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A rich and � exible class of random probability measures, which we call stick-breaking priors, can be constructed using a sequence
of independent beta random variables. Examples of random measures that have this characterization include the Dirichlet process,
its two-parameter extension, the two-parameter Poisson–Dirichlet process, � nite dimensional Dirichlet priors, and beta two-parameter
processes. The rich nature of stick-breaking priors offers Bayesians a useful class of priors for nonparametri c problems, while the
similar construction used in each prior can be exploited to develop a general computational procedure for � tting them. In this article we
present two general types of Gibbs samplers that can be used to � t posteriors of Bayesian hierarchical models based on stick-breaking
priors. The � rst type of Gibbs sampler, referred to as a Pólya urn Gibbs sampler, is a generalized version of a widely used Gibbs
sampling method currently employed for Dirichlet process computing. This method applies to stick-breaking priors with a known Pólya
urn characterization, that is, priors with an explicit and simple prediction rule. Our second method, the blocked Gibbs sampler, is based
on an entirely different approach that works by directly sampling values from the posterior of the random measure. The blocked Gibbs
sampler can be viewed as a more general approach because it works without requiring an explicit prediction rule. We � nd that the
blocked Gibbs avoids some of the limitations seen with the Pólya urn approach and should be simpler for nonexperts to use.

KEY WORDS: Blocked Gibbs sampler; Dirichlet process; Generalized Dirichlet distribution; Pitman–Yor process; Pólya urn Gibbs
sampler; Prediction rule; Random probability measure; Random weights; Stable law.

1. INTRODUCTION

This article presents two Gibbs sampling methods for � t-
ting Bayesian nonparametric and semiparametric hierarchical
models that are based on a general class of priors that we
call stick-breaking priors. The two types of Gibbs samplers
are quite different in nature. The � rst method is applicable
when the prior can be characterized by a generalized Pólya urn
mechanism and it involves drawing samples from the poste-
rior of a hierarchical model formed by marginalizing over the
prior. Our Pólya urn Gibbs sampler is a direct extension of the
widely used Pólya urn sampler developed by Escobar (1988,
1994), MacEachern (1994), and Escobar and West (1995) for
� tting the Ferguson (1973, 1974) Dirichlet process. Although
here we focus on its application to stick-breaking priors (such
as the Dirichlet process), in principle, the Pólya urn Gibbs
sampler can be applied to any random probability measure
with a known prediction rule. The prediction rule character-
izes the Pólya urn description of the prior and is de� ned as
the conditional distribution of a future observation Yn+ 1 given
previous sampled values Y11 : : : 1 Yn from the prior (as illustra-
tion, the prediction rule for the Dirichlet process leads to the
famous Blackwell–MacQueen Pólya urn; see Blackwell and
MacQueen 1973 for more discussion).

Our second method, the blocked Gibbs sampler, works in
greater generality in that it can be applied when the Pólya
urn characterization is unknown. Thus, this method can be
used for a stick-breaking measure without needing to know
the prediction rule (in fact, we argue that sometimes even
if one knows the prediction rule, the blocked Gibbs might
still be preferable to Pólya urn sampling). A key aspect of
the blocked Gibbs approach is that it avoids marginalizing
over the prior, thus allowing the prior to be directly involved
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in the Gibbs sampling scheme. This allows direct sampling
of the nonparametric posterior, leading to several computa-
tional and inferential advantages (see the discussion in Sec-
tions 5.3 and 5.4). Including the prior in the update is an
approach that is not always exploited when � tting nonpara-
metric hierarchical models. This is especially true for mod-
els using Dirichlet process priors. Some notable exceptions
were discussed by Doss (1994), who showed how to directly
update the Dirichlet process in censored data problems, and
by Ishwaran and Zarepour (2000a), who updated approximate
Dirichlet processes in hierarchical models. Also see the liter-
ature regarding the beta process (Hjort 1990) in survival anal-
ysis for further examples of Bayesian computational methods
that include the prior in the update (for example, see Damien,
Laud, and Smith 1996 and Laud, Damien, and Smith 1998).

1.1 Stick-Breaking Priors

A more precise de� nition will be given shortly, but for now
we note that stick-breaking priors are almost surely discrete
random probability measures ° that can be represented gen-
erally as

°4 5 =
NX

k=1

pk„Zk
4 51 (1)

where we write „Zk
4 5 to denote a discrete measure concen-

trated at Zk. In (1), the pk are random variables (called ran-
dom weights) chosen to be independent of Zk and such that
0 pk 1 and

PN
k=1 pk = 1 almost surely. It is assumed that

Zk are iid random elements with a distribution H over a mea-
surable Polish space 4¹1 ¢4¹55, where it is assumed that H
is nonatomic (i.e., H8y9 = 0 for each y 2 ¹). Stick-breaking
priors can be constructed using either a � nite or an in� nite
number of terms, 1 N ˆ; in some cases, we may even
choose N to depend upon the sample size n.

The method of construction for the random weights is what
sets stick-breaking priors apart from general random measures
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° expressible as (1). Call ° a °N 4a1b5 random probability
measure, or a stick-breaking random measure, if it is of the
form (1) and

p1 = V1 and pk = 41ƒ V1541ƒ V25

41 ƒ Vkƒ15 Vk1 k 21 (2)

where Vk are independent Beta4ak1 bk5 random variables for
ak1 bk > 0, and where a = 4a11 a21 : : : 5 and b = 4b11 b21 : : : 5.
Informally, construction (2) can be thought of as a stick-
breaking procedure, where at each stage we independently and
randomly, break what is left of a stick of unit length and assign
the length of this break to the current pk value.

The stick-breaking notion for constructing random weights
has a very long history. For example, see Halmos (1944),
Freedman (1963), Fabius (1964), Connor and Mosimann
(1969), and Kingman (1974). However, our de� nition of a
°N 4a1b5 measure appears to be a new concept (to the best of
our knowledge) and it provides a uni� ed way to connect a col-
lection of seemingly unrelated measures scattered throughout
the literature. These include (a) the Ferguson Dirichlet pro-
cess (Ferguson 1973, 1974), (b) the two-parameter Poisson–
Dirichlet process (Pitman and Yor 1997), (c) Dirichlet-
multinomial processes (Muliere and Secchi 1995), m-spike
models (Liu 1996), � nite dimensional Dirichlet priors (Ish-
waran and Zarepour 2000b,c) and (d) beta two-parameter pro-
cesses (Ishwaran and Zarepour 2000a). (This list is by no
means complete, and we anticipate that more measures will
eventually be recognized as being stick-breaking in nature.)

1.1.1 The Case N < ˆ (Finite dimensional priors). The
class of °N 4a1b5 measures can be broken up into two groups,
depending on whether a � nite or in� nite number of beta ran-
dom variables are used in its construction. When N < ˆ, we
necessarily set VN = 1 to ensure that °N 4a1b5 is well de� ned.
In this case, we have a = 4a11 : : : 1 aN ƒ15, b = 4b11 : : : 1 bN ƒ15,
and

p1 = V1 and pk = 41ƒ V1541ƒ V25

41 ƒ Vkƒ15 Vk1 k = 21 : : : 1N 0 (3)

Setting VN = 1 guarantees that
PN

k=1 pk = 1 with probability 1,
because

1ƒ
N ƒ1X
k=1

pk = 41 ƒ V15 41ƒ VN ƒ150 (4)

Section 3 shows that random weights de� ned in this man-
ner have the generalized Dirichlet distribution. One important
consequence of this is that all � nite dimensional Dirichlet pri-
ors (Ishwaran and Zarepour 2000c) can be seen to be °N 4a1b5

measures. Another attribute of the generalized Dirichlet distri-
bution is its conjugacy to multinomial sampling. This property
is a key ingredient to implementing the blocked Gibbs sam-
pler in Section 5.

