{1}{3}$.

Solution. By the chain rule,

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = \frac{1}{3}\frac{dy}{dx}.$$

At the same time,

$$\frac{dy}{dx} = 2x + 7 \implies \frac{dy}{dx} \mid_{x=1} = 9.$$
$$\frac{dy}{dt} \mid_{x=1} = \frac{1}{3} \frac{dy}{dx} \mid_{x=1} = \frac{1}{3} \cdot 9 = 3.$$

Altogether,

$$\frac{dt}{dt} = \frac{d}{dt}u(x(t))$$
 is an explicit function of t, while $\frac{dx}{dt} = \frac{d}{dt}x(t)$ is also

Remark. Note, $\frac{dy}{dt} = \frac{d}{dt}y(x(t))$ is an explicit function of t, while $\frac{dx}{dt} = \frac{d}{dt}x(t)$ is also one. However, $\frac{dy}{dx} = \frac{d}{dt}y(x)$ is an explicit function of x, and has nothing to do with t.

$$\frac{dy}{dt} = \frac{d}{dx} \left(y \left(x \left(t \right) \right) \right) = \frac{d}{dx} y \left(x \right) \times \frac{d}{dt} x \left(t \right)$$

is really what's happening.

Problem. (Bonus) Prove that $\frac{d}{dx} \sec(x) = \sec(x) \tan(x)$. (Hint: use the Power Chain Rule and then realise something.)

Proof.

$$\frac{d}{dx}\sec(x) = \frac{d}{dx}\frac{1}{\cos(x)}$$
$$= \frac{d}{dx}(\cos(x))^{-1}$$
$$= -\cos(x)^{-2}(-\sin(x))$$
$$= \frac{\sin(x)}{\cos^2(x)}$$
$$= \frac{1}{\cos(x)}\frac{\sin(x)}{\cos(x)}$$
$$= \sec(x)\tan(x)$$