MATH 111-007 QUIZ 3

SEPTEMBER 27TH, 2021

Problem 1. Find the derivative of the following functions. If you run out of time, write down the **best** derivative rule (among the ones we have learned so far) for each problem.

(1)
$$f(x) = 6x^5 (3x^2 + 1)$$
.

Solution. Multiply out and do power rule.

$$f(x) = 18x^7 + 6x^5.$$

Then,

$$f'(x) = 18 \cdot 7x^{7-1} + 6 \cdot 5x^{5-1} = 126x^6 + 30x^4$$

I strongly advise against product rule.

(2)
$$g(y) = \sqrt[3]{y^2} (y-1)^{-1}$$
.

Solution. Simplify the first term into a power and use quotient rule.

$$g\left(y\right) = \frac{y^{\frac{2}{3}}}{y-1}.$$

Then,

$$g'(y) = \frac{(y-1)\frac{d}{dy}y^{\frac{2}{3}} - y^{\frac{2}{3}}\frac{d}{dy}(y-1)}{(y-1)^2} = \frac{(y-1)\frac{2}{3}y^{\frac{2}{3}-1} - y^{\frac{2}{3}}}{(y-1)^2} = \frac{2}{3}\frac{y^{-\frac{1}{3}}}{(y-1)} - \frac{y^{\frac{2}{3}}}{(y-1)^2}$$

or whatever simplified form you arrive at.

Problem. (Bonus) Based on your knowledge of the product rule for two functions, guess (1 pt for correct guess) or prove (2 pts) the product rule for three functions, e.g. $\frac{d}{dx} (f(x)g(x)h(x)) =$? (Hint: write down $\frac{d}{dx} (f(x)g(x)h(x))$ is, first, then think how you can put yourself in position to use it when considering $\frac{d}{dx} (f(x)g(x)h(x))$. Do you have to consider all 3 functions simultaneously or not?)

Proof. Let I(x) = g(x) h(x). Then,

$$\frac{d}{dx} \left(f\left(x\right) g\left(x\right) h\left(x\right) \right) = \frac{d}{dx} \left(f\left(x\right) I\left(x\right) \right)$$
$$= f'\left(x\right) I\left(x\right) + f\left(x\right) I'\left(x\right)$$

At the same time, we know

$$I'(x) = g'(x) h(x) + g(x) h'(x).$$

Altogether,

$$\frac{d}{dx}(f(x)g(x)h(x)) = f'(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)h'(x).$$

The pattern is that in each term, you keep two fixed and differentiate the other, then add up all the cases.