1.1.2 The Case N = ˆ (In� nite dimensional priors). We
write °ˆ4a1 b5 to emphasize the case when N = ˆ. A
°ˆ4a1 b5 in� nite dimensional prior is only well de� ned if its
random weights sum to 1 with probability 1. The following
lemma provides a simple method for checking this condition
(see the Appendix for a proof).

Lemma 1. For the random weights in the °ˆ4a1b5 random
measure,

X̂

k=1

pk = 1 a.s. iff
X̂

k=1

E log41ƒ Vk5 = ƒˆ0 (5)

Alternatively, it is suf� cient to check that
Pˆ

k=1 log41 +
ak=bk5 = + ˆ.

In� nite dimensional priors include the Dirichlet process, its
two-parameter extension, the two-parameter Poisson–Dirichlet
process (Pitman and Yor 1997), and beta two-parameter pro-
cesses (Ishwaran and Zarepour 2000a).

1.2 Outline of the Text

The layout of this article is as follows. In Section 2, we dis-
cuss the two-parameter Poisson–Dirichlet process, or what we
refer to as the Pitman–Yor process (Pitman and Yor 1997). We
recall its characterization in terms of the Poisson process and
compare this construction to the simpler stick-breaking con-
struction that will be used in our blocked Gibbs sampler. We
also review its prediction rule and, thus, its characterization as
a Pólya urn which is needed for its computation via the Pólya
urn sampler. Section 3 focuses on � nite dimensional °N 4a1b5
measures and presents several important examples, includ-
ing � nite dimensional Dirichlet priors (Ishwaran and Zarepour
2000c) and almost sure truncations of °ˆ4a1b5 measures (see
Theorems 1 and 2 for methods for selecting truncation levels).

The generalized Pólya urn Gibbs sampler is presented in
Section 4, including an acceleration step to improve mix-
ing of the Markov chain. Theorem 3 characterizes the poste-
rior under the Pitman–Yor prior in semiparametric hierarchical
models and can be used to estimate mean posterior function-
als and their laws based on output from the Pólya urn sam-
pler. Section 5 presents the blocked Gibbs sampler for � tting
hierarchical models based on � nite dimensional stick-breaking
priors (these include the priors mentioned in Section 3, and
truncations and approximations of the Pitman–Yor process as
examples). We indicate some of the important properties of
the blocked Gibbs sampler, including its ease in handling
non-conjugacy and its good mixing behavior. Its good mix-
ing properties are attributed to the manner in which it blocks
parameters and are due to its behavior as a data augmentation
procedure (see Section 5.3). Section 6 presents extensive sim-
ulations that compare the mixing behavior of our two Gibbs
samplers under different priors.

2. THE PITMAN–YOR PROCESS, °¹(a1b)

The recently developed two-parameter Poisson–Dirichlet
process of Pitman and Yor (1997) has been the subject of a
considerable amount of research interest. (see Pitman 1995,
1996a,b, 1997, 1999; Kerov 1995; Mekjian and Chase 1997;
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Zabell 1997; Tsilevich 1997; Carlton 1999). However, because
most of this literature has appeared outside of statistics, it
has gone largely unnoticed that the process possesses sev-
eral properties that make it potentially useful as a Bayesian
nonparametric prior. One such key property is its characteri-
zation as a stick-breaking random measure by Pitman (1995,
1996a). As shown there, the size-biased random permutation
for the ranked random weights from the measure produces a
sequence of random weights derived using a residual alloca-
tion scheme (Pitman 1996b), or what we are calling a stick-
breaking scheme. This then identi� es the process as a two-
parameter stick-breaking random measure with parameters
ak = 1ƒ a, bk = b + ka, where 0 a < 1 and b > ƒa (Pitman
1995, 1996a). Another key property of the process is its char-
acterization as a generalized Pólya urn. As we will see, this
characterization follows from an explicit description of its pre-
diction rule (see Section 2.2).

For convenience, we refer to the two-parameter Poisson–
Dirichlet process as the Pitman–Yor process, writing it as
°¹4a1 b5 to indicate its two shape parameters. The Ferguson
(1973, 1974) Dirichlet process is one example of a °¹4a1 b5

process, corresponding to the measure °¹401�5 with parame-
ters a = 0 and b = � . For notation, we usually write DP4�H5

for this measure to indicate a Dirichlet process with � nite
measure �H . Another important example that we consider is
the °¹4�105 process with parameters a = � and b = 0. This
selection of shape parameters yields a measure whose ran-
dom weights are based on a stable law with index 0 < � < 1.
The DP4�H5 and stable law °¹4�105 processes are key pro-
cesses because they represent the canonical measures of the
Pitman–Yor process (Pitman and Yor 1997, Corollary 21). In
the following subsection, we look at these two processes in
more detail and review their stick-breaking and Poisson pro-
cess characterizations.

2.1 Poisson Process Characterization

Earlier representations for the DP4�H5 measure and other
measures derived from in� nitely divisible random variables
were constructed using Lévy measures applied to the Poisson
point process (see Ferguson and Klass 1972). An unpub-
lished thesis by McCloskey (1965) appears to be the � rst
work that drew comparisons between the Dirichlet process
and beta random variable stick-breaking procedures. However,
it was not until Sethuraman (1994) that these connections
were formalized (also see Sethuraman and Tiwari 1982, Don-
nelly and Joyce 1989, and Perman, Pitman, and Yor 1992).
Let âk = E1 + + Ek, where Ek are iid exp415 random vari-
ables. Sethuraman (1994) established the following remark-
able identity showing that the Dirichlet process de� ned by
Ferguson (1973) is a °ˆ4a1 b5 measure:

DP4�H54 5 =
X̂

k=1

�ƒ14âk5Pˆ
k=1 �ƒ14âk5

„Zk
4 5

¤= V1„Z1
4 5 +

X̂
k=2

41 ƒ V1541ƒ V25

41ƒ Vkƒ15 Vk „Zk
4 51

where Vk

iid
Beta411 �5, � > 0, and �ƒ1 is the inverse of the

Lévy measure for a Gamma4�5 random variable,

�4x5 = �
Z ˆ

x

exp4ƒu5uƒ1 du1 0 < x < ˆ0

Pitman and Yor (1997) established a parallel identity for
the °¹4a1 b5 process using its characterization in terms of
a subordinator of the Poisson process. In particular, for the
°¹4�105 process, Pitman and Yor (1997, Proposition 9) and
Perman et al. (1992) proved the remarkable fact

°¹4�1 054 5 =
X̂
k=1

â ƒ1=�

kPˆ
k=1 â ƒ1=�

k

„Zk
4 5

¤
= V1„Z1

4 5 +
X̂

k=2

41 ƒ V1541ƒ V25

41ƒ Vkƒ15 Vk „Zk
4 51 (6)

where Vk

ind
Beta41ƒ �1k�5 for 0 < � < 1.

Note that both Poisson process constructions rely on ran-
dom weights constructed using in� nitely divisible random
variables. In the DP4�H5 process, pk = Jk=J is the value
Jk = �ƒ14âk5 normalized by J =

Pˆ
k=1 Jk, a Gamma4�5 ran-

dom variable. In the °¹4�1 05 process, pk = Jk=J is the value
of Jk = â ƒ1=�

k normalized by the random variable J with a sta-
ble law with index 0 < � < 1.

