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ABSTRACT
Given a sample from a finite population, we provide a nonparametric
Bayesian prediction interval for a finite population mean when a standard
normal assumption may be tenuous. We will do so using a Dirichlet pro-
cess (DP), a nonparametric Bayesian procedure which is currently receiving
much attention. An asymptotic Bayesian prediction interval is well known
but it does not incorporate all the features of the DP. We show how to
compute the exact prediction interval under the full Bayesian DP model.
However, under the DP, when the population size is much larger than
the sample size, the computational task becomes expensive. Therefore, for
simplicity one might still want to consider useful and accurate approxima-
tions to the prediction interval. For this purpose, we provide a Bayesian
procedure which approximates the distribution using the exchangeabil-
ity property (correlation) of the DP together with normality. We compare
the exact interval and our approximate interval with three standard inter-
vals, namely the design-based interval under simple random sampling, an
empirical Bayes interval and amoment-based interval which uses themean
and variance under theDP. However, these latter three intervals do not fully
utilize theposterior distributionof the finite populationmeanunder theDP.
Using several numerical examples and a simulation study we show that our
approximate Bayesian interval is a good competitor to the exact Bayesian
interval for different combinations of sample sizes and population sizes.
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1. Introduction

We assume that a simple random sample is drawn from a finite population and the population values
come from a Dirichlet process (DP).[1] We provide a Bayesian prediction interval for the finite pop-
ulation mean. This problem can be solved easily. However, when the population size is much larger
than the sample size, the computation becomes prohibitive. Thus, we obtain an approximate interval
which is virtually the same as the exact Bayesian interval for large populations. This is obtained using
the central limit theorem for exchangeable random variables. As competitors we also consider other
approximations such as those based on the posteriormean (PM) and variance of the finite population
mean together with the assumption of normality.

All survey data are inherently discrete (e.g. by truncation or rounding). We envision data which
may come in latent clusters (i.e. gaps in the data) or data which have ties and a parametric distribution
is unlikely to provide a good fit. This is particularly true for survey data. For example, income data are
typically recorded in thousands of dollars and body mass index data are recorded in integers. Binder
[2] and Lo [3] provided an asymptotic interval for the finite population mean under the DP. Lo [3]
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3142 B. NANDRAM AND J. YIN

went a bit further to obtain large-sample Bayes confidence band for the finite population distribution
in terms of the distribution function of the sample. In addition, Lo [4] discussed the Bayesian boot-
strap for finite population with prediction intervals. Under stratification both Binder [2] and Lo [3]
showed how the asymptotic interval for the random sampling extends easily to cover stratification as
well.

It is apparent that statisticians are looking for nonparametric methods to obtain more robust pro-
cedures than are provided by parametricmodels such as those based on normality. For this reason, the
purpose of our paper is to obtain a closed-form nonparametric interval estimator of a finite popula-
tionmean when a sample is obtained from a relatively much larger population. One way to proceed is
to use a DPmodel, an important model in nonparametric Bayesian statistics, which can provide a rel-
atively robust interval estimator. Nonparametric Bayesian statistics is currently a very active area [5]
and it is used in many applications. In this paper we report an interesting nonparametric prediction
interval for a finite population mean under a DP when a simple random sample is available.

We have a simple random sample of size n from a population of size N. We assume that the sam-
pled values are y1, . . . , yn and the nonsampled values are yn+1, . . . , yN . Inference is required for the
finite population mean, Ȳ = ∑N

i=1 yi/N, and data y1, . . . , yn are available. Specifically, a Bayesian
prediction interval is needed for Ȳ . We wish to carry out a nonparametric Bayesian analysis. The DP
model is

y1, . . . , yN | G iid∼ G and G | α,Hθ˜(y) ∼ DP{α,Hθ˜(y)},
where α is the concentration parameter and Hθ˜(y) is the baseline distribution corresponding to a
parametric density function, and is therefore a function of unknown parameters θ˜. In the DP α is a
measure of the variability of the random distribution, G, around Hθ˜(y), a family of continuous dis-
tributions indexed by θ˜. Motivated by Binder [2] and Lo [3] and using the DP model, we construct
a nonparametric Bayesian prediction interval for Ȳ . With an effort to obtain a closed-form nonpara-
metric Bayesian prediction interval, we takeHθ˜(y) to be the normal cumulative distribution function
(i.e. y | μ, σ 2 ∼ N(μ, σ 2)).

It is easy to show that Cor(yi, yj) = 1/(1 + α), i �= j. This correlation is useful because when there
are gaps or ties in data, it is reasonable to believe that the data are correlated. It is difficult to model
such a correlation unless one identifies the appropriate structure (e.g. clustering) in the data. But this
seems problematic because we have a simple random sample. Of course, in the design-based analysis
the sample indicators are negatively correlated under simple random sampling without replacement.
But in any model-based analysis of simple random sampling the assumption that is usually used is
independent and identical values.

In this paper we use the DP to model a simple random sample from a finite population. This
requires generating the nonsampled finite population. But this can be prohibitive because when the
population size is much larger than the sample size, the computation time is intolerable. This gives
the exact prediction interval. (Throughout this paper we use the word ‘exact’ to refer to situations
where no analytical approximations are used. A situation in which a sampling-based method is used
is an example.) So we obtain a competitive approximation to the exact prediction interval.

The main reason for using the DP is to accommodate the gaps and ties in the data. The exchange-
ability and the gaps and ties in the responses appear contradictory. However, this is not true because
we are not restricted to independent and identically distributed responses from a common paramet-
ric distribution but rather from a random distribution which follows a DP ( Appendix 1). When the
random distribution is integrated out, the responses become equi-correlated. Moreover, under the
DP the responses are discrete with probability one (Appendix 1), thereby making the DP a natural
clustering algorithm. Even when a simple random sample is taken from a population, there may be
hidden structures in the data that the DP can accommodate because it is essentially nonparametric.

Our theoretical work consists of three theoremswhich are useful for different purposes. Theorem1
is a statement about propriety of the joint posterior density under theDPmodel. This is useful because
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if the posterior density is improper, inference about the finite population mean will be defective (i.e.
the coverage of the prediction interval will be unknown). Thus, Theorem 1 adds credibility to the
Bayesian procedure. Theorem 2 is a convenient statement of Binder’s formulae for the PM and vari-
ance of the finite populationmean conditional on the hyperparameters in theDPmodel. This is useful
in the construction of our approximate Bayesian prediction interval. Theorem 3 uses Theorem 2 to
obtain the PM and variance under the DP model when the hyperparameters are integrated out.

Our predictive interval may be useful in two situations for ‘Big Data Science’ today. First, a sample
may be available from a much larger population and prediction is needed for the entire population
(e.g. the finite population mean). Second, we actually have the data from the entire population. But
because the computational effort needed to analyse the data are enormous, one can take a small
sample. In general, it is difficult to tell what the actual data distribution is, and our nonparametric
prediction interval works well in either case.

The plan of the paper is as follows. In Section 2wefirst discuss the design-based prediction interval.
Then we describe the exact Bayesian interval and the approximate Bayesian interval (ABI). We also
describe two additional approximate intervals, empirical Bayes interval and the exact moment inter-
val. It is convenient to present the three theorems as we proceed with the discussion on the Bayesian
methodology. In Section 3 we explore 14 numerical examples and a simulation study to compare the
five prediction intervals. In Section 4 we have concluding remarks. A review of the DP and proofs of
two new theorems are given in the appendices.