It is instructive to compare the complexity of the Poisson
based random weights to their much simpler stick-breaking
counterparts. For example, even trying to sample values from
the Poisson process construction is dif� cult, because the
denominator of each random weight involves an in� nite sum
(even the numerator can be hard to compute with certain
Lévy measures, like in the case of the Dirichlet process).
The stick-breaking characterization thus represents a tremen-
dous innovation, making the the Pitman–Yor process more
amenable to nonparametric applications in much the same way
the Sethuraman (1994) construction does for the Dirichlet pro-
cesss. A perfect example to illustrate its utility is our blocked
Gibbs sampler, which is able to exploit such stick-breaking
constructions to � t hierarchical models based on approximate
Pitman–Yor priors (see Sections 5 and 6 for more details).

2.2 Generalized Pólya Urn Characterization

As shown by Pitman (1995, 1996a), the °¹4a1 b5 process
also can be characterized in terms of a generalized Pólya
urn mechanism. This important connection presents us with
another Gibbs sampling method for � tting nonparametric mod-
els based on this prior (see Section 4).

Call Y11 : : : 1 Yn a sample from the °¹4a1 b5 process if

Yi—P
iid

P1 i = 11 : : : 1 n1 P °¹4a1 b50 (7)
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As shown in Pitman (1995, 1996a), the prediction rule for the
°¹4a1 b5 process is

8Yi 2 —Y11 : : : 1 Yiƒ19 =
b + ami

b + i ƒ 1
H4 5

+
miX

j=1

nj1 i ƒ a

b + i ƒ 1
„Y

j1 i
4 51 i = 21 31 : : : 1 n1

where 8Y11 i1 : : : 1 Ymi 1 i9 denotes the unique set of values in
8Y11 : : : 1 Yiƒ19, each occurring with frequency nj1 i for j =
11 : : : 1mi (notice that n11 i + + nmi 1 i = i ƒ 1).

From this, it follows that the joint distribution for
4Y11 : : : 1 Yn5 can be characterized equivalently by the follow-
ing generalized Pólya urn scheme. Let †11 : : : 1 †n be iid H . If
0 a < 1 and b > ƒa, then

Y1 = †11

4Yi — Y11 : : : 1 Yiƒ15 =

8
>>><
>>>:

†i with probability

4b + ami5=4b + i ƒ 151

Yj1 i with probability

4nj1 i ƒ a5=4b + i ƒ 15,

(8)

for i = 2131 : : : 1 n.

2.2.1 Exchangeability and Full Conditionals. The sam-
pled values 8Y11 : : : 1 Yn9 produced from the urn scheme (8)
are exchangeable because they have the same law as values
drawn using (7). Thus, by exchangeability, we can determine
the full conditional distribution for any Yi by knowing the full
conditional of a speci� c Y ; the most convenient to describe
being Yn, which we already have seen:

8Yn 2 —Y11 : : : 1 Ynƒ19

=
b + amn

b + n ƒ 1
H4 5 +

mnX
j=1

nj1n ƒ a

b + n ƒ 1
„Yj1 n

4 50

This prediction rule is the key component in the Pólya urn
Gibbs sampler described in Section 4, as it allows us to work
out the full conditionals for each Yi needed to run the sampler.

Note that the special case when a = 0 and b = � > 0 corre-
sponds to the DP4�H5 process and produces the Blackwell–
MacQueen prediction rule

8Yn 2 —Y11: : : 1Ynƒ19=
�

� + nƒ1
H4 5+

1

� + nƒ1

nƒ1X
j=1

„Yj
4 50

2.2.2 A Finite Dimensional Dirichlet Prior. Another
important example of an exchangeable urn sequence (8) is
derived using values a = ƒ�=N , N n, and b = � > 0 (see
Pitman 1995, 1996a). This yields

8Yn 2 —Y11 : : : 1 Ynƒ19

=
�41 ƒ mn=N5

� + n ƒ 1
H4 5 +

mnX
j=1

nj1n + �=N

� + n ƒ 1
„Yj1 n

4 51

although the Y11 : : : 1 Yn generated from this urn scheme are
not a sample from the °¹4a1 b5 process, but instead are a
sample from the random measure ° de� ned with symmetric
Dirichlet random weights

°4 5 =
NX

k=1

Gk1 NPN
k=1 Gk1N

„Zk
4 51 Gk1N

iid
Gamma

�

N
0 (9)

In the following section, we show that (9) is an example of
a °N 4a1 b5 measure. It is also a mixture of Dirichlet processes.
Writing ° = DPN 4�H5 to emphasize this connection, we can
express (9) in the notation of Antoniak (1974) as

DPN 4�H54 5 ¤
=

Z
DP4��N 4Z1 55HN 4dZ51

where �N 4Z1 5 =
PN

k=1 „Zk
4 5=N is the empirical measure

based on Z = 4Z11 : : : 1 ZN 5.
As shown in Ishwaran and Zarepour (2000b), the DPN 4�H5

random measure can be used to approximate integrable func-
tionals of the Dirichlet process; that is,

DPN 4�H54g5
d!DP4�H54g5

for each real-valued measurable function g that is integrable
with respect to H . Also see Kingman (1974), Muliere and
Secchi (1995), Liu (1996), Walker and Wake� eld (1998),
Green and Richardson (1999), Neal (2000), and Ishwaran
and Zarepour (2000a,c), who discussed this measure in dif-
ferent contexts and under different names. For example,
Muliere and Secchi (1995) referred to (9) as a Dirichlet-
multinomial processes, Liu (1996), in the context of impor-
tance sampling, dubbed it an m-spike model, and Ishwaran
and Zarepour (2000b,c) referred to it as a � nite dimensional
Dirichlet prior.

3. EXAMPLES OF °N (a1b) MEASURES

3.1 Generalized Dirichlet Random Weights

By considering Connor and Mosimann (1969), it follows
that the law for the random weights p = 4p11 : : : 1 pN 5 de� ned
by (3) is a generalized Dirichlet distribution. Write §¤4a1b5
for this distribution, where a = 4a11 : : : 1 aN ƒ15 and b =
4b11 : : : 1 bN ƒ15. The density for p is

³
N ƒ1Y

k=1

â4ak + bk5

â4ak5â4bk5

´
p

a1ƒ1
1 p

aN ƒ1ƒ1
N ƒ1 p

bN ƒ1ƒ1
N

41 ƒ P15
b1ƒ4a2+ b25 41 ƒ PN ƒ25

bN ƒ2ƒ4aN ƒ1+ bN ƒ151 (10)

where Pk = p1 + + pk and â4 5 is the gamma function.
From this fact, we can make the nice connection that

all random measures based on Dirichlet random weights are
°N 4a1b5 measures. More precisely, let ° be a random mea-
sure (1) with random weights p, where

p = 4p11 : : : 1 pN 5 Dirichlet4a11 : : : 1 aN 50

Then, by (10), it easily follows that p has a §¤4a1b5 distri-
bution with a = 4a11 : : : 1 aN ƒ15 and b = 4

PN
k=2 ak,

PN
k=3 ak,
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: : : 1 aN 5. In other words, ° is a °N 4a1b5 measure. Ishwaran
and Zarepour (2000c) called such measures � nite dimen-
sional Dirichlet priors and showed that they can be used as
sieves in � nite normal mixture problems. A special case of
a � nite dimensional Dirichlet prior is the DPN 4�H5 process
discussed in Section 2.2.2. In this case, a = 4�=N 1 : : : 1 �=N 5
for some � > 0.

3.2 Almost Sure Truncations of °ˆ(a1b) Measures

Another useful class of °N 4a1 b5 measures are constructed
by applying a truncation to the °ˆ4a1b5 measure. The trun-
cation is applied by discarding the N + 1, N + 21 : : : terms
in the °ˆ4a1b5 random measure and replacing pN with 1 ƒ
p1 ƒ ƒ pN ƒ1. Notice that this also corresponds to setting
VN = 1 in the stick-breaking procedure (3).