2. Bayesianmethodology

We have a simple random sample of size n from a finite population of sizeN. Let y1, . . . , yn denote the
sampled (s) values and yn+1, . . . , yN denote the nonsampled (ns) values.We observe y˜s = (y1, . . . , yn)
but not y˜ns = (yn+1, . . . , yN). We need a prediction interval for the finite population mean, Ȳ =∑N

i=1 yi/N = f ȳs + (1 − f )ȳns, where f = n/N is the sampling fraction, ȳ = ∑n
i=1 yi/n, the sam-

ple mean, and ȳns = ∑N
i=n+1 yi/(N − n), the nonsample mean which is to be predicted. Also, let

s2 = ∑n
i=1(yi − ȳ)2/(n − 1) denote the sample variance.

First, we review a well-known prediction interval. Under simple random sampling a 95% predic-
tion interval for Ȳ is

ȳ ± z2.5

√
1 − f
n

s, (1)

where z2.5 is the 2.5th percentile point of the standard normal density. For large n the prediction
interval in Equation (1) is an approximate (normality) 95% Bayesian prediction interval. We call this
interval the design-based interval (DBI) and the design-based method (DBM), and it is pertinent to
start with it. This is the asymptotic prediction interval obtained by Binder [2] and Lo [3] under the
DP.

Note that if we assume the Bayesian model

y1, . . . , yN | μ, σ 2 iid∼ Normal(μ, σ 2),π(μ, σ 2) ∝ 1/σ 2, −∞ < μ < ∞, σ 2 > 0,

the Bayesian prediction interval is

ȳ ± tn−1,2.5

√
1 − f
n

s,

where tn−1,2.5 is the 2.5th percentile of the Student’s t density on n − 1 degrees of freedom. This is true
because the prior predictive distribution of Ȳ is normal with mean f ȳ + (1 − f )μ and variance (1 −
f )(σ 2/N), μ | σ 2, ȳ ∼ N(ȳ, σ 2/n) and (n − 1)s2/σ 2 | s2 ∼ χ2

n−1. For a large n this latter interval is
given in Equation (1). However, it is well known that this latter interval is not robust to non-normality
especially when the sample size is small.
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3144 B. NANDRAM AND J. YIN

We use a DP model for the population values to construct a 95% nonparametric Bayesian
prediction interval for a finite population mean. The DP is given by

y1, . . . , yN | G iid∼ G and G | α,Hθ˜(y) ∼ DP{α,Hθ˜(y)}, (2)

where the mean and variance of the DP are, respectively, given by E{G(y)} = Hθ˜(y) and Var{G(y)} =
Hθ˜(y){1 − Hθ˜(y)}/(α + 1). In this paper we take Hθ˜(y) to be

Hθ˜(y) =
∫ y

−∞
1√
2πσ 2

e−(1/2σ
2)(t−μ)2 dt, −∞ < y < ∞,

the cdf of the normal random variable with mean μ and variance σ 2 (i.e. θ˜= (μ, σ 2)). Observe that
Hθ˜(y) is fully parametric and there should be some care in its specification [6] even though this is not
our current issue. Our objective is to obtain a 95% prediction interval for Ȳ under the DP model. As
mentioned, Appendix 1 provides a more detailed review about the DP.

In Section 2.1 we obtain a full Bayesian prediction interval for Ȳ in which the hyperparameters
have prior distributions. In Section 2.2 we obtain the approximate Bayesian prediction interval that
is a serious competitor to the full Bayesian prediction interval. In Section 2.3, for comparison, we
develop two additional approximate prediction intervals that are based on moments.

2.1. Full Bayesian prediction interval

In this section we describe the full Bayesian model and we show how to obtain the full Bayesian
prediction interval.

The full Bayesianmodel is obtained by putting prior distributions on α,μ and σ 2. In this paper, we
will use a ‘Cauchy’ type prior, sometimes called a shrinkage prior, of the following form for α, p(α) =
1/(α + 1)2,α > 0 (a f density with two degrees of freedom in both the numerator and denominator).
It is slightly more convenient to use p(α) = 1/(α + 1)2,α > 0 rather than the half-Cauchy density
p(α) = 2/π(α2 + 1),α > 0.[7] In addition, we will use modified Jeffreys’ prior for μ and σ 2 under
normality. That is, assuming that α, μ and σ 2 are independent a priori,

π(α,μ, σ 2) ∝ 1
(α + 1)2

1
σ 2 , −∞ < μ < ∞, α, σ 2 > 0, (3)

where consistent with standard use, we take σ 2 rather than σ 3/2. Thus, Equations (2) and (3) con-
stitute the full DP model. The prior in Equation (3) is proper in α and improper in μ and σ 2, and a
priori α, μ and σ 2 are independent.

Therefore, letting g(yi | μ, σ 2), i = 1, . . . , n, denote the normal density withmeanμ and variance
σ 2 and using Bayes’ theorem in Equations (2) and (3), the joint posterior density is

π(μ, σ 2,α | y˜) ∝ 1
σ 2(α + 1)2

g(y1 | μ, σ 2)

n∏
i=2

⎡⎣ 1
α + i − 1

⎧⎨⎩
i−1∑
j=1

δyj(yi)+ αg(yi | μ, σ 2)

⎫⎬⎭
⎤⎦ , (4)

−∞ < μ < ∞, σ 2,α > 0. Let k denote the number of distinct values among y1, . . . , yn. We write
the posterior density in Equation (4) in a more convenient form in order to prove its propriety in
Theorem 1. Let tj, j = 1, . . . , k − 1, denote the positions where the distinct values occur after the
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first one in Equation (4) and let T = {t1, . . . , tk−1}. Then, letting δ̄(yi) = ∑i−1
j=1 δyj(yi)/(i − 1),

π(μ, σ 2,α | y˜) ∝ 1
σ 2(α + 1)2

g(y1 | μ, σ 2)

n∏
i=2

[
1

α + i − 1

]

×
[∏
i/∈T

{(i − 1)δ̄(yi)+ αg(yi | μ, σ 2)}
][∏

i∈T
αg(yi | μ, σ 2)

]
,

− ∞ < μ < ∞, σ 2,α > 0. (5)

Note that once the yi are observed, k and T are also observed.

Theorem 1: If k ≥ 2, the joint posterior density in Equation (5) π(μ, σ 2,α | y˜) is proper.
Proof: See Appendix 2. The condition k ≥ 2 in Theorem 1 is essentially minor. �

Next, in order to obtain the exact prediction interval, we show how to obtain samples from the
joint posterior density of y˜ns,α,μ, σ 2 given y˜s. We have

p(y˜ns,α,μ, σ 2 | y˜s) = p(y˜ns | α,μ, σ 2, y˜s)π(α,μ, σ 2 | y˜s).
Once samples are taken from π(α,μ, σ 2 | y˜s), using the composition rule, samples are obtained from
p(y˜ns | α,μ, σ 2, y˜s). Thus, samples can be drawn from p(y˜ns,α,μ, σ 2 | y˜s). However, as pointed out
in the introductory remarks, if N is large this process is computationally prohibitive.

Letting k denote the number of distinct values in the observed data, Antoniak [8] showed that p(k |
α) = sn(k)αk�(α)/�(α + n),α > 0, where the sn(k), the absolute values of the Stirling numbers of
the first kind,[9] are independent of μ and σ 2. Then, the joint posterior density of μ and σ 2 comes
from the baseline model conditional on only the distinct values. That is, letting y∗

1, . . . , y
∗
k denote the

k distinct sample values (k ≥ 2), we have

y∗
1, . . . , y

∗
k | k,μ, σ 2 iid∼ Normal(μ, σ 2)

with the prior in (3). Then, letting ȳ∗ = ∑k
i=1 y

∗
i /k and s2∗ = ∑k

i=1(y
∗
i − ȳ∗)2/(k − 1), we have

μ | σ 2, k, ȳ∗, s2∗ ∼ Normal(ȳ∗, σ 2/k) and σ−2 | s2∗, k ∼ Gamma{(k − 1)/2, (k − 1)s2∗/2}. That is,√
k(μ− ȳ∗)/s∗ | ȳ∗, s2∗, k ∼ tk−1. Thus, it is trivial to draw μ and σ 2. It is not really trivial to draw

α without using a special kind of prior; see [10] for a discussion of the gamma prior which was
introduced earlier by Escobar and West.[11]

We present an improved method to draw α from its posterior density,

π(α | k) ∝ αk�(α)

�(α + n)(α + 1)2
, α > 0. (6)

Transforming α according to ρ = 1/(α + 1) (correlation in the DP ) and simplifying Equation (6),
we get

π(ρ | k) ∝ (1 − ρ)k−1ρn−k∏n−1
j=1 {1 − ρ + ρj} , 0 ≤ ρ ≤ 1. (7)

Note that limρ→0 π(ρ | k) = 0 = limρ→1 π(ρ | k), and π(ρ | k) is well defined and differentiable
everywhere in the closed interval [0, 1].
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3146 B. NANDRAM AND J. YIN

Because the posterior density of ρ is not in a simple form, we use a one-dimensional grid method
to draw samples from it, thereby avoiding Markov chain Monte Carlo methods (e.g. Metropolis sam-
pler). The unit interval is simply divided into 100 sub-intervals of equal width, and the joint posterior
density is approximated by a discrete distribution with probabilities proportional to the heights of
the continuous distribution at the mid-points of these sub-intervals. Now, it is easy to draw a sample
from this univariate discrete distribution of π(ρ | k). It is efficient to remove sub-intervals with small
probabilities (smaller than 10−6); we call the others probable sub-intervals. To draw a single deviate,
we first draw one of the probable sub-intervals. After we have obtained this sub-interval, a uniform
random variable is drawn within this sub-interval. This is a standard jittering procedure which pro-
vides different deviates with probability one. This procedure works very well here because π(ρ | k) is
defined everywhere in the closed interval [0, 1] and we have used it in several of our papers,[12, 13]
to obtain samples from π(ρ | k) and therefore π(α | k). The entire procedure is very fast as it takes
just a few seconds to draw 10,000 values of α,μ, σ 2.

In theory it is easy to draw ȳns. To each of the 10,000 iterates, simply fill in the values yn+1, . . . , yN
(data augmentation). Using Equation (A2) of the generalized Polya urn scheme in Appendix 1, we
have yn+1 | {α,μ, σ 2, y˜s} ∼ (n/(α + n))F̄n(y)+ (α/(α + n))H, and

yn+k+1 | {α,μ, σ 2, y˜s, yn+1, . . . , yn+k} ∼ n + k
α + n + k

F̄n+k(y)+ α

α + n + k
H, (8)

k = 1, . . . ,N − n − 1, where F̄n+k(y) = ∑n+k
i=1 Fyi(y)/(n + k) and F̄n(y) has k = 0. It is now easy to

draw the nonsampled values one by one using Equation (8). The speed of this process is increased by
drawing from F̄n+k(y) using the multinomial distribution because there are repeats among the values
already drawn.

Thus, we get 10,000 values of Ȳ ; order these values and pick the 95% prediction interval to be
(ȳ(250), ȳ(9750)), where the values are arranged in increasing order.We call this interval the full (exact)
Bayesian interval (FBI) and the method the full Bayesian method (FBM). Clearly, this procedure can
be used for inference about quantiles. For each draw of the entire population compute the required
quantile (e.g. median, Q) and then a 95% credible interval is (Q(250),Q(9750)). However, when N is
much larger than n, this procedure is computationally prohibitive as we will show in the examples.
Typically n is much smaller than N and, therefore, the time to fit the model is negligible compare to
the time to draw the N − n nonsampled values from the DP model.

2.2. Approximate Bayesian prediction interval

We describe the approximate Bayesian predictive interval. Here we assume that the hyperparameters
are fixed.Next, we present Theorem2,which gives the requiredmoments of Ȳ conditional on the fixed
hyperparameters, and assuming normality, we can obtain samples of the finite population mean, Ȳ ,
where we have used the samples of α, μ and σ 2 already drawn from the full DP model.

For fixed α, μ and σ 2, Binder [2] presented the PM and variance of Ȳ . We present more easily
interpreted forms of the PM and variance of Ȳ . Let

λ = n(α + N)/N(α + n) and φ = 1/(α + n + 1),

where 0 ≤ λ ≤ 1 is a shrinkage parameter andφ is the posterior correlation.Momentarily, letE′(Ȳ) =
E(Ȳ | μ, σ 2,α, y˜s) and Var′(Ȳ) = Var(Ȳ | μ, σ 2,α, y˜s). Binder [2] stated the PM and variance of Ȳ
(Binder’s formulae) and because they are needed later we state them in Theorem 2.
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Theorem 2: Assuming that the DP model holds,

E′(Ȳ) = λȳ + (1 − λ)μ,

Var′(Ȳ) = λ

[
(n − 1)φ(1 − f )

s2

n
+ (1 − λ)

{
φ(ȳ − μ)2 + (1 − φ)

σ 2

n

}]
.

It is pertinent to discuss the behaviour of E′(Ȳ) and Var′(Ȳ), stated in Theorem 2, for various
choices of α. This is not discussed in [2] nor [3]. As α goes to zero, φ goes to (n + 1)−1 and λ goes
to 1. In this case E′(Ȳ) becomes ȳ, the design-based estimator of Ȳ . Also, Var′(Ȳ) becomes {(n −
1)/(n + 1)}(1 − f )s2/n and ifn is large this becomes the design-based estimator of the variance. Thus,
we can retrieve the design-based prediction interval approximately. On the other hand, as α goes to
infinity, φ goes to zero and λ goes to f, the sampling fraction. In this case E′(Ȳ) goes to f ȳ + (1 − f )μ,
the prior prediction mean under normality and Var′(Ȳ) becomes (1 − f )(σ 2/N), again the prior
prediction variance under normality. Therefore, when α is large, draws are made mostly from the
normal distribution and when α is small, draws are made mostly from the Polya posterior.[14, 15]

Therefore, it is easy to describe the ABI. As yn+1, . . . , yN | y˜s are exchangeable, using Theorem 2,

Ȳ − E(Ȳ | μ, σ 2,α, y˜s)√
Var(Ȳ | μ, σ 2,α, y˜s)

∼ Normal(0, 1) (9)

asymptotically (as n andN go to infinity with n < N).We have used a result on central limit theorems
for interchangeable (exchangeable) processes discussed by Blum et al.[16] It states that if x1, . . . , xN
are exchangeable withmeanμ, variance σ 2 (finite) and correlation ρ, then X̄ is asymptotically normal
with mean μ and variance ρσ 2. [The actual variance is (σ 2/N)(1 + (N − 1)ρ) for any finite N.] In
our case this is a very reasonable approximation for finite population sampling becauseN is generally
large enough.