Determination of an appropriate truncation level can be
based on the moments of the random weights. Consider the
following theorem, which can be used for truncating the
°¹4a1 b5 measure.

Theorem 1. Let pk denote the random weights from a
given °¹4a1 b5 measure. For each positive integer N 1 and
each positive integer r 1, let

TN 4r1a1 b5 =

³
X̂

k=N

pk

ŕ

1 UN 4r1 a1 b5 =
X̂

k=N

pr
k0

Then

E TN 4r1a1 b5 =
N ƒ1Y

k=1

4b + ka54r5

4b + 4k ƒ 15a + 154r5
1 N 21

and

E UN 4r1a1 b5 = E TN 4r1a1 b5
41 ƒ a54rƒ15

4b + 4N ƒ 15a + 154rƒ15
1

where ƒ4r5 = ƒ4ƒ + 15 4ƒ + r ƒ 15 for each ƒ > 0 and
ƒ405 = 1.

See the Appendix for a proof. Several simpli� cations occur
for the moments of the DP4�H5 process, which corresponds
to the case a = 0 and b = �. We have

E TN 4r1a1 b5 =
�

� + r

N ƒ1

and

E UN 4r1a1 b5 =
�

� + r

N ƒ1 â4r5â4� + 15

â4� + r5
0

Notice that both expressions decrease exponentially fast in N

and, thus, for a moderate N , we should be able to achieve
an accurate approximation. A precise bound is given in
Theorem 2. For some °ˆ4a1b5 measures a very large value
for N may be necessary to achieve reasonable accuracy. For
example, in the °¹4�105 process based on a stable law ran-
dom variable [see (6)], we have

E TN 411 a1 b5 =
�N ƒ14N ƒ 15W

4� + 15 44N ƒ 25� + 15
1 0 < � < 10

Note that the value of N needed to keep this value small
rapidly increases as � approaches 1. Thus it may not be fea-
sible to approximate the °¹4�105 process over all � values.

If the °N 4a1 b5 measure is applied in a Bayesian hierarchi-
cal model as a prior, then an appropriate method for select-
ing N is to choose a value that yields a Bayesian marginal
density that is nearly indistinguishable from its limit. Suppose
that X = 4X11 : : : 1Xn5 is the observed data derived from the
Bayesian nonparametric hierarchical model

4Xi—Yi5
ind

� 4Xi—Yi51 i = 11 : : : 1 n1

4Yi—P5
iid

P1

P °N 4a1b50

Then the Bayesian marginal density under the truncation °N =
°N 4a1b5 equals

ŒN 4X5 =
Z ³

nY
i=1

Z

¹
f4Xi—Yi5P4dYi5

´
°N 4dP51

where f4x—y5 is the density for x given y. Thus to properly
select N , the marginal density ŒN should be close to its limit
Œˆ under the prior °ˆ4a1b5. Consider the following theorem,
the proof of which follows by arguments given in Ishwaran
and James (2000).

Theorem 2. Let pk denote the random weights from a
given °ˆ4a1b5 measure. If ˜ ˜1 denotes the ¬1 distance, then

˜ŒN ƒ Œˆ˜1 4 1 ƒ E
N ƒ1X
k=1

pk

n

0

In particular, for the °¹4a1 b5 process, we have

˜ŒN ƒ Œˆ˜1 441ƒ E61ƒ TN 411 a1 b57n5

and, for the DP4�H5 process,

˜ŒN ƒ Œˆ˜1 4n exp4ƒ4N ƒ 15=�50

For example, the last approximation shows that the sample
size makes almost no dent on the ¬1 distance in a Dirichlet
process approximation. For example, if n = 1051N = 150, and
� = 5, then we get an ¬1 bound of 4057 10ƒ8. Therefore,
even for huge sample sizes, a mere truncation of N = 150
leads to an approximating hierarchical model that is virtu-
ally indistinguishable from one based on the DP4�H5 prior.
See Ishwaran and James (2000) for more discussion and for
applications of this truncation to estimate � nite mixtures of
normals. Also see Muliere and Tardella (1998), who used an
“…-truncation” to sample Dirichlet prior functionals.

4. PÓLYA URN GIBBS SAMPLERS

Stick-breaking measures can be used as practical and
versatile priors in Bayesian nonparametric and semiparamet-
ric hierarchical models. We discuss the slightly more gen-
eral semiparametric setting, which corresponds to the problem



166 Journal of the American Statistical Association, March 2001

where we observe data X = 4X11 : : : 1Xn5, derived from the
hierarchical model

4Xi—Yi1 ˆ5
ind

� 4Xi—Yi1 ˆ51 i = 11 : : : 1 n1

4Yi—P5
iid

P1

ˆ � 4ˆ51

P ° 1 (11)

where � 4Xi—Yi1 ˆ5 denotes the conditional distribution of Xi

given Yi and ˆ. Here ˆ 2 <d represents a � nite dimensional
parameter, whereas the sequence Y11 : : : 1 Yn is unobserved
random elements with conditional distribution P sampled
from our stick-breaking prior ° . Further extensions to (11)
are also possible, such as extensions to include hyperpa-
rameters for ˆ. The model also can be extended to include
a mixture of random measures by extending the distribu-
tion H for the Zk to include hyperparameters. See West,
Müller, and Escobar (1994), Escobar and West (1998), and
MacEachern (1998) for several examples of semiparametric
hierarchical models of the form (11) based on the Dirichlet
process.

4.1 Marginalized Hierarchical Models

A powerful Gibbs sampling approach for sampling the pos-
terior of (11) can be developed when the Yi drawn from
° can be characterized in terms of a generalized Pólya
urn scheme. This method works for both the °¹4a1 b5
and DPN 4�H5 processes described in Section 2, which
both generate Yi values from the urn mechanism (8). This
approach generalizes the method discovered by Escobar (1988,
1994), MacEachern (1994), and Escobar and West (1995) for
Dirichlet process computing.

The method works by � rst integrating over P in (11) to
create a marginalized semiparametric hierarchical model

4Xi—Yi1 ˆ5
ind

� 4Xi—Yi1 ˆ51 i = 11 : : : 1 n1

4Y11 : : : 1 Yn5 � 4Y11 : : : 1 Yn51

ˆ � 4ˆ51 (12)

where � 4Y11 : : : 1 Yn5 denotes the joint distribution for Y =
4Y11 : : : 1 Yn5 de� ned by the underlying Pólya urn.

The proposed Gibbs sampler exploits two key facts about
the joint distribution for Y. First, that the Yi are exchange-
able and, second, that the full conditional distribution for at
least one Yi can be written in closed form (by exchangeability
we can then automatically deduce the full conditional for any
other Y ).

4.2 Gibbs Sampling Algorithm for
°¹(a1b) and DPN (�H) Processes

For simplicity, we describe the algorithm for the case when
° is the °¹4a1 b5 or DPN 4�H5 process, but, in principle, the
method can be used for any almost surely discrete measure
with an explicit prediction rule. Let Yƒi denote the subvector
of Y formed by removing the i-th coordinate. Then to draw

values from the posterior distribution � 4Y1 ˆ—X5 of (12), we
iteratively draw values from the conditional distributions of

4Yi—Yƒi1 ˆ1X51 i = 11 : : : 1 n1 4ˆ—Y1X50

In particular, each iteration of the Gibbs sampler draws the
following samples:

(a) 4Yi—Yƒi1 ˆ1 X5 for each i = 11 : : : 1 n: The required con-
ditional distributions are de� ned by

8Yi 2 — Yƒi1 ˆ1X9

= q0 8Yi 2 — ˆ1Xi9 +
mX

j=1

qj „Yj
4 51 (13)

where

q0 / 4b + am5
Z

¹
f 4Xi—Y 1ˆ5 H4dY 51

qj / 4nj ƒ a5 f4Xi—Yj 1 ˆ51

and these values are subject to the constraint that they
sum to 1, that is,

Pm
j=0 qj = 1. Here we are dropping the

dependence on i for notational simplicity and we write
8Y1 1 : : : 1 Ym9 for the set of unique values in Yƒi , where
each value occurs with frequency nj for j = 11 : : : 1 m.
The expression f 4x—y1ˆ5 refers to the density of x given
y and ˆ, and is assumed to be jointly measurable in
x1y, and ˆ.