Therefore,

Ȳ | μ, σ 2,α, y˜s ∼ aNormal{E(Ȳ | μ, σ 2,α, y˜s), Var(Ȳ | μ, σ 2,α, y˜s)}, (10)

where ‘aNormal’ means asymptotically normal (as n and N go to infinity with n < N). With this
normal approximation, we can proceed in the same manner as we did for the full Bayesian method;
the difference is that we do not have to draw the nonsampled values.

We will make 10,000 draws from the posterior density of μ, σ 2,α | y˜s as described for the full
Bayesian prediction interval. Then, for each draw we perform a data augmentation to obtain Ȳ from
the normal approximation in Equation (10). Thus, we get 10,000 values of Ȳ ; order these values and
pick the 95% prediction interval to be (ȳ(250), ȳ(9750)), where the values are arranged in increasing
order. We call this interval the ABI and the method the approximate Bayesian method (ABM). This
is an enormous saving over the full Bayesian prediction interval because as we will see this approxi-
mation is very good for large population sizes where there are large computational savings. However,
if quantiles are needed, the ABI must be abandoned and the exact method must be used. This is
currently under investigation.

2.3. Empirical Bayes and exactmoment prediction intervals

Like the design-based prediction intervals, we construct two additional approximate prediction inter-
vals which are based on the DP. Starting with Equation (9) we simply use the formulae for the mean
and variance in Theorem 2. The first method is empirical Bayes and the second obtains the exact
mean and variance via numerical integration (not a sampling-based method). Theorem 3 gives the
exact moments. For the empirical Bayes method we obtain the posterior modes of α,μ and σ 2. Then,
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3148 B. NANDRAM AND J. YIN

to obtain the prediction intervals, we assume normality. We will use the joint posterior density of
μ, σ 2,α given y˜s in the exact and ABM.

First, we describe the empirical Bayes method. We will substitute posterior modes of μ, σ 2 and α
into Equation (9). The posterior modes of μ and σ 2 are in closed forms and they are, respectively,
μ̂ = ȳ∗ and σ̂ 2 = (k − 1)s2∗/(k + 1), k > 1. However, the posterior mode of α is a bit more involved.
We study two procedures for finding the posterior mode of α, one is an iterative procedure and the
other uses stochastic optimization.

Now, we describe the iterative procedure. Letting α = eψ , the posterior density for ψ is

π(ψ | k) ∝ ekψ

(1 + eψ)2
∏n−1

j=1 (j + eψ)
, −∞ < ψ < ∞.

We note that π(ψ | k) is logconcave (i.e. strongly unimodal with a unique mode). Then, taking the
first derivative of π(ψ | k) and setting it equal zero, we get the fixed-point solution

ψ = ln

{
k∑n−1

j=1 (j + eψ)−1 + 2(1 + eψ)−1

}
.

Thus, starting at ψ = 0 after a few iterations we get the posterior mode ψ̂ and therefore the pos-
terior mode α̂ = eψ̂ . This is similar to a procedure described in [17] which we have discovered
independently.

The stochastic optimization to get the posterior mode is easy to perform. We have already shown
how to get 10,000 iterates from the posterior density of ρ in Equation (7). Note that π(ρ | k) is uni-
modal but not logconcave because it is the density of log(ρ) which is logconcave. Simply compute
the π(ρ | k) at each of the iterates, and take the value ρ̂ where π(ρ | k) has the largest value. Then
α̂ = ρ̂/(1 − ρ̂) gives the posterior mode. Both the iterative procedure and the stochastic optimiza-
tion give essentially the same posterior mode. We will call this interval the empirical Bayes interval
(EBI) and the method to construct it the empirical Bayes method (EBM).

Second, we describe the integration to obtain the exactmoments (mean and variance). In Theorem
3 we obtain almost the complete forms of the moments.

Theorem 3: Assuming that the DP model holds and k ≥ 4,

E(Ȳ | y˜s, k) = E(λ | k)ȳ + {1 − E(λ | k)}ȳ∗ and Var(Ȳ | y˜s, k) = V1 + V2,

V1 = (n − 1)(1 − f )
s2

n
E(λφ | k)+

{
(ȳ − ȳ∗)2 + (k − 2)s2∗

k(k − 3)

}
E{λ(1 − λ)φ | k}

+ (k − 1)s2∗
(k − 3)n

E{λ(1 − λ)(1 − φ) | k},

V2 = (ȳ − ȳ∗)2var(λ | k)+ (k − 2)s2∗
k(k − 3)

E{(1 − λ)2 | k},

where expectations are taken over the posterior density of α.

Proof: See Appendix 3. The condition k ≥ 4 in Theorem 3 is essentially minor. �

Finally, the integration over α can be obtained either by numerical orMonte Carlo techniques.We
use the latter with the 10,000 draws we already made from the posterior density of α, described in
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Equation (6), which we write fully as

π(α | k) =
αk−1

{∏n−1
j=1 (j + α)

}−1
(1 + α)−2

∫∞
0 αk−1

{∏n−1
j=1 (j + α)

}−1
(1 + α)−2 dα

, α > 0.

Letting g(α) be any integrable function of α,

E{g(α) | k} =
∫∞
0 g(α)αk−1

{∏n−1
j=1 (j + α)

}−1
(1 + α)−2 dα∫∞

0 αk−1
{∏n−1

j=1 (j + α)
}−1

(1 + α)−2 dα
.

Then, a good Monte Carlo estimate of E{g(α) | k} is

Ê{g(α) | k} =
10000∑
h=1

whg(αh),

where wh ∝ αk−1
h {∏n−1

j=1 (j + αh)}−1(1 + αh)
−2, h = 1, . . . , 10, 000 , and αh

iid∼ π(α | k). We apply
this method to each of the required integrals. The computation of the expectations took only a few
seconds. We will call this interval the exact moment interval (EMI) and the method to construct it
the exact moment method (EMM).

3. Examples and simulation study

To compare our five intervals/methods, we discuss 14 examples and a simulation study. We are
particularly interested in the comparison between the approximate Bayesian method (ABI/ABM)
and the full (exact) Bayesian method (FBI/FBM) but we also make comparisons with the other
intervals/methods: design-based (DBI/DBM), empirical Bayes (EBI/EBM) and exact moment
(EMI/EMM).

In the 14 examples the population sizes vary considerably. The first 13 examples are on the third
National Health and Nutrition Examination Survey (NHANES III). These are the data on body mass
index where we assume that equivalent simple random samples are taken from 13 states. We are
particularly interested in females older than 45 years because one of our projects is on obesity of
women who have gone beyond the onset of menopause. The population sizes for the obesity study
are around one million and the sample sizes are considerably smaller making the prediction problem
challenging in terms of time. The 14th dataset is taken from Aitkin [18] on income which he used to
discuss finite population sampling. This is a much smaller population which creates little difficulty in
terms of time for the full (exact) Bayesian method.

The examples show that the results from the approximatemethod are similar to those from the full
(exact) Bayesian method. So we discuss this further in the simulation study. Because it takes a very
long time to do the computations for the NHANES III examples, we have restricted our simulation
study to population sizes similar to Aitkin [18] which is moderately large.

3.1. Examples

In Table 1 we present a comparison of four methods (DBM, EBM, EMM and ABM) by examples. We
have used the PM and PSD of the finite population mean. There are some differences among the four
methods. Sometimes the differences are large. It is surprising that EBM tends to have larger PMs but,
as expected, the PSDs from EBM are smaller. For example, for the income data the PMs are about the
same for DBM and EMM and the PSDs are close, the PM for EBM is a bit larger and the PSD is a bit
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3150 B. NANDRAM AND J. YIN

Table 1. Comparison of PM and posterior standard deviation (PSD) of the finite population mean for 14 examples by methods.

DBM EBM EMM ABM

n;N PM PSD PM PSD PM PSD PM PSD

25; 608491 25.880 1.205 26.254 1.046 25.879 1.158 25.807 1.307
556; 4453263 28.045 0.272 28.185 0.276 28.046 0.271 28.131 0.275
162; 2704478 28.086 0.490 28.160 0.495 28.088 0.487 28.250 0.508
86; 1985501 28.860 0.676 29.113 0.657 28.862 0.668 29.038 0.701
47; 1086648 26.213 0.844 26.493 0.799 26.216 0.826 26.522 0.904
80; 1562869 28.150 0.642 28.297 0.632 28.152 0.634 28.339 0.676
59; 947239 27.458 0.669 27.558 0.667 27.460 0.659 27.628 0.725
322; 3310865 28.009 0.339 28.086 0.342 28.010 0.338 28.079 0.343
83; 1949322 27.229 0.687 27.451 0.663 27.230 0.678 27.382 0.708
129; 2358615 26.690 0.534 26.803 0.534 26.692 0.530 26.871 0.552
45; 190472 28.444 1.131 30.324 1.089 28.447 1.106 28.703 1.259
240; 2524603 28.521 0.361 28.574 0.364 28.522 0.360 28.602 0.369
64; 776246 27.031 0.683 27.619 0.663 27.035 0.672 27.247 0.711
48; 648 67.075 3.471 70.775 2.458 67.076 3.385 67.845 3.518

Note: PM is the posterior mean; PSD is the posterior standard deviation. The first 13 examples are from NHANES III and the 14th
one is a data set on income.[18] DBM is the design-based method, EBM is the empirical Bayes method, EMM is the exact moment
method and ABM is the approximate Bayesian method.

smaller. Except for the first example the PMs under EMM are larger than those under ABM and for
all examples PSDs under EMM are smaller than those under ABM, but the differences are small. As
expected, in all examples DBM, EBM and EMM have smaller PSDs than ABM.

In Table 2 we have first assessed normality of the posterior distribution of Ȳ using the Kol-
mogorov–Smirnov test (KST). The one sample KST shows that there is no reason to dispute normality
for all 14 examples. The smallest p-value is .158 forABMand .280 for FBM.Wehave also used the two-
sample KST to compare the posterior distributions of Ȳ under ABM and FBM. For the 14 examples
the p-values are .985, .979, .742, .342, .268, .742, .621, .849, .672, .865, .865, .560, .605, .757. Side-
by-side box plots (omitted) of the posterior densities under the ABM and FBM are symmetric and
they look very similar except ABM tends to have slightly more outliers. Thus, there is no reason to
believe that the posterior distributions of Ȳ under ABM and FBM are different, and in fact, they have
reasonably approximate normal distributions. This is true for all 14 examples. In Table 2 we have
also studied ABM and FBM. We have compared the PMs, PSDs and the 95% credible intervals of Ȳ .
Except for Examples 9, 11 and 13 PSDs under ABM are smaller than those under FBM. Otherwise,
the 95% credible intervals are very close. Although not particularly relevant, one can see that, except
for Examples 1, 5, 11 and 14 (much smaller sample size), the PSDs are larger (similar for both meth-
ods) than for the other examples. Therefore, ABM is a good competitor to FBM which needs much
more computational effort.

In Table 3 we have compared the time (hours) it takes to do the computation on our Linux Com-
putational Node with 2.70GHz and 8 CPU Cores. For the ABM the real time for the computation
of all 14 examples combined is just 8.8 seconds. This time includes the computations of the design
method, the empirical Bayes method and the method based on the exact moments. These are not
included in the computations for the exact method. The computation to obtain the samples from
the joint posterior density of μ, σ 2,α is common to both methods. The Kolmogorov–Smirnov tests
for normality are included in both procedures. There is enormous variation in the times for the var-
ious examples. For Example 2 (N = 4, 453, 263) the time for the computation is 44.311 h and in
Example 11 (N = 190, 472) the time is 1.895 h. Example 14 (N = 648) took just 21.6 seconds (or
0.006 hour). For the income data, Aitkin [18] reported the DBI as (60.6, 73.6) and a Bayesian boot-
strap interval based on 10, 000 bootstrap samples as (60.6, 74.2) which are slightly narrower than the
ones we have in Table 2 but substantially overlapping on the left. The ABI and FBI are, respectively,
(61.1, 74.9) and (61.2, 75.2).
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Table 2. Comparison of the ABM and the full (exact) Bayesian method (FBM) for posterior inference of the finite population mean
for 14 examples.

ABM FBM

n;Na PM PSD 95% CI Pval PM PSD 95% CI Pval

25; 0.6 25.807 1.307 (23.317, 28.484) .158 25.794 1.319 (23.233, 28.226) .881
556; 4.5 28.131 0.275 (27.588, 28.658) .982 28.155 0.279 (27.587, 28.665) .996
162; 2.7 28.250 0.508 (27.296, 29.296) .604 28.259 0.522 (27.239, 29.207) .429
86; 2.0 29.038 0.701 (27.670, 30.392) .731 29.056 0.708 (27.817, 30.472) .450
47; 1.1 26.522 0.904 (24.792, 28.349) .725 26.578 0.928 (24.842, 28.427) .280
80; 1.6 28.339 0.676 (27.020, 29.676) .512 28.358 0.713 (26.987, 29.714) .491
59; 0.9 27.628 0.725 (26.302, 29.125) .984 27.640 0.742 (26.231, 29.098) .689
322; 3.3 28.079 0.343 (27.416, 28.753) .930 28.070 0.361 (27.401, 28.820) .818
83; 1.9 27.382 0.708 (25.967, 28.748) .985 27.377 0.688 (26.014, 28.657) .632
129; 2.4 26.871 0.552 (25.799, 27.962) .956 26.873 0.561 (25.877, 27.967) .903
45; 0.2 28.703 1.259 (26.198, 31.136) .316 28.656 1.214 (26.087, 30.985) .720
240; 2.5 28.602 0.369 (27.875, 29.323) .984 28.606 0.372 (27.866, 29.294) .660
64; 0.8 27.247 0.711 (25.827, 28.634) .543 27.227 0.688 (25.930, 28.535) .464
40; 644 67.845 3.518 (61.051, 74.903) .410 67.868 3.558 (61.173, 75.169) .763