(b) 4ˆ—Y1X5: By the usual application of Bayes theorem,
this is the density

f 4ˆ—Y1X5 / � 4dˆ5
nY

i=1

f 4Xi—Yi1 ˆ50

Conjugacy and Methods for Accelerating Mixing. As dis-
cussed in Escobar (1988, 1994), computing the value for q0

in (13) is simpli� ed in the DP4�H5 setting when there is con-
jugacy, and the same holds true in the more general setting as
well [i.e., by conjugacy, we mean that the distribution H is
conjugate for Y in f4X—Y 1ˆ5]. Without conjugacy, the prob-
lem of computing q0 becomes a more delicate issue. In this
case, the various solutions that have been proposed for the
DP4�H5 process can be applied here as well. For example,
see West et al. (1994), MacEachern and Müller (1998), Walker
and Damien (1998), or Neal (2000) for different approaches.

Like the Escobar (1988, 1994) Pólya urn sampler, the gen-
eralized Pólya urn sampler has a tendency to mix slowly if the
values of qj become much larger than the value of q0 in (13).
When this occurs, the sampler can get stuck at the current
unique values Y1 1 : : : 1 Ym of Y and it may take many itera-
tions before any new Y values are generated. As a method to
circumvent this problem for the DP4�H5 process, West et al.
(1994) proposed resampling the unique values Y1 1 : : : 1 Ym at
the end of each iteration of the Gibbs sampler. A general ver-
sion of this method was described by MacEachern (1994).

In this acceleration method, the value for Y is reexpressed
in terms of the unique values Y1 1 : : : 1 Ym and the cluster mem-
bership C = 4C11 : : : 1Cn5, where each Ci records which Yj
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corresponds to the value for Yi; that is, Yi = Yj iff Ci = j.
In the original method proposed by MacEachern (1994), the
Gibbs sampler was modi� ed to include a step to generate the
cluster membership C, which is then followed by an update
for the unique Yj values given the current value for C. How-
ever, a simpler approach is to run the original Gibbs sampler
to generate a current value for Y, and from this, compute the
current membership C, and then update the unique Yj val-
ues given C. Details can be found in West et al. (1994), Bush
and MacEachern (1996), and Escobar and West (1998). In the
generalized Pólya urn sampler, the method works simply by
adding the following third step:

(c) Draw samples from the conditional distributions for
4Yj —C1 ˆ1X5 for j = 11 : : : 1 m. In particular, for each j,
the required conditional density is

f 4Yj —C1 ˆ1X5 / H4dYj 5
Y

8i 2 Ci=j9

f 4Xi—Yj 1 ˆ50

Now use the newly sampled Yj and the current value for
the cluster membership C to determine the new updated
value for Y.

4.3 Limitations With Pólya Urn Gibbs Sampling

Although the generalized Pólya urn Gibbs sampler is a ver-
satile method for � tting Bayesian models, there are several
limitations with this approach that are worth highlighting:

(a) The method relies on the full conditional distribution
of 4Yi—Yƒi1 ˆ1 X5, which results in a Gibbs sampler that
uses a one-coordinate-at-a-time update for parameters.
This can produce large qj coef� cients, which result in
a slowly mixing Markov chain. The simple accelera-
tion method discussed above can be applied to enhance
mixing in general, but in some cases these methods still
suffer from slow mixing, because they implicitly rely
on one-at-a-time updates in some form or another.

(b) Calculating the q0 coef� cient in (13) is problematic in
the nonconjugate case. Although there are many pro-
posed solutions, these tend to complicate the description
of the algorithm and may make them less accessible to
nonexperts.

(c) A third de� ciency arises from the effect of marginal-
izing over P . Although marginalizing is the key that
underlies the Pólya urn approach, it has the undesirable
side effect that it allows inference for the posterior of
P to be based only on the posterior Yi values.

4.4 Posterior Inference in the °¹ (a, b) Process

Theorem 3 can be used in the °¹4a1 b5 process to approx-
imate posterior mean functionals using the values of Y drawn
from our Pólya urn Gibbs sampler. This provides a partial
solution to the third de� ciency highlighted in the previous
section.

We assume that all relevant distributions are de� ned over
measurable Polish spaces. Thus H is a distribution over the
measurable Polish space 4¹1¢4¹55 and the prior � 4ˆ5 for ˆ is
de� ned over the Borel space 4<d1¢4<d55. We also write ­
for the space of probability measures over ¹ and ¢4­5 for
the corresponding ‘ algebra induced by weak convergence.

Theorem 3 provides a characterization for °4 —X5, the
posterior distribution of P given X, in the semiparametric
model (11). It is a generalization of the result for the Dirichlet
process in Lo (1984, Theorem 1) to the Pitman–Yor process.
Also see Antoniak (1974, Theorem 3). A proof is given in the
Appendix.

Theorem 3. Let – be a nonnegative or integrable function
over 4­1 ¢4­55. If ° is the °¹4a1 b5 process, then °4 —X5
in (11) is characterized by

Z

­
–4P5 °4dP —X5 =

Z

¹n

Z

­
–4P5 °4dP —Y5 � 4dY—X51 (14)

where

� 4dY—X5 =
� 4dY5

R
<d

Qn
i=1 f4Xi—Yi1 ˆ5 � 4dˆ5R

¹n

R
<d

Qn
i=1 f4Xi—Yi1 ˆ5 � 4dˆ5 � 4dY5

and � 4Y5 is the joint distribution for Y determined by the
generalized Pólya urn (8).

Furthermore, °4 —Y5 is the posterior for the Pitman–Yor
process given Y, a sample drawn from it, and, therefore, by
considering Pitman (1996a, Corollary 20), it is the random
probability measure

°4 —Y5 =
mX

j=1

pj „Y
j
4 5 + pm+ 1° 4 51 (15)

where 8Y1 1 : : : 1 Ym9 are the unique set of Yi values occurring
with frequencies nj and

4p11 : : : 1 pm1pm+ 15 Dirichlet4n1 ƒ a1 : : : 1 nm ƒ a1 b + am5

is independent of ° , which is a °¹4a1 b + ma5 process.

Estimating Functionals. We can use (14) to estimate var-
ious posterior mean functionals. Several popular choices for
– are

–4P5 = P4A5 =
Z

A

P4dy51

which could be used to estimate the mean posterior cdf by
choosing A to be a cylinder set, and

–4P5 =
Z

¹
k4x01 y5P4dy51

which could be used to estimate the mean density at the point
x0 in density estimation problems where k4 1 5 is a kernel.

To estimate (14) we average

Z

­
–4P5 °4dP —Y5 =

mX
j=1

nj ƒ a

b + n
–4„Y

j
5 +

b + am

b + n
–4H5

over the different values of Y drawn using the Gibbs sampler.
The expression on the right-hand side follows from (15).