Note: PM is the posterior mean; PSD is the posterior standard deviation; CI is the credible interval; Pval refers to the Kolmogorov test
for normality. a Except for the last example N must be multiplied by 106; see the note to Table 1 for the exact population sizes.
The procedure uses 10,000 draws from the approximate posterior density. The BMI data set has a single US state for females older
than 45 years from NHANES III and the last example is on the income data.[18]

Table 3. Comparison of the times (hours) for the ABM and the
full (exact) Bayesianmethod (FBM) toperform the computations
for the finite population mean by example.

n;N FBM

25; 608491 6.055
556; 4453263 44.311
162; 2704478 26.910
86; 1985501 19.756
47; 1086648 10.812
80; 1562869 15.551
59; 947239 9.425
322; 3310865 32.944
83; 1949322 19.396
129; 2358615 23.469
45; 190472 1.895
240; 2524603 25.120
64; 776246 7.724
48; 648 0.006

Note: The total time it took to compute all 14 examples just
8.8 s using the ABM. The computations to obtain the samples
from the joint posterior density ofμ, σ 2,α is common to both
methods. The first 13 examples are from NHANES III and the
14th one is a data set on income.[18]

Thus, for population sizes of 1000 the time to run EBM is not significant. However, the time to
run population sizes of 1, 000, 000 is intolerable, and therefore, an approximation such as the one we
have developed is useful. More importantly the posterior distributions of the finite population mean
under ABM and FBM are approximate normal distributions and posterior inferences are similar. So
it is reasonable to use ABI for large populations and the FBI for small populations. Thus, using a
simulation study we have investigated the performance of the ABI and the FBI for moderate size
populations.
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Table 4. Simulation Study: Comparison of the ABM and exact Bayesianmethod (FBM) using five-number summary of ratios of PM,
PSD and end points of 95% prediction intervals by sample size and population size

n,N Ratio Min Q1 Med Q3 Max AVG STD

10, 100 PM −.005 −.001 .0001 .0006 .0122 .0001 0.0011
PSD −.039 −.009 .0006 .0092 .0523 .0003 0.0133
Bot −.056 −.003 .0011 .0053 .1076 .0011 0.0093
Top −.035 −.003 .0006 .0042 .0224 .0007 0.0057

25, 250 PM −.003 −.000 .0000 .0004 .0020 .0000 0.0006
PSD −.041 −.008 −.000 .0077 .0380 −.000 0.0110
Bot −.020 −.002 .0005 .0032 .0274 .0005 0.0041
Top −.017 −.002 .0004 .0025 .0161 .0004 0.0034

50, 500 PM −.002 −.000 −.000 .0004 .0022 −.000 0.0006
PSD −.029 −.006 .0008 .0078 .0309 .0007 0.0106
Bot −.012 −.003 −.001 .0016 .0116 −.001 0.0036
Top −.009 −.003 −.001 .0015 .0113 −.001 0.0031

100, 1000 PM −.001 −.000 .0000 .0003 .0013 .0000 0.0004
PSD −.033 −.006 .0006 .0068 .0261 .0005 0.0095
Bot −.009 −.002 −.001 .0012 .0083 −.000 0.0025
Top −.007 −.002 −.000 .0010 .0086 −.000 0.0022

Note: There are 1000 runs in the simulations and the PM, PSD and the 95% prediction interval is computed for each run.

3.2. Simulation study

To study the small population properties of the ABI, we have performed a simulation study. We have
drawn our sample using a Parzen–Rosenblatt kernel density estimate with a window width obtained
using the income data. Let y1, . . . , yn denote the sample of size n = 40 observations from the income
data. So that

f̂ (y) = 1
n

n∑
i=1

1
ho
φ

(
y − yi
ho

)
, −∞ < y < ∞,

where ho is the optimal window width [19] and φ(·) is the standard normal density. We have drawn
a random sample (population) of size N from this kernel density and we have taken a simple ran-
dom sample of size n from this selected population. We have considered sample sizes and population
sizes (n,N) = (10, 100), (25, 250), (50, 500), (100, 1000). We have drawn 1000 samples at each of the
four design points (N, n), and we have run the computation in exactly the same manner as we
have described for all five methods (DBM, EBM, EMM, ABM and FBM). Thus, we know the finite
population mean.

In Table 4 we have a comparison of ABM and FBM using relative difference between their PMs,
PSDs and end points of 95% credible intervals of the finite population mean of the 1000 simulation
runs. For example, for the PMs we compute 1000 ratios [i.e. Ratio = (PMabm − PMfbm)/PMfbm]
and we have presented the five-number summary as well as their average (AVG) and standard
deviation (STD). For all values of (n,N) these quantities are reasonably small [except perhaps at
(n,N) = (10, 100) where max = .1076] suggesting that these two methods are very close except
perhaps at n = 10, N = 100.

In Table 5 we perform the Kolmogorov–Smirnov test (KST) of equality of distribution (ED) of
the two posterior distributions and the tests of normality for these posterior densities (AN for ABM
and EN for FBM). We have presented the five number summary of the p-values as well as the fifth
percentile (P5). Clearly, the test of normality fails at (n = 10, N = 100) (i.e. the posterior distribution
of Ȳ is not normal) and the equality of the posterior distributions is slightly questionable. It seems
reasonable to conclude that about n = 50 N = 500 or greater, there is normality for both methods
and they have the same distributions (the p-values are larger than .05 for Q1). For smaller values of
(n,N) one needs to use the exact method; this runs very fast anyway.
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Table 5. Simulation Study: Five-number summary of the p-values over the 1000 runs by sample size (n), population size (N) and
test.

n,N Test P5 Min Q1 Med Q3 Max

10, 100 ED .0001 .0926 .3646 .6318 .8519 .9996
AN .0000 .0000 .0000 .0002 .0008 .0221
EN .0000 .0000 .0000 .0001 .0003 .0307

25, 250 ED .0011 .0926 .3646 .6258 .8615 .9999
AN .0019 .0463 .1694 .3053 .4970 .9946
EN .0000 .0010 .0253 .0968 .2243 .9622

50, 500 ED .0018 .0645 .2284 .4708 .7326 .9996
AN .0547 .2743 .5364 .7608 .9062 1.000
EN .0000 .0073 .0581 .1926 .4254 .9989

100, 1000 ED .0016 .0862 .2564 .4762 .7092 .9975
AN .1404 .3615 .6669 .8517 .9478 .9999
EN .0006 .0205 .1001 .2428 .4565 .9958

Note: There are 1000 runs in the simulations and for each run the Kolmogorov–Smirnov test is performed of each of 10000 values
in the sampling-based method. For each simulation run, three tests are performed (ED: equality of the two distributions; AN:
equality of approximation and the normal distributions; EN: equality of the exact and normal distributions). We have included the
fifth percentile (P5).

Table 6. Simulation Study: Comparison of coverage (C), Rbias, PRMSE and Wid of the five prediction intervals (DBI, EBI, EMI, ABI,
FBI) by sample size (n), population size (N).

n,N Method Rbias PRMSE C Wid

10, 100 DBI 0.018; 0.003 4.339; 0.095 0.833; 0.012 10.74; 0.191
EBI 0.015; 0.004 3.987; 0.110 0.508; 0.016 5.805; 0.116
EMI 0.018; 0.003 4.157; 0.094 0.795; 0.013 9.715; 0.172
ABI 0.016; 0.003 4.524; 0.100 0.854; 0.011 11.54; 0.211
FBI 0.016; 0.003 4.524; 0.100 0.851; 0.011 11.54; 0.210

25, 250 DBI −.010; 0.002 3.292; 0.041 0.907; 0.009 8.874; 0.056
EBI −.015; 0.002 3.193; 0.053 0.750; 0.014 6.974; 0.047
EMI −.010; 0.002 3.225; 0.041 0.892; 0.010 8.522; 0.054
ABI −.016; 0.002 3.383; 0.045 0.902; 0.009 8.992; 0.060
FBI −.016; 0.002 3.384; 0.045 0.901; 0.009 8.998; 0.061

50, 500 DBI −.001; 0.001 4.104; 0.039 0.933; 0.008 11.70; 0.036
EBI 0.004; 0.001 3.802; 0.040 0.922; 0.008 10.42; 0.028
EMI −.000; 0.001 4.055; 0.040 0.927; 0.008 11.46; 0.035
ABI 0.003; 0.001 3.924; 0.035 0.953; 0.007 11.53; 0.030
FBI 0.003; 0.001 3.925; 0.035 0.951; 0.007 11.53; 0.030

100, 1000 DBI 0.002; 0.001 2.871; 0.027 0.954; 0.007 8.330; 0.018
EBI 0.004; 0.001 2.743; 0.027 0.955; 0.007 7.919; 0.015
EMI 0.002; 0.001 2.851; 0.028 0.952; 0.007 8.236; 0.018
ABI 0.004; 0.001 2.766; 0.025 0.960; 0.006 8.191; 0.015
FBI 0.004; 0.001 2.766; 0.025 0.963; 0.006 8.188; 0.015

Notes : There are 1000 runs in the simulations and for each run the 95% credible intervals, Bias, posterior root-mean-squared error
and credible incidence (whether an interval contains the true value) and wid of the credible intervals are calculated. The first
number in each entry is the average over the 1000 runs and of the second number is the standard error of the average. The first
three methods are based only on the mean and standard deviation with an assumption of normality. The last two methods are
based on Monte Carlo with an approximation of normality for the first of these two.

In Table 6 we investigate consistency properties such as relative bias, mean-squared error, width
of 95% credible intervals and the coverage of the intervals. The relative bias is Rbias = (PM − Ȳ)/Ȳ ,
the posterior root-mean-squared error is PRMSE =

√
(PM − Ȳ)2 + PSD2, the width (wid) is the

difference between the upper end and the lower end of the 95% credible interval, and the credible
incidence is 1 if the 95% credible interval contains the true value and 0 otherwise. We have done
this for all five prediction intervals (DBI, EBI, EMI, ABI and FBI). We have taken the average of
these quantities over the 1000 runs. The average of the credible incidences is the coverage (C). The
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95% credible intervals for DBM, EBM and EMM are obtained as PM ± 1.96PSD. For all methods
the relative bias is negligible especially for larger (n,N) and the PRMSE also gets smaller as (n,N)
increases. The methods are reasonably similar, but as expected, EBM has smaller PRMSE and the
95% credible intervals are too short. The coverage provided by the EBI is too small for values of (n,N)
smaller than (100, 1000). DBI also has coverage smaller than the nominal value of 95%. The ABI and
the FBI have similar coverages for all values of (n,N). However, as (n,N) increases the coverages for
all methods approach the nominal value. It is very interesting that ABI and FBI are very close over all
measures.

4. Concluding remarks

In this paper our goal has been to obtain a Bayesian prediction interval for the finite populationmean
when the population size is much larger than the sample size under the DP. When the full Bayesian
method is used, the computation is prohibitive. So we have obtained an approximate Bayesian predic-
tion interval which is virtually the same as the full (exact) Bayesian prediction interval for relatively
large population with substantially reduced computational time. We have also made comparisons
with some standardmethods (design-based, empirical Bayes and exact moments with an assumption
of normality).

Parametric assumptions can be tenuous in many applications (e.g. survey sampling) because there
are typically gaps and ties in such data. Generally, such gaps and ties are not taken into considera-
tion seriously. Thus, a nonparametric procedure is desirable especially when a prediction interval is
needed for a population mean or quantile. Under the DP using asymptotic theory, Binder [2] and Lo
[3] obtained the standard design-based prediction interval under simple random sampling. Under
the DP for the finite population values, the DBI does not take all features of the DP under consider-
ation. We have shown how to obtain the exact Bayesian prediction interval. We note that this work
has enormous potential for many complex surveys which are, in fact, naturally nonparametric.

We have used several numerical examples and a simulation study with simple random samples
drawn from the Parzen-Rosenblatt kernel density estimator.We have one recommendation. The exact
Bayesian method should be used when prediction is to be done for small to moderate populations
(size less than 500) and the ABM should be used for much larger populations. The exact method
must be used if quantile estimation is needed, but the computational time can be prohibitive for large
populations. This latter situation needs further study.

Finally, as in thework by Binder [2] and Lo [3], it is easy to extend ourwork for stratification. Itmay
be possible to considerably reduce the time for computation using the stick-breaking algorithm,[20]
and we will report on this research elsewhere.
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Appendix 1. A brief review of the DP
We consider a finite population of N units with values y1, . . . , yN . We describe key features of the DP,

y1, . . . , yN | G iid∼ G,G | H ∼ DP(α,H), (A1)

where α is a concentration parameter, G is the unknown random probability measure, H is the baseline distribution
(parametric) and is typically taken as the normal distribution, although other continuous distributions can be used.
Ferguson [1] established the existence of the DP and showed that it is discrete with probability one. HereG is a random
distribution which varies around H, a centre. So that the DP captures an uncountable number of models (hence the
word nonparametric, somewhat inaccurate terminology). A key property of the DP is that y1, . . . , yN are exchangeable
(i.e. the yi have the same marginal distribution and they are equi-correlated).

Let μo and σ 2
o denote the mean and variance of yi under the baseline measure H. Momentarily, we assume that

α, μo and σ 2
o are fixed and so it is convenient to drop the conditioning on them. It is interesting that the DP is a

generalized Polya urn scheme. Blackwell andMacQueen [21] showed how to obtain the joint distribution of y1, . . . , yN
by integrating out G to get the generalized Polya urn scheme,

yk+1 | y1, . . . , yk ∼ k
α + k

F̄(y)+ α

α + k
H, k = 1, . . . ,N − 1, (A2)

where y1 ∼ H, F̄(y) = 1
k
∑k

i=1 Fyi (y), and Fyi (y) is the cdf of a point mass at yi.
Ferguson [1] also obtained the posterior distribution of G which, letting F̄o(y) = (1/n)

∑n
i=1 Fyi (y), is

G | y˜s ∼ DP(α∗,H∗), (A3)

where α∗ = α + n and H∗ = (n/(α + n))F̄o(y)+ (α/(α + n))H, a conjugate posterior density; see [5] for a heuristic
demonstration.