The preceding method works for mean functionals because
of the simpli� cation that occurs from integrating. However,
if our interest is in drawing values directly from the law
¬4–4P5—X5, then we have to randomly sample a measure P
from the distribution of °4 —Y5 to produce our posterior draw
–4P5. However, implementing this scheme cannot be done
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without some form of approximation, because it is not possi-
ble to get an exact draw from °4 —Y5. To get around this, we
can approximate (15) with

mX
j=1

pj „Yj
4 5 + pm+ 1°N 4 51

where °N 4 5 is some approximation to ° . One such
approximation could be based on the almost sure truncations
discussed in Section 3.2, with an appropriate truncation level
chosen using either Theorem 1 or Theorem 2. Another method
for approximating ° is to draw simulated data from its urn (8)
with values a 2= a and b 2= b + am. The random measure
based on a large number of these simulated values then closely
approximates ° .

5. BLOCKED GIBBS SAMPLER

The limitations with the Pólya urn Gibbs sampler high-
lighted in Section 4.3 can be avoided by using what we call
the blocked Gibbs sampler. This method applies to Bayesian
nonparametric and semiparametric models similar to (11), but
where the prior ° is assumed to be a � nite dimensional
°N 4a1b5 measure (such as the � nite dimensional Dirichet pri-
ors discussed in Section 3 and truncations to priors such as the
Pitman–Yor process). The � nite dimensionality of such priors
is a key to the success of the method because it allows us to
express our model entirely in terms of a � nite number of ran-
dom variables. This then allows the blocked Gibbs sampler to
update blocks of parameters, which, because of the nature of
the prior, are drawn from simple multivariate distributions (in
particular, the update for p is straightforward because of its
connection to the generalized Dirichlet distribution established
in Section 3.1).

With a � nite dimensional prior P °N 4a1b5, the Bayesian
semiparametric model (11) can be rewritten as

4Xi—Z1 K1 ˆ5
ind

� 4Xi—ZKi
1 ˆ51 i = 11 : : : 1 n1

4Ki—p5
iid

NX
k=1

pk „k4 51

4p1 Z5 � 4p5 H N 4Z51

ˆ � 4ˆ51 (16)

where K = 4K11 : : : 1Kn5, Z = 4Z11 : : : 1ZN 5, p =
4p11 : : : 1 pN 5 §¤4a1 b5, and Zk are iid H . The key to
expression (16) is to notice that Yi equals ZKi

, where the Ki

act as classi� cation variables to identify the Zk associated
with each Yi .

5.1 Direct Posterior Inference

Rewriting the model in the form (16) allows the blocked
Gibbs sampler to sample the posterior distribution °4 —X5

directly. The method works by iteratively drawing values from

the conditional distributions of the blocked variables

4Z—K1 ˆ1 X51

4K—Z1p1 ˆ1X51

4p—K51

4ˆ—Z1K1 X50 (17)

Doing so eventually produces values drawn from the distribu-
tion of 4Z1 K1p1 ˆ—X5. Thus, each draw 4Z1K1p1 ˆ5 de� nes a
random probability measure

P4 5 =
NX

k=1

pk „Zk
4 51

which (eventually) gives us the draw from the posterior °4 —X5
that we seek. This overcomes one of the obstacles observed
with Pólya urn Gibbs samplers, where inference for °4 —X5
requires special methods like those discussed in Section 4.4.
Notice that the blocked Gibbs also can be used to sudy the
posterior distribution � 4Y—X5 using Yi = ZKi

.

5.2 Blocked Gibbs Algorithm

The work in Ishwaran and Zarepour (2000a) can be
extended straightforwardly to derive the required conditional
distributions (17). Let 8K1 1 : : : 1Km9 denote the set of current
m unique values of K. To run the blocked Gibbs, draw values
in the following order:

(a) Conditional for Z: Simulate Zk

iid
H for each k 2

K ƒ 8K1 1 : : : 1Km9. Also, draw 4ZK
j
—K1 ˆ1X5 from the

density

f 4ZK
j
—K1 ˆ1X5 / H4dZK

j
5

Y

8i 2 Ki=K
j

9

f4Xi—ZK
j
1 ˆ51

j = 11 : : : 1m0 (18)

(b) Conditional for K: Draw values

4Ki—Z1p1 ˆ1X5
ind

NX

k=1

pk1i „k4 51 i = 11 : : : 1 n1

where

4p11 i1: : : 1pN 1i5/ p1f4Xi—Z11ˆ51: : : 1pN f 4Xi—ZN 1ˆ5 0

(c) Conditional for p: By the conjugacy of the generalized
Dirichlet distribution to multinomial sampling, it fol-
lows that our draw is

p1 =V1 and pk =41ƒV1 541ƒV2 5 41ƒVkƒ15Vk 1

k=21: : : 1N ƒ11

where

Vk

ind
Beta ak + Mk1bk +

NX

l=k+ 1

Ml 1

for k=11: : : 1N ƒ 11
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and Mk records the number of Ki values that equal k.
(d) Conditional for ˆ: As before, draw ˆ from the density

(remembering that Yi =ZKi
)

f 4ˆ—Z1K1X5/ � 4dˆ5
nY

i=1

f 4Xi—Yi1ˆ50

5.3 Mixing Properties: Blocking and
Data Augmentation

The good mixing properties of the blocked Gibbs sampler
can be attributed to its ability to update the blocked parameters
Z1 K, and p using simple multivariate draws. This encourages
good mixing for these parameters, which in turn encourages
good mixing for the unobserved Yi values, which are updated
simultaneously from these values.

The success of the blocked Gibbs over the standard Pólya
urn sampler also can be attributed to the effect of data aug-
mentation. The blocked Gibbs does a type of data augmen-
tation by augmenting the parameters from the urn scheme to
include the prior. Consider the DPN 4�H5 measure de� ned in
Section 2.2.2. In the Pólya urn Gibbs sampler for � tting (16)
under this prior, we sample 4Y1 ˆ5 from the density propor-
tional to

nY
i=1

f 4Xi—Yi1 ˆ5
nY

i=1

�41ƒ mi=N5

� + i ƒ 1
H4dYi5

+
miX

j=1

nj1 i + �=N

� + i ƒ 1
„Y

j1 i
4dYi5 � 4dˆ5

=
nY

i=1

f4Xi—Yi1 ˆ5
ZZ nY

i=1

P4dYi5°��N
4dP5

HN 4dZ5 � 4dˆ51

where °��N
is the Dirichlet process with � nite measure

��N 4Z1 5 for a � xed value of Z.
If we augment the parameters to include Z and the random

measure P , we now sample 4Y1 ˆ1Z1P5 from the density pro-
portional to

nY
i=1

f 4Xi—Yi1 ˆ5
nY

i=1

P4dYi5 °��N
4dP5 HN 4dZ5 � 4dˆ5

=
nY

i=1

f 4Xi—Yi1 ˆ5
nY

i=1

NX

k=1

pk „ZK
4dYi5

� 4dp5 HN 4dZ5 � 4dˆ51

where � 4dp5 is the density for a Dirichlet4�=N 1 : : : 1 �=N 5
distribution. Notice that after transforming Yi to ZKi

, this den-
sity is exactly the same density used by the blocked Gibbs
sampler.

Thus in the DPN 4�H5 case, the blocked Gibbs sampler is
doing an exact augmentation. However, because the DPN 4�H5
measure is a good approximation to the Dirichlet process, our
argument also shows that the blocked Gibbs sampler under the
DPN 4�H5 prior acts like an approximate data augmentation
procedure in the Dirichlet process Pólya urn Gibbs sampler.
Thus, at least for the Dirichlet process, we can anticipate that

the blocked Gibbs sampler will perform as well or better than
the Pólya urn method. Section 6 offers some empirical evi-
dence to support this claim.

5.4 Nonconjugacy and Hierarchical Extensions

Another key feature of the blocked Gibbs sampler is that
it easily handles the issue of conjugacy, a problem that arises
only in the context of drawing values from (18). With conju-
gacy, the draw from (18) is done exactly, whereas the noncon-
jugate case can be handled easily by using standard Markov
Chain Monte Carlo methods such as Metropolis–Hastings, for
example. We note that the draw for (18) is the same draw
used in the acceleration step for the Pólya urn sampler, so it
adds no further complexity to the blocked Gibbs than already
is seen in urn samplers.

The blocked Gibbs sampler can be extended to accommo-
date hierarchical extensions to (16). For example, the distribu-
tion for H can be expanded to include hyperparameters (such
as a mean and variance parameter in the case that H is a
normal distribution). It is also possible to place priors on the
shape parameters a and b in the °N 4a1b5 prior; see Ishwaran
and Zarepour (2000a), who developed an exact update for the
Dirichlet process cluster parameter � and updates for some
other beta two-parameter processes.

6. COMPARISON OF ALGORITHMS

In this section, we present some empirical evidence that
compares the mixing performance for the Pólya urn Gibbs
sampler (PG sampler) of Section 4.2, the accelerated version
(PGa sampler), and the blocked Gibbs sampler (BG sampler)
described in Section 5.2. We study each of these methods by
applying them to the nonparametric hierarchical model

4Xi—Yi5
ind

N4Yi1‘51 i = 11 : : : 1 n1

4Yi—P5
ind

P1

P ° 1 (19)

with the distribution H of the Zk used in ° chosen to be the
normal distribution N401A5.

In the Pólya urn Gibbs samplers, the value of q0 for each
Yi and its Xi observation is proportional to

b + amp
2� 4‘ + A5

exp
ƒX2

i

24‘ + A5
0 (20)

When A is very large compared to b + am, this value becomes
very small and suppresses the ability of the PG sampler to mix
well. We look at this case, which is an example similar to the
one studied by MacEachern (1994), and illustrates why the
PGa sampler improves mixing. We see that the BG sampler
also performs well in this example.

We set ‘ = 1 and A = 25, and simulated n = 50 obser-
vations Xi from a standard normal distribution. The Pólya
urn Gibbs samplers were applied to three different priors °:
(1) the DP4�H5 process with � = 1, (2) the DPN 4�H5 pro-
cess with N = 50, � = 1, and (3) the °¹4�105 process with
� = 0025, that is, the random measure (6) based on a sta-
ble random variable with index � = 0025. The BG sampler
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also was applied to the DPN 4�H5 prior, but we substituted
°N 4a1b5 almost sure truncations for priors 1 and 3 by using
the methods of Section 3.2. For the DP4�H5 prior we used
a truncation value of N = 50 and for the °¹40025105 pro-
cess we used N = 100. These values produce almost identical
models by Theorem 2.

In each case we used a 2,000 iteration burn-in. After this we
sequentially collected 1,000 batches of sampled values, each
of size B. For each batch we computed the 0.05, 0.25, 0.75,
and 0.95 percentile, as well as the mean, for each of the Yi

values. We then computed the mean value and standard devia-
tion over the 1,000 batches for each of the summary statistics
for each Yi value. The averaged value over i is the (averaged)
mean value and (averaged) standard deviation value we report
in Tables 1–3, which correspond to B = 501 1001 250. A small
standard deviation is evidence of good mixing.

As expected, the PG sampler performance is poor in all
examples, with standard deviations much larger than those
seen in the PGa and BG sampler. Both the PGa and BG sam-
pler perform well in all the examples; both exhibit fairly simi-
lar behavior, but with the slight edge going to the PGa sampler
for the Dirichlet process priors 1 and 2, and to the BG sam-
pler for the Pitman–Yor process (prior 3). We suspect that the
PGa sampler did not do as well as the BG sampler in prob-
lem 3 because of the way q0 depends on the number of clus-
ters m. Notice that by (20), the value for q0 is determined by
am = m=4 (a = 00251 b = 0), which becomes as small as 1=4
when m = 1.

Our overall experiences with the three Gibbs sampling
methods lead us to conclude that the accelerated PGa sam-
pler always should be applied in place of the PG sampler. The
extra computations required are minimal and are more than
offset by the improved mixing. We suspect that the PGa sam-
pler might be slightly more ef� cient than the BG sampler with
small sample sizes in conjugate nonparametric models with
the Dirichlet process, but with other types of priors and in

Table 1. Mean Value and Standard Deviation Over 1,000 Batches, Each of Size B = 50

PG PGa BG

Prior Statistic Mean s.d. Mean s.d. Mean s.d.

DP(�H) .05 percentile ƒ0512 .253 ƒ0711 .126 ƒ0686 .136
.25 percentile ƒ0388 .199 ƒ0488 .051 ƒ0474 .057

mean ƒ0313 .149 ƒ0323 .055 ƒ0321 .056
.75 percentile ƒ0259 .223 ƒ0178 .071 ƒ0189 .079
.95 percentile ƒ0048 .308 0133 .178 0112 .183

DPN (�H) .05 percentile ƒ0513 .242 ƒ0714 .128 ƒ0690 .129
.25 percentile ƒ0399 .187 ƒ0490 .052 ƒ0474 .053

mean ƒ0326 .144 ƒ0322 .056 ƒ0322 .055
.75 percentile ƒ0281 .215 ƒ0174 .074 ƒ0190 .077
.95 percentile ƒ0060 .315 0138 .183 0112 .179

°¹(002510) .05 percentile ƒ0336 .171 ƒ0601 .081 ƒ0582 .082
.25 percentile ƒ0305 .129 ƒ0444 .038 ƒ0433 .038

mean ƒ0287 .122 ƒ0323 .042 ƒ0322 .039
.75 percentile ƒ0285 .149 ƒ0224 .056 ƒ0226 .047
.95 percentile ƒ0193 .206 0009 .125 ƒ0027 .128

NOTE: Summary statistics are evaluated for each Yi (i = 11 : : : 1n = 50), for each of the 1,000 batches. The mean and standard
deviations over the 1,000 batches for each Yi are computed. The average value over i is the reported (averaged) mean and (averaged)
standard deviation. Output is based on the model (19) via the Pólya urn Gibbs sampler (PG sampler) of Section 4.2, the accelerated
version (PGa sampler), and the blocked Gibbs sampler (BG sampler) of Section 5.2.

nonconjugate models, we expect the BG sampler to mix more
ef� ciently.

APPENDIX: PROOFS

A.1 PROOF OF LEMMA 1

To establish (5), take the limit of (4) as N ! ˆ and take logs to
see that,

X̂

k=1

pk = 1 a.s. iff
X̂

k=1

log41 ƒ Vk5 = ƒˆ a.s.

The expression on the right-hand side is a sum of independent ran-
dom variables and, therefore, by the Kolmogorov three series theorem
equals ƒˆ almost surely iff

Pˆ
k=1 E log41 ƒVk5 = ƒˆ.

Alternatively, by (4),

Ŷ
N =1

E4
Pˆ

k=N + 1 pk5

E4
Pˆ

k=N pk5
=

Ŷ
N =1

E41 ƒVN 5 =
Ŷ

N =1

bN

aN + bN

0

If
Pˆ

N =1 log41 + aN =bN 5 = + ˆ, then the right-hand side equals zero
and we must have that E4

PN
k=1 pk5 !1. However, because

PN
k=1 pk

is positive and increasing, it follows that
Pˆ

k=1 pk = 1 almost surely.