For completeness we mention the Dirichlet process mixture (DPM) model which is

yi | μi
ind∼ f (y | μi,ψ), i = 1, . . . ,N,

μ1, . . . ,μN | G iid∼ G and G | Hθ˜∼ DP{α,Hθ˜}.
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This model is currently receiving a lot of attention and it has been used in countless applications; see, for example,
Chaudhuri and Ghosh [22] for small area estimation and Nandram and Choi [10] for small area estimation with
nonignorable nonresponse.

It is worth noting that in theDPM the parametric distribution, f (y | μi,ψ), has to be specifiedwhile no such specifi-
cation is needed in theDPmodel. Besides, in practice, inference is likely to be sensitive to the specification of f (y | μi,ψ)
andmodel diagnostics will be needed. Nevertheless, the whole idea is that the discreteness [1] ofG in theDP is removed
by using the DPM model.[23] This is advantageous for many applications (e.g. estimation of a density function), but
with a simple random sample, the DPM appears to be an over kill. Moreover, it ensures that each observation comes
from a different distribution and is not appropriate for a simple random sample without additional information (e.g.
covariates). For data with gaps and ties, it seemsmore appropriate to use the DP, which is more nonparametric than the
DPMmodel. Clearly, the DPmodel is still not fully nonparametric and for a practical solution a prior distributionmust
be assumed for α and θ˜. There are no difficulties in finding a prediction interval under the DPM because the sampling
process is parametric. However, if we replace the sampling process by a DP, our method for the DP can be used. This
is under investigation.

Appendix 2. Proof of Theorem thm1
Using the form of the joint posterior density in Equation (5) and noting that α/(α + i − 1) ≤ 1, i = 1, . . . , n, and
δ̄(yi) = ∑i−1

j=1 δyj (yi)/(i − 1) ≤ 1, i = 2, . . . , n, we have

1
σ 2(α + 1)2

g(y1 | μ, σ 2)

n∏
i=2

[
1

α + i − 1

][∏
i/∈T

{(i − 1)δ̄(yi)+ αg(yi | μ, σ 2)}
][∏

i∈T
αg(yi | μ, σ 2)

]

≤ 1
σ 2(α + 1)2

g(y1 | μ, σ 2)

[∏
i/∈T

[max{δ̄(yi), g(yi | μ, σ 2)}]
][∏

i∈T
g(yi | μ, σ 2)

]

Without loss of generality, assume that max{δ̄(yi), g(yi | μ, σ 2)} ≤ 1. [It is also possible for max{δ̄(yi), g(yi | μ, σ 2)} ≤
g(yi | μ, σ 2), but it does not matter.]

Therefore, we only need to show that∫ ∞

0

∫ ∞

−∞

∫ ∞

0

1
σ 2(α + 1)2

g(y1 | μ, σ 2)

[∏
i∈T

g(yi | μ, σ 2)

]
dα dμ dσ 2 < ∞. (A4)

Integrating out α (proper prior), we now only need to show that∫ ∞

0

∫ ∞

−∞
1
σ 2 g(y1 | μ, σ 2)

[∏
i∈T

g(yi | μ, σ 2)

]
dμ dσ 2 < ∞. (A5)

Looking at Equation (A5), we only need to prove that πk(μ, σ 2 | y˜k) ∝ (1/σ 2)[
∏k

i=1 g(yi | μ, σ 2), k ≥ 2, −∞ < μ <

∞, σ 2 > 0, where y˜k = (y1, . . . , yk)′ is the vector of the k distinct values, is proper. But, letting ȳk = ∑k
i=1 yi/k and s

2
k =∑k

i=1(yi − ȳk)2/(k − 1), for k ≥ 2 it is well known that (k − 1)s2k/σ
2 | y˜k ∼ χ2

k−1 and μ | σ 2, y˜k ∼ Normal(ȳk, σ 2/k).
Thus, πk(μ, σ 2 | y˜k) is proper and, therefore, π(μ, σ 2,α | y˜) is proper.
Appendix 3. Proof of Theorem thm3
We integrate  = (μ, σ 2,α) out of the moments, stated in Theorem 2, using the conditional mean and variance
formulas. That is,

E(Ȳ | y˜s) = E{E(Ȳ | y˜s,)}, (A6)

Var(Ȳ | y˜s) = V1 + V2, V1 = E{Var(Ȳ | y˜s,)}, V2 = Var{E(Ȳ | y˜s,)}, (A7)

where E(Ȳ | y˜s,) and Var(Ȳ | y˜s,) are given by Theorem 2. We need to determine V1 and V2. It is worth noting

that α and (μ, σ 2) are independent a posteriori with (k − 1)s2∗/σ 2 | y˜∗, k ∼ χ2
k−1 and

√
k(μ− ȳ∗)/s2∗ | y˜∗, k ∼ tk−1, a

Student’s t density. Then, Var(μ | y˜s, k) = (k − 2)s2∗/k(k − 3) and E(σ 2 | y˜s, k) = (k − 1)s2∗/(k − 3), k ≥ 4.
For Equation (A6), using the independence of μ and α,

E(Ȳ | y˜s) = E{λȳ + (1 − λ)μ | y˜s} = E(λ | k)ȳ + {1 − E(λ | k)}ȳ∗, (A8)

where λ = n(α + N)/N(α + n) as in Theorem 2. Next, we find V1 and V2 in Equation (A7).
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First, we find V1 in (A7). It is easy to show that

V1 = (n − 1)(1 − f )
s2

n
E(λφ | y˜∗, k)+ E

{
λ(1 − λ)φ(μ− ȳ)2 + λ(1 − λ)(1 − φ)

σ 2

n

∣∣∣∣ y˜s, k
}
,

where φ = 1/(α + n + 1) as in Theorem 2. Now because α and μ are independent,

E{λ(1 − λ)φ(μ− ȳ)2 | y˜s, k} = {(ȳ − ȳ∗)2 + Var(μ | y˜s, k)}E{λ(1 − λ)φ | y˜s, k}.
Because E(σ 2 | y˜∗) = (k − 1)s2∗/(k − 3) and Var(μ | y˜s, k) = (k − 2)s2∗/k(k − 3), k ≥ 4, we have

V1 = (n − 1)(1 − f )
s2

n
E(λφ | k)

+
{
(ȳ − ȳ∗)2 + (k − 2)s2∗

k(k − 3)

}
E{λ(1 − λ)φ | k} + (k − 1)s2∗

(k − 3)n
E{λ(1 − λ)(1 − φ) | k}. (A9)

Second, we find V2 in (A7). We use the standard formula for variance,

V2 = E[{E(Ȳ | y˜s,)− E(Ȳ | y˜s)}2]
where E(Ȳ | y˜s) is given by Equation (A8). It is easy to show that

E(Ȳ | y˜s,)− E(Ȳ | y˜s) = (ȳ − ȳ∗){λ− E(λ | y˜∗, k)} + (μ− ȳ∗)(1 − λ).

Then, completing the squares and using the independence of μ and α again, we have

V2 = (ȳ − ȳ∗)2var(λ | k)+ (k − 2)s2∗
k(k − 3)

E{(1 − λ)2 | k}. (A10)
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