A.2 PROOF OF THEOREM 1

Let ° be a speci� c °¹4a1b5 random measure. Then

°4 5 = V1 „Z1
4 5 + 41ƒ V15 V1 „Z1

4 5 + 41ƒ V1 5V2 „Z2
4 5

+ 41 ƒV1 541 ƒV2 5V3 „Z3
4 5 + 1

where Vk = Vk+ 1 are independent Beta41 ƒ a1 b + a + ka5 random
variables and Zk = Zk+ 1 are iid H . From this, deduce that

°4 5
¤
= V1 „Z1

4 5 + 41 ƒ V15 ° 4 51

where, on the right-hand side, V11Z1 , and ° are mutually indepen-
dent, and ° is a °¹4a1b + a5 process.
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Table 2. Mean Value and Standard Deviation Over 1,000 batches, Each of Size B = 100, for Different
Summary Statistics From Model (19)

PG PGa BG

Prior Statistic Mean s.d. Mean s.d. Mean s.d.

DP(�H) .05 percentile ƒ0527 .235 ƒ0726 .102 ƒ0704 .111
.25 percentile ƒ0411 .179 ƒ0490 .036 ƒ0478 .040

mean ƒ0326 .130 ƒ0322 .040 ƒ0323 .041
.75 percentile ƒ0271 .205 ƒ0172 .052 ƒ0187 .060
.95 percentile ƒ0029 .293 0151 .143 0129 .150

DPN (�H) .05 percentile ƒ0528 .227 ƒ0721 .098 ƒ0704 .106
.25 percentile ƒ0409 .173 ƒ0490 .036 ƒ0477 .038

mean ƒ0328 .126 ƒ0322 .039 ƒ0322 .039
.75 percentile ƒ0276 .198 ƒ0174 .051 ƒ0187 .057
.95 percentile ƒ0041 .290 0149 .142 0130 .142

°¹(002510) .05 percentile ƒ0347 .182 ƒ0603 .059 ƒ0586 .065
.25 percentile ƒ0322 .154 ƒ0444 .027 ƒ0435 .028

mean ƒ0298 .142 ƒ0322 .030 ƒ0322 .029
.75 percentile ƒ0294 .179 ƒ0225 .041 ƒ0229 .034
.95 percentile ƒ0191 .226 0019 .088 ƒ0011 .102

NOTE: Mean values and standard deviations are computed as in Table 1.

Similar reasoning shows that

U14r1a1b5
¤
= V r

1 + 41 ƒV15r U14r1a1b + a51

where, on the right-hand side, V1 and U14r1a1 b + a5 are mutually
independent. Therefore, taking expectations,

E U14r1 a1b5 =
41 ƒa54r5

4b + 154r5
+

4b + a54r5

4b + 154r5
E U14r1 a1b + a5 0

It is easy to check that the solution to this is

E U14r1a1b5 =
41ƒ a54rƒ15

4b + 154rƒ15
0

Furthermore, for N 2, we have that

UN 4r1a1 b5
¤
= 41 ƒV15r 41 ƒVN ƒ15

r U14r1a1b + 4N ƒ 15a51

Table 3. Mean Value and Standard Deviation Over 1,000 Batches, Each of Size B = 250, for Different
Summary Statistics From Model (19)

PG PGa BG

Prior Statistic Mean s.d. Mean s.d. Mean s.d.

DP(�H) .05 percentile ƒ0553 .205 ƒ0728 .065 ƒ0710 .081
.25 percentile ƒ0421 .165 ƒ0491 .023 ƒ0478 .028

mean ƒ0326 .111 ƒ0323 .026 ƒ0322 .027
.75 percentile ƒ0256 .183 ƒ0171 .033 ƒ0185 .040
.95 percentile ƒ0011 .253 0157 .094 0136 .106

DPN (�H) .05 percentile ƒ0548 .208 ƒ0728 .064 ƒ0708 .073
.25 percentile ƒ0417 .161 ƒ0491 .023 ƒ0476 .024

mean ƒ0324 .106 ƒ0322 .025 ƒ0322 .025
.75 percentile ƒ0257 .179 ƒ0171 .032 ƒ0186 .037
.95 percentile ƒ0017 .252 0157 .092 0137 .096

°¹(002510) .05 percentile ƒ0377 .158 ƒ0607 .038 ƒ0588 .042
.25 percentile ƒ0358 .142 ƒ0444 .019 ƒ0433 .018

mean ƒ0325 .125 ƒ0322 .019 ƒ0321 .019
.75 percentile ƒ0319 .169 ƒ0227 .025 ƒ0228 .022
.95 percentile ƒ0199 .199 0026 .050 ƒ0002 .067

NOTE: Mean values and standard deviations are computed as in Table 1.

where all the variables on the right-hand side are mutually indepen-
dent. Taking expectations, we have

E UN 4r1a1 b5 =
N ƒ1Y

k=1

E 1 ƒ Vk5r 41 ƒa54rƒ15

4b + 4N ƒ 15a+ 154rƒ15
1

where the product is identi� ed as E TN 4r1 a1b5 by noting that

TN 4r1a1b5
¤
= 41 ƒ V15

r 41 ƒVN ƒ15r T14r1 a1b + 4N ƒ15a5

= 41 ƒV15r 41 ƒVN ƒ15r 0

A.3 LEMMA FOR PROOF OF THEOREM 3

The following lemma is a key fact that we need in the proof of
Theorem 3. It is an extension of Lo’s (1984, Lemma 1) work to the
Pitman–Yor case.
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Lemma 2. Let g be any nonnegative or quasiintegrable func-
tion on the measurable Polish space 4¹n ­1¢4¹n5 † ¢4­55. Let
Y11 : : : 1 Yn be a sample drawn from the °¹4a1b5 process ° . Then

Z

­

Z

¹n
g4Y1P5 P4dY15 P4dYn5 °4dP5

=
Z

¹n

Z

­
g4Y1 P5 °4dP—Y5 � 4dY51

where °4 —Y5 is the posterior for ° based on Y = 4Y11 : : : 1 Yn5 as
de� ned by (15) and � 4Y5 is the joint distribution for Y as de� ned
by the generalized Pólya urn (8).

Proof. The lemma is a special case of the Fubini–Tonelli theorem
and the result follows because we have identi� ed the appropriate
disintegrations for the product measure

P4dY15 P4dYn5°4dP5

of 4Y1 P5.

A.4 PROOF OF THEOREM 3

We follow the style of proof used in Lo (1984, Theorem 1). By
Bayes rule, °4P—X5 is characterized by

Z

­
–4P5°4dP—X5

=

R
­ –4P5

R
<d

Qn
i=1

R
¹ f 4Xi—Yi1 ˆ5 P4dYi5 � 4dˆ5 °4dP5

R
­

R
<d

Qn
i=1

R
¹ f 4Xi—Yi1 ˆ5 P4dYi5 � 4dˆ5 °4dP5

0 (21)

By Fubini’s theorem, we can rewrite the numerator as

Z

<d

Z

­

Z

¹n
–4P5

nY

i=1

f 4Xi—Yi1 ˆ5 P4dY15 P4dYn5 °4dP5 � 4dˆ50

By applying Lemma 2 to the integrand where g4Y1P5 corresponds
to the expression in square brackets, the previous expression now
becomes

Z

<d

Z

¹n

nY
i=1

f 4Xi—Yi1 ˆ5
Z

­
–4P5 °4dP—Y5 � 4dY5 � 4dˆ5

=
Z

¹n

Z

­
–4P5°4dP—Y5

Z

<d

nY

i=1

f 4Xi—Yi1 ˆ5� 4dˆ5 � 4dY50

The last rearrangement follows from the Fubini–Tonelli theorem.
Applying this same argument to the denominator of (21) with

–4P5 = 1 results in the expression (14).

[Received February 2000. Revised July 2000.]
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